Clinical Pharmacology of Antibody-Drug Conjugates
Abstract
:1. Introduction
2. Components of ADCs
3. Clinical Pharmacology of ADCs
3.1. Pharmacokinetics
- predict plasma, blood, and tissue concentrations of a drug
- calculate the optimum dose in a patient
- describe how changes in physiology or disease state can affect the pharmacokinetics of a drug
- correlate drug concentrations with pharmacologic or toxicologic response
- calculate the accumulation of a drug following multiple dosing
3.2. Estimation of PK Parameters
3.3. Compartmental Analysis
3.4. Non-Compartmental Analysis
3.4.1. Maximum Plasma Concentration (Cmax)
3.4.2. Time to Reach Maximum Plasma Concentration (Tmax)
3.4.3. Area under the Curve (AUC)
3.4.4. Area under the Moment Curve (AUMC)
3.4.5. Clearance (CL)
3.4.6. Terminal Half-Life
3.4.7. Mean Residence Time (MRT)
3.4.8. Volume of Distribution XE “Volume of Distribution” of Central Compartment (Vc)
3.4.9. Volume of Distribution at Steady State (Vss)
4. Pharmacokinetic Characteristics of ADCs
4.1. Absorption
4.2. Distribution
4.3. Metabolism and Elimination
5. Bioanalysis
- ELISA immunoassays measuring the conjugate and total antibody kinetic profiles;
- TFC-MS/MS, which quantifies free drugs/metabolites; and
- High-resolution mass spectroscopy for drug-antibody ratio (DAR) analysis in vivo.
6. Cytotoxic Payload
- The cytotoxic capability for a payload should be high with proper lipophilicity.
- The target of the payload should be located inside the cells.
- The molecular structure of a payload should be small in size, lack immunogenicity, soluble in aqueous buffers so that it can be easily conjugated
- The payload should be stable in plasma.
7. Drug-Antibody Ratio (DAR) and Conjugation of ADCs
8. Structural Modification
8.1. Glycosylation
8.2. Pegylation
9. Size and Charge
10. Linkers
- Cleavable linkers are peptide-based linkers and are cleaved by cathepsin B
- Non-cleavable linkers are thioether linkers that release the drug after the monoclonal antibody is degraded.
10.1. Non-Cleavable Linkers
10.2. Cleavable Linkers
11. Allometric Interspecies Scaling of ADCs:
12. Imuunogenicity
13. Pharmacokinetics of ADCs in Children
13.1. Pharmacokinetics of Gemtuzumab Ozogamicin (GO) in Children
13.2. Pharmacokinetics of Brentuximab Vedotin (BV) in Children
14. Statistical Empirical Modeling of ADCs’ Pharmacokinetics and Pharmacodynamics
14.1. Population Pharmacokinetics (POPPK)
14.2. Pharmacodynamics (PD)
14.3. Exposure–Response Relationship
14.3.1. vc-MMAE ADCs
14.3.2. Physiologically Based Pharmacokinetic Models (PBPK)
15. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambert, J.M.; Morris, C.Q. Antibody–Drug Conjugates (ADCs) for Personalized Treatment of Solid Tumors: A Review. Adv. Ther. 2017, 34, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Wang, R.E.; Wang, F. Antibody-drug conjugates for non-oncological indications. Expert Opin. Biol. Ther. 2016, 16, 591–593. [Google Scholar] [CrossRef] [Green Version]
- Deslandes, A. Comparative clinical pharmacokinetics of antibody-drug conjugates in first-in-human Phase 1 studies. mAbs 2014, 6, 859–870. [Google Scholar] [CrossRef]
- Zhao, L.; Ji, P.; Li, Z.; Roy, P.; Sahajwalla, C.G. The antibody drug absorption following subcutaneous or intramuscular ad-ministration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. J. Clin. Pharmacol. 2013, 53, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Tabrizi, M.; Bornstein, G.G.; Suria, H. Biodistribution Mechanisms of Therapeutic Monoclonal Antibodies in Health and Disease. AAPS J. 2009, 12, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, A.J. Introduction to Clinical Pharmacology: Principles of Clinical Pharmacology; Atkinson, A.J., Daniels, C.E., Dedrick, R.L., Grudzinskas, C.V., Markey, S.P., Eds.; Academic Press: New York, NY, USA, 2001; pp. 1–6. [Google Scholar]
- Wagner, J.G. Kinetics of Pharmacologic response, I. Proposed relationship between response and drug concentration in the intact animal and man. J. Theor. Biol. 1968, 20, 173–201. [Google Scholar]
- Paci, A.; Desnoyer, A.; Delahousse, J.; Blondel, L.; Maritaz, C.; Chaput, N.; Mir, O.; Broutin, S. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: Part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur. J. Cancer 2020, 128, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.; Tibbitts, J. Pharmacokinetic Considerations for Antibody Drug Conjugates. Pharm. Res. 2012, 29, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.T.; Price, L.S.L.; Schorzman, A.N.; Storrie, M.; Piscitelli, J.A.; Razo, J.; Zamboni, W.C. Factors Affecting the Pharmacology of Antibody–Drug Conjugates. Antibodies 2018, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Zuo, P. Capturing the Magic Bullet: Pharmacokinetic Principles and Modeling of Antibody-Drug Conjugates. AAPS J. 2020, 22, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Garrett, M.; Ruiz-Garcia, A.; Parivar, K.; Hee, B.; Boni, J. Population pharmacokinetics of inotuzumab ozogamicin in relapsed/refractory acute lymphoblastic leukemia and non-Hodgkin lymphoma. J. Pharmacokinet. Pharmacodyn. 2019, 46, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Han, T.H.; Hunder, N.N.; Jang, G.; Zhao, B. Population Pharmacokinetics of Brentuximab Vedotin in Patients With CD30-Expressing Hematologic Malignancies. J. Clin. Pharmacol. 2017, 57, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Gibaldi, M.; Perrier, D. Pharmacokinetics. In Noncompartmental Analysis Based on Statistical Moment Theory, 2nd ed.; Marcel Dekker: Newyork, NY, USA, 1982; pp. 409–417. [Google Scholar]
- Pastuskovas, C.V.; Mallet, W.; Clark, S.; Kenrick, M.; Majidy, M.; Schweiger, M.; Van Hoy, M.; Tsai, S.P.; Bennett, G.; Shen, B.-Q.; et al. Effect of Immune Complex Formation on the Distribution of a Novel Antibody to the Ovarian Tumor Antigen CA125. Drug Metab. Dispos. 2010, 38, 2309–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boswell, C.A.; Mundo, E.E.; Zhang, C.; Bumbaca, D.; Valle, N.R.; Kozak, K.R.; Fourie, A.; Chuh, J.; Koppada, N.; Saad, O.; et al. Impact of Drug Conjugation on Pharmacokinetics and Tissue Distribution of Anti-STEAP1 Antibody–Drug Conjugates in Rats. Bioconjug. Chem. 2011, 22, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Gorovits, B.; Alley, S.C.; Bilic, S.; Booth, B.; Kaur, S.; Oldfield, P.; Purushothama, S.; Rao, C.; Shord, S.; Siguenza, P. Bioanalysis of antibody–drug conjugates: American Association of Pharmaceutical Scientists Antibody–Drug Conjugate Working Group position paper. Bioanalysis 2013, 5, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Han, T.H.; Zhao, B. Absorption, Distribution, Metabolism, and Excretion Considerations for the Development of Antibody-Drug Conjugates. Drug Metab. Dispos. 2014, 42, 1914–1920. [Google Scholar] [CrossRef]
- Ferri, N.; Bellosta, S.; Baldessin, L.; Boccia, D.; Racagni, G.; Corsini, A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol. Res. 2016, 111, 592–599. [Google Scholar] [CrossRef]
- Lux, A.; Yu, X.; Scanlan, C.N.; Nimmerjahn, F. Impact of immune complex size and glycosylation on IgG binding to human fcgammars. J. Immunol. 2013, 190, 4315–4323. [Google Scholar] [CrossRef] [Green Version]
- Stephan, J.-P.; Chan, P.; Lee, C.; Nelson, C.; Elliott, J.M.; Bechtel, C.; Raab, H.; Xie, D.; Akutagawa, J.; Baudys, J.; et al. Anti-CD22-MCC-DM1 and MC-MMAF Conjugates: Impact of Assay Format on Pharmacokinetic Parameters Determination. Bioconjug. Chem. 2008, 19, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.K.; Yang, J.; Anand, B.; Cowan, K.; Hendricks, R.; Li, J.; Nakamura, G.; Song, A. The assay design used for measurement of therapeutic antibody concentrations can affect pharmacokinetic parameters. mAbs 2012, 4, 623–631. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.; Pack, L.; Hunter, J.H.; Valliere-Douglass, J.F. Native size-exclusion chromatography-mass spectrometry: Suitability for antibody–drug conjugate drug-to-antibody ratio quantitation across a range of chemotypes and drug-loading levels. mAbs 2020, 12, 1682895. [Google Scholar] [CrossRef] [Green Version]
- Fleming, R. ADC Analysis by Hydrophobic Interaction Chromatography. Methods Mol. Biol. 2020, 2078, 147–161. [Google Scholar] [PubMed]
- Kovtun, Y.V.; Goldmacher, V.S. Cell killing by antibody–drug conjugates. Cancer Lett. 2007, 255, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Chari, R.V.J. Targeted Cancer Therapy: Conferring Specificity to Cytotoxic Drugs. Acc. Chem. Res. 2008, 41, 98–107. [Google Scholar] [CrossRef]
- Nittoli, T.; Kelly, M.P.; Delfino, F.; Rudge, J.; Kunz, A.; Markotan, T.; Spink, J.; Chen, Z.; Shan, J.; Navarro, E.; et al. Antibody drug conjugates of cleavable amino-alkyl and aryl maytansinoids. Bioorg. Med. Chem. 2018, 26, 2271–2279. [Google Scholar] [CrossRef]
- Jackson, P.J.; Kay, S.; Pysz, I.; Thurston, D.E. Use of pyrrolobenzodiazepines and related covalent-binding DNA-interactive molecules as ADC payloads: Is mechanism related to systemic toxicity? Drug Discov. Today Technol. 2018, 30, 71–83. [Google Scholar] [CrossRef]
- TRODELVY (Sacituzumab Govitecan-Hziy) for Injection, for Intravenous Use. Initial U.S. Approval; 2020. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761115s000lbl.pdf (accessed on 31 December 2020).
- ENHERTU (Fam-Trastuzumab Deruxtecan-Nxki) for Injection, for Intravenous Use. Initial U.S. Approval; 2019. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/761139s011lbl.pdf (accessed on 19 February 2021).
- Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.C.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; et al. Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate. Clin. Cancer Res. 2004, 10, 7063–7070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Ponte, J.F.; Yoder, N.C.; Laleau, R.; Coccia, J.; Lanieri, L.; Qiu, Q.; Wu, R.; Hong, E.; Bogalhas, M.; et al. Effects of Drug–Antibody Ratio on Pharmacokinetics, Biodistribution, Efficacy, and Tolerability of Antibody–Maytansinoid Conjugates. Bioconjug. Chem. 2017, 28, 1371–1381. [Google Scholar] [CrossRef]
- Strop, P.; Liu, S.-H.; Dorywalska, M.; Delaria, K.; Dushin, R.G.; Tran, T.-T.; Ho, W.-H.; Farias, S.; Casas, M.G.; Abdiche, Y.; et al. Location Matters: Site of Conjugation Modulates Stability and Pharmacokinetics of Antibody Drug Conjugates. Chem. Biol. 2013, 20, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.J.; Bargh, J.D.; Dannheim, F.M.; Hanby, A.R.; Seki, H.; Counsell, A.J.; Ou, X.; Fowler, E.; Ashman, N.; Takada, Y.; et al. Site-selective modification strategies in antibody–drug conjugates. Chem. Soc. Rev. 2021, 50, 1305–1353. [Google Scholar] [CrossRef]
- Dennler, P.; Fischer, E.; Schibli, R. Antibody Conjugates: From Heterogeneous Populations to Defined Reagents. Antibodies 2015, 4, 197–224. [Google Scholar] [CrossRef]
- Mahmood, I.; Green, M.D. Pharmacokinetic and Pharmacodynamic Considerations in the Development of Therapeutic Pro-teins. Clin. Pharmacokinet. 2005, 44, 331–347. [Google Scholar] [CrossRef]
- Drickamer, K.; Taylor, M.E. Evolving views of protein glycosylation. Trends Biochem. Sci. 1998, 23, 321–324. [Google Scholar] [CrossRef]
- Zhou, Q.; Stefano, J.E.; Manning, C.; Kyazike, J.; Chen, B.; Gianolio, D.A.; Park, A.; Busch, M.; Bird, J.; Zheng, X.; et al. Site-Specific Antibody–Drug Conjugation through Glycoengineering. Bioconjug. Chem. 2014, 25, 510–520. [Google Scholar] [CrossRef]
- Yoshimaga, Y.; Harris, J.M. Effects of coupling chemistry on activity of polyethylene glycol-mediated enzyme. J. Bioact. Comp. Polyn. 1989, 4, 17–24. [Google Scholar] [CrossRef]
- Burke, P.J.; Hamilton, J.Z.; Jeffrey, S.C.; Hunter, J.H.; Doronina, S.O.; Okeley, N.M.; Miyamoto, J.B.; Anderson, M.E.; Stone, I.J.; Ulrich, M.L.; et al. Optimization of a PEGylated Glucuronide-Monomethylauristatin E Linker for Antibody–Drug Conjugates. Mol. Cancer Ther. 2016, 16, 116–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leelawattanachai, J.; Kwon, K.W.; Michael, P.; Ting, R.; Kim, J.Y.; Jin, M.M. Side-by-side comparison of commonly used bio-molecules that differ in size and affinity on tumor uptake and internalization. PLoS ONE 2015, 10, e0124440. [Google Scholar] [CrossRef] [Green Version]
- Boswell, C.A.; Tesar, D.B.; Mukhyala, K.; Theil, F.P.; Fielder, P.J.; Khawli, L.A. Effects of charge on antibody tissue distribu-tion and pharmacokinetics. Bioconj. Chem. 2010, 21, 2153–2163. [Google Scholar] [CrossRef]
- Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell 2018, 9, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Tsuchikama, K.; Shimamoto, Y.; Anami, Y. Truncated autoinducing peptide conjugates selectively recognize and kill staphy-lococcus aureus. ACS Infect. Dis. 2017, 3, 406–410. [Google Scholar] [CrossRef]
- Walles, M.; Connor, A.; Hainzl, D. ADME and Safety Aspects of Non-cleavable Linkers in Drug Discovery and Development. Curr. Top. Med. Chem. 2018, 17, 3463–3475. [Google Scholar] [CrossRef]
- Thorpe, P.E.; Wallace, P.M.; Knowles, P.P.; Relf, M.G.; Brown, A.N.; Watson, G.J.; Knyba, R.E.; Wawrzynczak, E.J.; Blakey, D.C. New coupling agents for the synthesis of immunotoxins containing a hindered disulfide bond with improved stability in vivo. Cancer Res. 1987, 47, 5924–5931. [Google Scholar] [PubMed]
- Thorpe, P.E.; Wallace, P.M.; Knowles, P.P.; Relf, M.G.; Brown, A.N.; Watson, G.J.; Blakey, D.C.; Newell, D.R. Improved antitumor effects of immunotoxins prepared with deglycosylated ricin A-chain and hindered disulfide linkages. Cancer Res. 1988, 48, 6396–6403. [Google Scholar]
- Jeffrey, S.C.; Andreyka, J.B.; Bernhardt, S.X.; Kissler, K.M.; Kline, T.; Lenox, J.S.; Moser, R.F.; Nguyen, M.T.; Okeley, N.M.; Stone, I.J.; et al. Development and Properties of β-Glucuronide Linkers for Monoclonal Antibody−Drug Conjugates. Bioconjug. Chem. 2006, 17, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-Maytansinoid Conjugates Are Activated in Targeted Cancer Cells by Lysosomal Degradation and Linker-Dependent Intracellular Processing. Cancer Res. 2006, 66, 4426–4433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, I. Application of allometric principles for the prediction of pharmacokinetics in human and veterinary drug development. Adv. Drug Deliv. Rev. 2007, 59, 1177–1192. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I. Interspecies Scaling of Protein Drugs: Prediction of Clearance from Animals to Humans. J. Pharm. Sci. 2004, 93, 177–185. [Google Scholar] [CrossRef]
- Mahmood, I. Pharmacokinetic Allometric Scaling of Antibodies: Application to the First-In-Human Dose Estimation. J. Pharm. Sci. 2009, 98, 3850–3861. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Iyer, S.; Theil, F.-P.; Mortensen, D.L.; Fielder, P.J.; Prabhu, S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data. mAbs 2011, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Oitate, M.; Masubuchi, N.; Ito, T.; Yabe, Y.; Karibe, T.; Aoki, T.; Murayama, N.; Kurihara, A.; Okudaira, N.; Izumi, T. Prediction of Human Pharmacokinetics of Therapeutic Monoclonal Antibodies from Simple Allometry of Monkey Data. Drug Metab. Pharmacokinet. 2011, 26, 423–430. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Deng, R.; Leipold, D.; Li, N.; Latifi, B.; Gao, Y.; Zhang, C.; Li, Z.; Miles, D.; et al. Prediction of Human Pharmacokinetics of Antibody–Drug Conjugates From Nonclinical Data. Clin. Transl. Sci. 2019, 12, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, I. Interspecies Scaling of Antibody–Drug Conjugates (ADC) for the Prediction of Human Clearance. Antibodies 2021, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- FDA Guidance: Immunogenicity Testing of Therapeutic Protein Products-Developing and Validating Assays for Anti-Drug Antibody Detection; Guidance for Industry; FDA: Silverspring, MD, USA, 2019.
- Hock, M.B.; Thudium, K.E.; Carrasco-Triguero, M.; Schwabe, N.F. Immunogenicity of Antibody Drug Conjugates: Bioanalytical Methods and Monitoring Strategy for a Novel Therapeutic Modality. AAPS J. 2014, 17, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S. Bioanalysis special focus issue on antibody–drug conjugates. Bioanalysis 2013, 5, 981–983. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Triguero, M.; Dere, R.C.; Milojic-Blair, M.; Saad, O.M.; Nazzal, D.; Hong, K.; Kaur, S. Immunogenicity of antibody–drug conjugates: Observations across 8 molecules in 11 clinical trials. BioBioanalysis 2019, 11, 1555–1568. [Google Scholar] [CrossRef]
- Sacks, L.V.; Shamsuddin, H.H.; Yasinskaya, Y.I.; Bouri, K.; Lanthier, M.L.; Sherman, R.E. Scientific and Regulatory Reasons for Delay and Denial of FDA Approval of Initial Applications for New Drugs, 2000–2012. JAMA 2014, 311, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Cross, J.; Lee, H.; Westelinck, A.; Nelson, J.; Grudzinskas, C.; Peck, C. Postmarketing drug dosage changes of 499 FDA-approved new molecular entities, 1980-1999. Pharmacoepidemiol. Drug Saf. 2002, 11, 439–446. [Google Scholar] [CrossRef]
- Mahmood, I. Dosing in children: A critical review of the pharmacokinetic allometric scaling and modelling approaches in pe-diatric drug development and clinical settings. Clin. Pharmacokinet. 2014, 53, 327–346. [Google Scholar] [CrossRef]
- Wharton, G.T.; Murphy, M.D.; Avant, D.; Goldsmith, J.V.; Chai, G.; Rodriguez, W.J.; Eisenstein, E.L.; Gringras, P.; Green, D.; Wright, B.; et al. Impact of Pediatric Exclusivity on Drug Labeling and Demonstrations of Efficacy. Pediatrics 2014, 134, e512–e518. [Google Scholar] [CrossRef]
- Mahmood, I. Pharmacokinetic Considerations in Designing Pediatric Studies of Proteins, Antibodies, and Plasma-Derived Products. Am. J. Ther. 2012, 23, e1043–e1056. [Google Scholar] [CrossRef]
- Burckart, G.J.; Anker, J.N.V.D. Pediatric Ontogeny: Moving From Translational Science to Drug Development. J. Clin. Pharmacol. 2019, 59 (Suppl. 1), S7–S8. [Google Scholar] [CrossRef] [Green Version]
- Burckart, G.J.; Kim, C. The Revolution in Pediatric Drug Development and Drug Use: Therapeutic Orphans No More. J. Pediatr. Pharmacol. Ther. 2020, 25, 565–573. [Google Scholar] [CrossRef]
- Buckwalter, M.; Dowell, J.A.; Korth-Bradley, J.; Gorovits, B.; Mayer, P.R. Pharmacokinetics of Gemtuzumab Ozogamicin as a Single-Agent Treatment of Pediatric Patients With Refractory or Relapsed Acute Myeloid Leukemia. J. Clin. Pharmacol. 2004, 44, 873–880. [Google Scholar] [CrossRef]
- Flerlage, J.E.; Metzger, M.L.; Wu, J.; Panetta, J.C. Pharmacokinetics, immunogenicity, and safety of weekly dosing of brentuximab vedotin in pediatric patients with Hodgkin lymphoma. Cancer Chemother. Pharmacol. 2016, 78, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Aarons, L. Population pharmacokinetics: Theory and practice. Br. J. Clin. Pharmacol. 1991, 32, 669–670. [Google Scholar]
- Peck, C.C.; Barr, W.H.; Benet, L.Z.; Collins, J.; Desjardins, R.E.; Furst, D.E.; Harter, J.G.; Levy, G.; Ludden, T.; Rodman, J.H.; et al. Opportunities for Integration of Pharmacokinetics, Pharmacodynamics, and Toxicokinetics in Rational Drug Development. J. Pharm. Sci. 1992, 81, 605–610. [Google Scholar] [CrossRef]
- Ette, E.; Sun, H.; Ludden, T.M. Design of Population Pharmacokinetic Studies. Proc. Am. Stat. Assoc. (Biopharm. Sect.) 1994, 1994, 487–492. [Google Scholar]
- Cella, M.; Zhao, W.; Jacqz-Aigrain, E.; Burger, D.; Danhof, M.; Della Pasqua, O. Paediatric drug development: Are population models predictive of pharmacokinetics across paediatric populations? Br. J. Clin. Pharmacol. 2011, 72, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Lorusso, P.M.; Wang, B.; Yi, J.-H.; Burris, H.A.; Beeram, M.; Modi, S.; Chu, Y.-W.; Agresta, S.; Klencke, B.; et al. Clinical Implications of Pathophysiological and Demographic Covariates on the Population Pharmacokinetics of Trastuzumab Emtansine, a HER2-Targeted Antibody-Drug Conjugate, in Patients With HER2-Positive Metastatic Breast Cancer. J. Clin. Pharmacol. 2012, 52, 691–703. [Google Scholar] [CrossRef]
- Lu, D.; Girish, S.; Gao, Y.; Wang, B.; Yi, J.-H.; Guardino, E.; Samant, M.; Cobleigh, M.; Rimawi, M.; Conte, P.; et al. Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody–drug conjugate, in patients with HER2-positive metastatic breast cancer: Clinical implications of the effect of covariates. Cancer Chemother. Pharmacol. 2014, 74, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Hibma, J.; Knight, B. Population Pharmacokinetic Modeling of Gemtuzumab Ozogamicin in Adult Patients with Acute Myeloid Leukemia. Clin. Pharmacokinet. 2018, 58, 335–347. [Google Scholar] [CrossRef]
- Masters, J.C.; Barry, E.; Knight, B. Population Pharmacokinetics of Gemtuzumab Ozogamicin in Pediatric Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin. Pharmacokinet. 2018, 58, 271–282. [Google Scholar] [CrossRef]
- Suri, A.; Mould, D.R.; Liu, Y.; Jang, G.; Venkatakrishnan, K. Population PK and Exposure-Response Relationships for the Antibody-Drug Conjugate Brentuximab Vedotin in CTCL Patients in the Phase III ALCANZA Study. Clin. Pharmacol. Ther. 2018, 104, 989–999. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Lu, T.; Gibiansky, L.; Li, X.; Li, C.; Agarwal, P.; Shemesh, C.S.; Shi, R.; Dere, R.C.; Hirata, J.; et al. Integrated Two-Analyte Population Pharmacokinetic Model of Polatuzumab Vedotin in Patients With Non-Hodgkin Lymphoma. CPT Pharmacomet. Syst. Pharmacol. 2019, 9, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Shemesh, C.S.; Agarwal, P.; Lu, T.; Lee, C.; Dere, R.C.; Li, X.; Li, C.; Jin, J.Y.; Girish, S.; Miles, D.; et al. Pharmacokinetics of polatuzumab vedotin in combination with R/G-CHP in patients with B-cell non-Hodgkin lymphoma. Cancer Chemother. Pharmacol. 2020, 85, 831–842. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, I. Misconceptions and issues regarding allometric scaling during the drug development process. Expert Opin. Drug Metab. Toxicol. 2018, 14, 843–854. [Google Scholar] [CrossRef]
- Lu, T.; Gibiansky, L.; Li, X.; Li, C.; Shi, R.; Agarwal, P.; Hirata, J.; Miles, D.; Chanu, P.; Girish, S.; et al. Exposure-safety and exposure-efficacy analyses of polatuzumab vedotin in patients with relapsed or refractory diffuse large B-cell lymphoma. Leuk. Lymphoma 2020, 61, 2905–2914. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, C.; Li, Z.; Samineni, D.; Lu, D.; Wang, B.; Chen, S.-C.; Zhang, R.; Agarwal, P.; Fine, B.M.; et al. Clinical pharmacology of vc-MMAE antibody–drug conjugates in cancer patients: Learning from eight first-in-human Phase 1 studies. mAbs 2020, 12, 1699768. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Quartino, A.; Polhamus, D.; Riggs, M.; French, J.; Wang, X.; Vadhavkar, S.; Smitt, M.; Hoersch, S.; Strasak, A.; et al. Population pharmacokinetics and exposure–response of trastuzumab emtansine in advanced breast cancer previously treated with ≥2 HER2-targeted regimens. Br. J. Clin. Pharmacol. 2017, 83, 2767–2777. [Google Scholar] [CrossRef] [PubMed]
- Khot, A.; Tibbitts, J.; Rock, D.; Shah, D.K. Development of a Translational Physiologically Based Pharmacokinetic Model for Antibody-Drug Conjugates: A Case Study with T-DM1. AAPS J. 2017, 19, 1715–1734. [Google Scholar] [CrossRef]
- Chen, Y.; Samineni, D.; Mukadam, S.; Wong, H.; Shen, B.-Q.; Lu, D.; Girish, S.; Hop, C.; Jin, J.Y.; Li, C. Physiologically Based Pharmacokinetic Modeling as a Tool to Predict Drug Interactions for Antibody-Drug Conjugates. Clin. Pharmacokinet. 2015, 54, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Han, T.H.; Gopal, A.K.; Ramchandren, R.; Goy, A.; Chen, R.; Matous, J.V.; Cooper, M.; Grove, L.E.; Alley, S.C.; Lynch, C.M.; et al. CYP3A-Mediated Drug-Drug Interaction Potential and Excretion of Brentuximab Vedotin, an Antibody−Drug Conjugate, in Patients With CD30-Positive Hematologic Malignancies. J. Clin. Pharmacol. 2013, 53, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Weddell, J.; Chiney, M.S.; Bhatnagar, S.; Gibbs, J.P.; Shebley, M. Mechanistic Modeling of Intra-Tumor Spatial Distribution of Antibody-Drug Conjugates: Insights into Dosing Strategies in Oncology. Clin. Transl. Sci. 2021, 14, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P. Science and Statistics. J. Am. Stat. Assoc. 1976, 71, 791. [Google Scholar] [CrossRef]
Trade Name | Generic Name | Conjugate | Average DAR | Indication | Target |
---|---|---|---|---|---|
MYLOTARG | Gemtuzumab ozogamicin | Calicheamicin | 2–3 | Hematological | CD33 |
ADCETRIS | brentuximab vedotin | Monomethyl auristatin E (MMAE) | 4 | Hematological | CD30 |
BESPONSA | Inotuzumab ozogamicin | Calicheamicin | 6 | Hematological | CD22 |
POLIVY | Polatuzumab vedotin | Monomethyl auristatin E (MMAE) | 3.5 | Hematological | CD79b |
KADCYLA | Trastuzumab emtansine | Myatansinoid (DM1) | 3.5 | Solid tumor | HER2 |
ENHERTU | Trastuzumab deruxtecan | Deruxtecan (Dxd) | 7–8 | Solid tumor | HER2 |
PADCEV | Enfortumab vedotin | Monomethyl auristatin E (MMAE) | 3.8 | Solid tumor | Nectin-4 |
TRODELVY | Sacituzumab govitecan | Govitecan SN-38 | 7.6 | Solid tumor | Trop-2 |
BLENREP | Belantamab mafodotin | microtubule inhibitor MMAF | 4 | Myeloma | BCMA |
ADCs | Dose | CL (mL/h) | Vss or Vc (L) | Half-Life (Days) |
---|---|---|---|---|
MYLOTARG | 9 mg/m2 | 350 | 21 | 2.6 |
ADCETRIS | 0.1–3.4 mg/kg | 65 | 6–10 | 4–6 |
BESPONSA | 1.2–1.8 mg/m2 | 33 | 12 | 12.3 |
POLIVY | 1.8 mg/kg | 900 | 3.2 * | 12 |
KADCYLA | 3.6 mg/kg | 680 | 3.1 * | 4 |
ENHERTU | 3.2–8 mg/kg | 420 | 2.8 * | 5.7 |
PADCEV | 1.25 mg/kg | 100 | 11 | 3.4 |
TRODELVY | 10 mg/kg | 140 | 3.2 | 16 h |
BLENREP | 2.5 mg/kg | 900 | 11 | 12 |
Age (Years) | CL (L/h) | Vss (L) | Half-Life (h) |
---|---|---|---|
Infants (0–2), n = 2 | 0.03 ± NA | 2.9 ± NA | 113 ± NA |
Children (3–11), n = 5 | 0.06 ± 0.03 | 3.9 ± 1.9 | 45.6 ± 30.8 |
Adolescents (12–16), n = 7 | 0.26 ± 0.30 | 9.4 ± 6.6 | 62.0 ± 16.5 |
Adults (n = 59) | 0.27 ± 0.23 | 20.9 ± 21.5 | 72.4 ± 42.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmood, I. Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies 2021, 10, 20. https://doi.org/10.3390/antib10020020
Mahmood I. Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies. 2021; 10(2):20. https://doi.org/10.3390/antib10020020
Chicago/Turabian StyleMahmood, Iftekhar. 2021. "Clinical Pharmacology of Antibody-Drug Conjugates" Antibodies 10, no. 2: 20. https://doi.org/10.3390/antib10020020
APA StyleMahmood, I. (2021). Clinical Pharmacology of Antibody-Drug Conjugates. Antibodies, 10(2), 20. https://doi.org/10.3390/antib10020020