From Carbon–Water Diagnosis to Landscape Optimization: A New Framework for Sustainable Restoration in East Asian Karst
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
3. Results
3.1. Divergent Trajectories of Carbon Sequestration and Water Use
3.2. Contrasting Carbon–Water Coupling Mechanisms
3.3. Delineating Carbon–Water Balance Zones Based on Carbon–Water Balance
3.4. Regional Planning Optimization Strategy
4. Discussion
4.1. Policy and Land Use: The Anthropogenic Drivers of Divergence
4.2. The Escalating Threat of Atmospheric Drought: A New Paradigm of Karst Vulnerability
4.3. Recommendations and Implications for Transboundary Landscape Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Zhang, S. Assessing and explaining rising global carbon sink capacity in karst ecosystems. J. Clean. Prod. 2024, 477, 143862. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Zhao, Y.; Lan, A.; Zhou, C.; Lu, H.; Zhou, L. Changes in vegetation ecosystem carbon sinks and their response to drought in the karst concentration distribution area of Asia. Ecol. Inform. 2024, 84, 102907. [Google Scholar] [CrossRef]
- Yuan, D.X.; Jiang, Y.J.; Shen, L.C.; Pu, J.B.; Xiao, Q. Xiandai Yanshi Xue [Modern Karstology]; Science Press: Beijing, China, 2024. [Google Scholar]
- Lu, X.; Sheng, M.; Luo, M. Knowledge mapping analysis of karst rocky desertification vegetation restoration in Southwest China: A study based on Web of Science literature. Agronomy 2024, 14, 2235. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Y.; Yang, D.; Lan, A. Analysis of Vegetation NDVI Changes and Driving Factors in the Karst Concentration Distribution Area of Asia. Forests 2024, 15, 398. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, X.; Li, J.; Yang, M.; Wang, Y. Impacts of Climate Change and Human Activities on Vegetation Productivity in China. Remote Sens. 2025, 17, 1724. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Guillaumot, L.; Chen, A.; de Graaf, I.E.M.; Chen, D. Contrasting impacts of irrigation and deforestation on Lancang-Mekong River Basin hydrology. Commun. Earth Environ. 2025, 6, 107. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, H.; Zhang, A. Satellite remote sensing reveals overwhelming recovery of forest from disturbances in Asia. Atmos. Ocean. Sci. Lett. 2025, 18, 100511. [Google Scholar] [CrossRef]
- Peng, S.; Terrer, C.; Smith, B.; Ciais, P.; Han, Q.; Nan, J.; Fisher, J.B.; Chen, L.; Deng, L.; Yu, K. Carbon restoration potential on global land under water resource constraints. Nat. Water 2024, 2, 1071–1081. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, Y.; Li, S.; Deng, H.; Wanders, N.; Bosmans, J.; Huang, L.; Hong, C.; Byers, E.; Gingerich, D.; et al. Global assessment of the carbon–water tradeoff of dry cooling for thermal power generation. Nat. Water 2023, 1, 682–693. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.X.; Chen, A.; Wang, X.; Ciais, P.; Huang, L.; Lian, X.; Peng, S.; Zeng, Z.; et al. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [PubMed]
- He, X.T.; Yuan, S.J.; Pan, T.; Gu, X.P.; Yu, F. Spatial and temporal distribution of soil humidity in karst areas of Guizhou Province. Carsologica Sin. 2018, 37, 562–574. [Google Scholar] [CrossRef]
- Liu, Y.; Lian, J.; Nie, Y.; Wang, K.; Chen, H. The role of root-zone soil moisture in delaying vegetation responses to drought: Comparative insights from karst and non-karst areas. J. Hydrol. 2025, 663, 134216. [Google Scholar] [CrossRef]
- Yang, X.Q.; Wu, J.P.; Chen, X.Z.; Ciais, P.; Maignan, F.; Yuan, W.P.; Piao, S.L.; Yang, S.; Gong, F.X.; Su, Y.X.; et al. A comprehensive framework for seasonal controls of leaf abscission and productivity in evergreen broadleaved tropical and subtropical forests. Innovation 2021, 2, 100154. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, E.; Zhao, Y.; Wu, Z.; Chen, W.; Wang, Y.; Bai, Y. Conservation priority corridors enhance the effectiveness of protected area networks in China. Commun. Earth Environ. 2025, 6, 275. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, L.; Brandt, M.; Zhang, X.; Wang, K. A social-ecological framework to enhance sustainable reforestation under geological constraints. Earth’s Future 2024, 12, e2023EF004335. [Google Scholar] [CrossRef]
- Miralles, D.G.; Bonte, O.; Koppa, A.; Baez-Villanueva, O.M.; Tronquo, E.; Zhong, F.; Beck, H.E.; Hulsman, P.; Dorigo, W.; Verhoest, N.E.C.; et al. GLEAM4: Global land evaporation and soil moisture dataset at 0.1° resolution from 1980 to near present. Sci. Data 2025, 12, 416. [Google Scholar] [CrossRef]
- Zuo, L.; Zou, L.; Xia, J.; Zhang, L.; Cao, H.; She, D. Multi-scale analysis of six evapotranspiration products across China: Accuracy, uncertainty and spatiotemporal pattern. J. Hydrol. 2025, 650, 132516. [Google Scholar] [CrossRef]
- Moesinger, L.; Dorigo, W.; de Jeu, R.; Teubner, I.; Forkel, M. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 2020, 12, 177–196. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Cao, S.; Zhu, Z.; Wang, Z.; Myneni, R.B.; Piao, S. Spatiotemporally consistent global dataset of the GIMMS Normalized Difference Vegetation Index (PKU GIMMS NDVI) from 1982 to 2022. Earth Syst. Sci. Data 2023, 15, 4181–4203. [Google Scholar] [CrossRef]
- Didan, K. MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid V061 [Data Set]; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- GEBCO Compilation Group. G ZEBCO 2024 Grid [Data Set]; NERC EDS British Oceanographic Data Centre NOC: Liverpool, UK, 2024. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, W.; Li, H.; Qin, S.; Wen, T. Vegetation variations and driving mechanisms in northern China based on kNDVI. Sci. Rep. 2025, 15, 30094. [Google Scholar] [CrossRef] [PubMed]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef]
- Hu, Y.; Cui, C.; Liu, Z.; Zhang, Y. Vegetation dynamics in Mainland Southeast Asia: Climate and anthropogenic influences. Land Use Policy 2025, 153, 107546. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Ahmadi, A.; Baldocchi, D.; Fisher, J.B. Climate change has increased global evaporative demand except in South Asia. Commun. Earth Environ. 2025, 6, 1009. [Google Scholar] [CrossRef]
- Zhao, F.; Shi, W.; Xiao, J.; Zhao, M.; Li, X.; Wu, Y. Recent weakening of carbon-water coupling in northern ecosystems. npj Clim. Atmos. Sci. 2025, 8, 161. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Kang, S.; Ao, Y.; Han, L.; Ma, C. Quantitative Analysis of Factors Influencing Spatial Distribution of Soil Erosion Based on Geo-Detector Model under Diverse Geomorphological Types. Land 2021, 10, 604. [Google Scholar] [CrossRef]
- Wei, H.; Wu, L.H.; Chen, D.; Yang, D.N.; Yang, Y.F.; Zhang, Y.; Du, J.J.; Jia, J.L. Assessing climate impacts on karst vegetation carbon sink change worldwide. Ecosyst. Health Sustain. 2025, 11, 0404. [Google Scholar] [CrossRef]
- Du, H.; Fu, W.; Song, T.Q.; Zeng, F.P.; Wang, K.L.; Chen, H.S.; Liu, M.X. Water-use efficiency in a humid karstic forest in southwestern China: Interactive responses to the environmental drivers. J. Hydrol. 2023, 617, 128973. [Google Scholar] [CrossRef]
- Wang, B.; Fu, S.; Hao, Z.; Zhen, Z. Ecological security pattern based on remote sensing ecological index and circuit theory in the Shanxi section of the Yellow River Basin. Ecol. Indic. 2024, 166, 112382. [Google Scholar] [CrossRef]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061 [Data Set]; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2022. [Google Scholar] [CrossRef]
- Huang, L.; Tang, Y.; Song, Y.; Liu, J.; Shen, H.; Du, Y. Identifying and Optimizing the Ecological Security Pattern of the Beijing–Tianjin–Hebei Urban Agglomeration from 2000 to 2030. Land 2024, 13, 1115. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Yue, B.R.; Xu, B.J.; Peng, J.X.; Song, Y.F.; Yao, L.J.; Dong, Q.R. Spatial mechanism for opening the “black box”: A translational pathway from landscape ecological research to landscape ecological planning and design practice. Landsc. Archit. Front. 2025, 13, 34–49. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, H.-H.; Chen, S.-M.; Tang, Y.; Lan, Z.-S.; Hou, G.-L.; Jiang, Z.-Y. Ecosystem Services Response to the Grain-for-Green Program and Urban Development in a Typical Karstland of Southwest China over a 20-Year Period. Forests 2023, 14, 1637. [Google Scholar] [CrossRef]
- Tong, X.; Wang, K.; Yue, Y.; Brandt, M.; Liu, B.; Zhang, C.; Liao, C.; Fensholt, R. Quantifying the effectiveness of ecological restoration projects on long-term vegetation dynamics in the karst regions of Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Chen, Y.; De Geeter, S.; Poesen, J.; Matthews, F.; Campforts, B.; Borrelli, P.; Panagos, P.; Vanmaercke, M. Global patterns of gully occurrence and their sensitivity to environmental changes. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 105–113. [Google Scholar] [CrossRef]
- Cheng, K.; Yang, H.; Tao, S.; Su, Y.; Guan, H.; Ren, Y.; Hu, T.; Li, W.; Xu, G.; Chen, M.; et al. Carbon storage through China’s planted forest expansion. Nat. Commun. 2024, 15, 4106. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000–2019 using remote sensing. Acta Geol. Sin. 2022, 77, 2133–2153. [Google Scholar] [CrossRef]
- Cai, L.; Xiong, K.; Li, Y.; Liu, Z.; Zhu, D.; Liang, H.; Mu, Y.; Chen, Y. Coexisting plants restored in karst desertification areas cope with drought by changing water uptake patterns and improving water use efficiency. J. Hydrol. 2025, 654, 132813. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, K.; Wang, G. Dynamic response of soil water to rainfall for different runoff plots on a karst hillslope. Geoderma 2025, 460, 117394. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Xiong, K.; Huang, X.; Zhang, Z. Supportive functions of soil organic carbon for ecosystem services in karst desertification areas. Ecol. Indic. 2025, 170, 113050. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Li, Z.; Lin, K.; Zhou, W.; Wu, G.; Pan, M.; Chen, X. Roles of soil and atmospheric dryness on terrestrial vegetation productivity in China—Which dominates at what thresholds. Earth’s Future 2025, 13, e2024EF005469. [Google Scholar] [CrossRef]
- Chen, S.; Xiao, J.; Li, X.; Wu, M.; Yang, J. Disentangling the climate–VPD–GPP Nexus: Global patterns and underlying drivers. Glob. Planet. Change 2025, 256, 105141. [Google Scholar] [CrossRef]
- Zeng, Z.; Estes, L.; Ziegler, A.D.; Chen, A.; Searchinger, T.; Hua, F.; Guan, K.; Jintrawet, A.; Wood, E.F. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 2018, 11, 556–562. [Google Scholar] [CrossRef]
- Yuan, W.; Tian, J.; Wang, M.; Chen, G.; Zhang, Y.; Liu, Y.; Piao, S. Impacts of rising atmospheric dryness on terrestrial ecosystem carbon cycle. Nat. Rev. Earth Environ. 2025, 6, 712–727. [Google Scholar] [CrossRef]
- Huang, C.; Huang, J.; Xiao, J.; Li, X.; He, H.S.; Liang, Y.; Chen, F.; Tian, H. Global convergence in terrestrial gross primary production response to atmospheric vapor pressure deficit. Sci. China Life Sci. 2024, 67, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wan, W.; Estoque, R.C. Impacts of urban and cropland expansions on natural habitats in Southeast Asia. Nat. Commun. 2025, 16, 8479. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zeng, Y.; He, Y. Spatial Optimization with Morphological Spatial Pattern Analysis for Green Space Conservation Planning. Forests 2023, 14, 1031. [Google Scholar] [CrossRef]
- Bai, Y.; Fang, Z.; Hughes, A.C. Ecological redlines provide a mechanism to maximize conservation gains in Mainland Southeast Asia. One Earth 2021, 4, 1491–1504. [Google Scholar] [CrossRef]
- Wei, X.J.; Zhao, L.; Zhang, F.Q.; Xia, Y.P. Multi-scenario simulation prediction of land use in Nanchang based on network robustness analysis. Ecol. Indic. 2024, 167, 112599. [Google Scholar] [CrossRef]
- Xu, D.M.; Peng, J.; Jiang, H.; Dong, J.Q.; Liu, M.L.; Chen, Y.Y.; Wu, J.S.; Meersmans, J. Incorporating barriers restoration and stepping stones establishment to enhance the connectivity of watershed ecological security patterns. Appl. Geogr. 2024, 170, 103347. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, S.; Yu, B.; Zhang, Y.; Keenan, T.; Fu, B. Soil moisture-atmosphere interactions drive terrestrial carbon-water trade-offs. Commun. Earth Environ. 2025, 6, 169. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Y.; Xiong, K.; Huang, H.; Yang, Y. A Review of Eco-Product Value Realization and Eco-Industry with Enlightenment toward the Forest Ecosystem Services in Karst Ecological Restoration. Forests 2023, 14, 729. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, H.; Wu, C. Uncovering Impacts of Tourism on Social–Ecological Vulnerability Using Geospatial Analysis and Big Earth Data: A Karst Ethnic Village Perspective. Land 2025, 14, 1030. [Google Scholar] [CrossRef]
- Reddington, C.L.; Smith, C.; Butt, E.W.; Baker, J.C.A.; Oliveira, B.F.A.; Yamba, E.I.; Spracklen, D.V. Tropical deforestation is associated with considerable heat-related mortality. Nat. Clim. Change 2025, 15, 992–999. [Google Scholar] [CrossRef]
- Maskell, G.; Chemura, A.; Nguyen, H.; Gornott, C.; Mondal, P. Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam. Remote Sens. Environ. 2021, 266, 112709. [Google Scholar] [CrossRef]
- Struebig, M.J.; Lee, J.S.H.; Deere, N.J.; Gevaña, D.T.; Ingram, D.J.; Lwin, N.; Nguyen, T.; Santika, T.; Seaman, D.J.I.; Supriatna, J.; et al. Drivers and solutions to Southeast Asia’s biodiversity crisis. Nat. Rev. Biodivers. 2025, 1, 497–514. [Google Scholar] [CrossRef]
- Ren, X.; Li, Y.; Zhang, Y.; Yang, L.; Wu, X.; Luo, G.; Huang, J. From vulnerability to sustainability: The evolution of rural social-ecological system in karst mountainous areas of Southwest China. J. Clean. Prod. 2025, 516, 145712. [Google Scholar] [CrossRef]
- Yu, L.M.; Li, Y.B.; Chen, M.; Yang, L.Y.; Tang, F.; Zhang, Y.Y. Agroecosystem transformation and its driving factors in karst mountainous areas of Southwest China: The case of Puding County, Guizhou Province. Ecol. Inform. 2024, 80, 102529. [Google Scholar] [CrossRef]
- Ren, X.; Li, Y.; Luo, G.; Huang, J.; Zhang, Y.; Xu, Q.; Yang, L. The rural human-land relationship transition in Southwest karst mountainous areas based on rural population, agricultural production land, and rural settlement coupling. Habitat Int. 2025, 163, 103493. [Google Scholar] [CrossRef]
- Padilla, I.Y.; Vesper, D.J. Fate, transport, and exposure of emerging and legacy contaminants in karst systems: State of knowledge and uncertainty. In Karst Groundwater Contamination and Public Health; White, W., Herman, J., Herman, E., Rutigliano, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 33–50. [Google Scholar] [CrossRef]
- Fitch, A.; Rowe, R.L.; McNamara, N.P.; Prayogo, C.; Ishaq, R.M.; Prasetyo, R.D.; Mitchell, Z.; Oakley, S.; Jones, L. The Coffee Compromise: Is Agricultural Expansion into Tree Plantations a Sustainable Option? Sustainability 2022, 14, 3019. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, L.; Lan, F.; Li, J.; Hou, S. Hydrogeochemistry Characteristics of Groundwater in the Nandong Karst Water System, China. Atmosphere 2022, 13, 604. [Google Scholar] [CrossRef]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Ciais, P.; Jepsen, M.R.; Penuelas, J.; Wigneron, J.P.; Xiao, X.M.; Song, X.P.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 2020, 11, 129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.W.; Yuan, E.S.; Feng, S.P.; Gong, L.L. Impact of socioeconomic factors on vegetation restoration in humid karst areas of China: Evidence from a survey of 45 villages. J. Rural. Stud. 2025, 114, 103546. [Google Scholar] [CrossRef]








| Divisional Type | Class | Criteria |
|---|---|---|
| Carbon Sink Stability | Stable | GPP increased significantly; explanatory power of water drivers remained unchanged; low ecohydrological risk. |
| Potentially Stable | No change or insignificant growth in GPP; explanatory power of water drivers declined or remained unchanged; low ecohydrological risk. | |
| Unstable | GPP decreased; explanatory power of water drivers increased or remained unchanged; medium or high ecohydrological risk. | |
| Water Consumption Level | High | High ecohydrological risk combined with high explanatory power from water drivers. (Highest risk frequency (Jenks top level) with core water factor q ≥ 0.4). |
| Medium | High ecohydrological risk combined with low explanatory power from water drivers. (Moderate risk frequency or high frequency but core water factor q < 0.4). | |
| Low | Low ecohydrological risk combined with high explanatory power from water drivers. Lowest risk frequency with low risk probability regardless of water factor q-value). |
| Region | SM Risk | ET Risk | VPD Risk | ||||||
|---|---|---|---|---|---|---|---|---|---|
| High | Medium | Low | High | Medium | Low | High | Medium | Low | |
| ASEAN | 7.4 | 28.6 | 64.0 | 27.7 | 20.5 | 51.8 | 11.4 | 3.0 | 85.6 |
| Southwest China | 0.8 | 19.9 | 79.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 |
| Region | SM Trend | ET Trend | VPD Trend | |||
|---|---|---|---|---|---|---|
| Increase | Decrease | Increase | Decrease | Increase | Decrease | |
| ASEAN | 13.1 | 86.9 | 9.6 | 90.4 | 99.2 | 0.8 |
| Southwest China | 3.8 | 96.2 | 1.1 | 98.9 | 76.1 | 23.9 |
| Carbon Sink Stability | Water Consumption Level | Area Proportion (%) |
|---|---|---|
| Stable | Low | 0.2 |
| Medium | 15.4 | |
| High | 11.6 | |
| Potential stable | Low | 6.1 |
| Medium | 10.6 | |
| High | 7.6 | |
| Potential unstable | Low | 0.7 |
| Medium | 14.7 | |
| High | 24.0 | |
| Unstable | Low | 1.6 |
| Medium | 7.0 | |
| High | 0.5 | |
| Total | - | 100.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Pan, Y.; Wang, S.; Fu, W.; Li, Q.; Fan, Z. From Carbon–Water Diagnosis to Landscape Optimization: A New Framework for Sustainable Restoration in East Asian Karst. Land 2026, 15, 66. https://doi.org/10.3390/land15010066
Pan Y, Wang S, Fu W, Li Q, Fan Z. From Carbon–Water Diagnosis to Landscape Optimization: A New Framework for Sustainable Restoration in East Asian Karst. Land. 2026; 15(1):66. https://doi.org/10.3390/land15010066
Chicago/Turabian StylePan, Yitong, Siyu Wang, Wei Fu, Qian Li, and Zhouyu Fan. 2026. "From Carbon–Water Diagnosis to Landscape Optimization: A New Framework for Sustainable Restoration in East Asian Karst" Land 15, no. 1: 66. https://doi.org/10.3390/land15010066
APA StylePan, Y., Wang, S., Fu, W., Li, Q., & Fan, Z. (2026). From Carbon–Water Diagnosis to Landscape Optimization: A New Framework for Sustainable Restoration in East Asian Karst. Land, 15(1), 66. https://doi.org/10.3390/land15010066

