Monitoring Environmental Degradation and Restoration of Wetlands and Arid Lands Using Remote Sensing and Big Geospatial Data
1. Introduction
2. An Overview of Published Articles
2.1. Innovations in Remote Sensing Methods and Technologies for Ecosystem Monitoring
2.2. Evolutionary Dynamics and Landscape Pattern Changes in Ecosystems
2.3. Vegetation Response Mechanisms and Ecological Processes Under Water Limitation
2.4. Ecological Restoration, Constructed Wetlands, and Ecosystem Function Assessment
2.5. Synergistic Analysis of Land Use, Ecosystem Functions, and Carbon Goals
3. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Chakraborti, R.; Bays, J. Constructed Wetlands Using Treated Membrane Concentrate for Coastal Wetland Restoration and the Renewal of Multiple Ecosystem Services. Land 2023, 12, 847. https://doi.org/10.3390/land12040847.
- Fan, C.; Yang, J.; Zhao, G.; Dai, J.; Zhu, M.; Dong, J.; Liu, R.; Zhang, G. Mapping Phenology of Complicated Wetland Landscapes through Harmonizing Landsat and Sentinel-2 Imagery. Remote Sens. 2023, 15, 2413. https://doi.org/10.3390/rs15092413.
- Espinoza, G.; Alvarado Bremer, J. Comparative Phylogeography, Historical Demography, and Population Genetics of Three Common Coastal Fauna in Spartina Marshes of the Northwestern Gulf of Mexico. Diversity 2023, 15, 792. https://doi.org/10.3390/d15060792.
- Dimeyeva, L.; Islamgulova, A.; Permitina, V.; Ussen, K.; Kerdyashkin, A.; Tsychuyeva, N.; Salmukhanbetova, Z.; Kurmantayeva, A.; Iskakov, R.; Imanalinova, A.; et al. Plant Diversity and Distribution Patterns of Populus pruinosa Schrenk (Salicaceae) Floodplain Forests in Kazakhstan. Diversity 2023, 15, 797. https://doi.org/10.3390/d15070797.
- Fousseni, F.; Bilouktime, B.; Mustapha, T.; Kamara, M.; Wouyo, A.; Aboudoumisamilou, I.; Oyetunde, D.; Kperkouma, W.; Komlan, B.; Koffi, A. Land Use Change and the Structural Diversity of Affem Boussou Community Forest in the Tchamba 1 Commune (Tchamba Prefecture, Togo). Conservation 2023, 3, 346–362. https://doi.org/10.3390/conservation3030024.
- Ontel, I.; Cheval, S.; Irimescu, A.; Boldeanu, G.; Amihaesei, V.; Mihailescu, D.; Nertan, A.; Angearu, C.; Craciunescu, V. Assessing the Recent Trends of Land Degradation and Desertification in Romania Using Remote Sensing Indicators. Remote Sens. 2023, 15, 4842. https://doi.org/10.3390/rs15194842.
- Mi, J.; Yang, D.; Hou, H.; Zhang, S. A “Status-Habitat-Potential” Model for the Evaluation of Plant Communities in Underwater Mining Areas via Time Series Remote Sensing Images and GEE. Land 2023, 12, 2097. https://doi.org/10.3390/land12122097.
- Jin, G.; Yu, H.; He, D.; Guo, B. Agricultural Production Efficiency and Ecological Transformation Efficiency in the Yangtze River Economic Belt. Land 2024, 13, 103. https://doi.org/10.3390/land13010103.
- Xu, J.; Dang, H.; Hu, D.; Zhang, P.; Liu, X. Patterns of Diversity and Community Assembly and Their Environmental Explanation across Different Types of Shrublands in the Western Loess Plateau. Forests 2024, 15, 222. https://doi.org/10.3390/f15020222.
- Lariviere, D.; Anderson, V.; Johnson, R.; Larsen, R. What Is in the Bank? Assessing Persistent Soil Seed Bank Density of Sclerocactus wrightiae (Cactaceae). Diversity 2024, 16, 133. https://doi.org/10.3390/d16030133.
- Yang, Y.; Dong, J.; Tang, J.; Zhao, J.; Lei, S.; Zhang, S.; Chen, F. Mapping Foliar C, N, and P Concentrations in An Ecological Restoration Area with Mixed Plant Communities Based on LiDAR and Hyperspectral Data. Remote Sens. 2024, 16, 1624. https://doi.org/10.3390/rs16091624.
- Wang, X.; Zhou, Q.; Zhang, Y.; Liu, X.; Liu, J.; Chen, S.; Wang, X.; Wu, J. Diurnal Asymmetry Effects of Photovoltaic Power Plants on Land Surface Temperature in Gobi Deserts. Remote Sens. 2024, 16, 1711. https://doi.org/10.3390/rs16101711.
- Chen, Y.; Wang, X.; Zhang, J.; Shang, X.; Hu, Y.; Zhang, S.; Wang, J. A New Dual-Branch Embedded Multivariate Attention Network for Hyperspectral Remote Sensing Classification. Remote Sens. 2024, 16, 2029. https://doi.org/10.3390/rs16112029.
- Li, S.; Guo, P.; Sun, F.; Zhu, J.; Cao, X.; Dong, X.; Lu, Q. Mapping Dryland Ecosystems Using Google Earth Engine and Random Forest: A Case Study of an Ecologically Critical Area in Northern China. Land 2024, 13, 845. https://doi.org/10.3390/land13060845.
- Xue, Z.; Wang, Y.; Huang, R.; Yao, L. Study on Wetland Evolution and Landscape Pattern Changes in the Shaanxi Section of the Loess Plateau in the Past 40 Years. Land 2024, 13, 1268. https://doi.org/10.3390/land13081268.
- Coccia, C.; Pintado, E.; Paredes, Á.; Aragonés, D.; O’Ryan, D.; Green, A.; Bustamante, J.; Díaz-Delgado, R. Modelling Water Depth, Turbidity and Chlorophyll Using Airborne Hyperspectral Remote Sensing in a Restored Pond Complex of Doñana National Park (Spain). Remote Sens. 2024, 16, 2996. https://doi.org/10.3390/rs16162996.
- Wang, H.; Mo, Z.; Li, W.; Huang, H.; Lv, G. Rainfall and Soil Moisture Jointly Drive Differences in Plant Community Composition in Desert Riparian Forests of Northwest China. Forests 2024, 15, 2129. https://doi.org/10.3390/f15122129.
- Wang, J.; Yu, J.; Shen, M.; Che, S. Study on the Optimization of Carbon Sequestration in Shanghai’s Urban Artificial Wetlands: The Cases of Shanghai Fish and Dishui Lake. Land 2024, 13, 2148. https://doi.org/10.3390/land13122148.
- Yuan, J.; Wang, R.; Liu, X.; Liu, J.; Xing, L.; Luo, X.; Zhu, P.; Li, J.; Wang, C.; Zhao, H. Ecological Security Patterns Based on Ecosystem Services and Local Dominant Species in the Kunlun Mountains. Diversity 2024, 16, 779. https://doi.org/10.3390/d16120779.
- Varugu, B.; Jones, C.; Oliver-Cabrera, T.; Simard, M.; Jensen, D. Study of Hydrologic Connectivity and Tidal Influence on Water Flow Within Louisiana Coastal Wetlands Using Rapid-Repeat Interferometric Synthetic Aperture Radar. Remote Sens. 2025, 17, 459. https://doi.org/10.3390/rs17030459.
- Ferreira, M.; Ferreira, R.; Silva, J.; Lima, R.; Sousa, A.; Silva, M. Space–Time Dynamics of Mortality and Recruitment of Stems and Trees in a Seasonally Dry Tropical Forest: Effect of the 2012–2021 Droughts. Remote Sens. 2025, 17, 1491. https://doi.org/10.3390/rs17091491.
References
- Mander, Ü.; Pärn, J.; Espenberg, M.; Peñuelas, J. Human-Impacted Natural Ecosystems Drive Climate Warming. Glob. Change Biol. 2025, 31, e70449. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Qu, X.; Li, X.; Bardgett, R.D.; Kuzyakov, Y.; Revillini, D.; Sonne, C.; Xia, C.; Ruan, H.; Liu, Y.; Cao, F. Deforestation impacts soil biodiversity and ecosystem services worldwide. Proc. Natl. Acad. Sci. USA 2024, 121, e2318475121. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Cui, X.; Chen, W.; Yao, X. Impact of urban expansion on the supply-demand balance of ecosystem services: An analysis of prefecture-level cities in China. Environ. Impact Assess. Rev. 2023, 99, 107003. [Google Scholar] [CrossRef]
- Zeb, A.; Liu, W.; Ali, N.; Shi, R.; Wang, Q.; Wang, J.; Li, J.; Yin, C.; Liu, J.; Yu, M. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. J. Hazard. Mater. 2024, 461, 132636. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Wu, W.; Li, Y.; Huang, C.; Zhang, X.; Peñuelas, J.; Zhang, Y.; Gentine, P.; Li, Z.; Wang, X. Increasing meteorological drought under climate change reduces terrestrial ecosystem productivity and carbon storage. One Earth 2023, 6, 1326–1339. [Google Scholar] [CrossRef]
- Sabater, S.; Freixa, A.; Jiménez, L.; López-Doval, J.; Pace, G.; Pascoal, C.; Perujo, N.; Craven, D.; González-Trujillo, J.D. Extreme weather events threaten biodiversity and functions of river ecosystems: Evidence from a meta-analysis. Biol. Rev. 2023, 98, 450–461. [Google Scholar] [CrossRef]
- Zamrsky, D.; Oude Essink, G.H.; Bierkens, M.F. Global impact of sea level rise on coastal fresh groundwater resources. Earth’s Future 2024, 12, e2023EF003581. [Google Scholar] [CrossRef]
- MacDougall, A.S.; McCann, K.S.; Gellner, G.; Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 2013, 494, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Haase, P.; Bowler, D.E.; Baker, N.J.; Bonada, N.; Domisch, S.; Garcia Marquez, J.R.; Heino, J.; Hering, D.; Jähnig, S.C.; Schmidt-Kloiber, A. The recovery of European freshwater biodiversity has come to a halt. Nature 2023, 620, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xiao, X.; Zhang, X.; Wu, J.; Li, B. Rapid and large changes in coastal wetland structure in China’s four major river deltas. Glob. Change Biol. 2023, 29, 2286–2300. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.; Bhushan, B. Wetland ecosystems and their relevance to the environment: Importance of wetlands. In Handbook of Research on Monitoring and Evaluating the Ecological Health of Wetlands; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 1–16. [Google Scholar]
- Let, M.; Pal, S. Socio-ecological well-being perspectives of wetland loss scenario: A review. J. Environ. Manag. 2023, 326, 116692. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Wolf, J.; Chen, M.; Asrar, G.R. Global rangeland primary production and its consumption by livestock in 2000–2010. Remote Sens. 2021, 13, 3430. [Google Scholar] [CrossRef]
- Tariq, A.; Sardans, J.; Zeng, F.; Graciano, C.; Hughes, A.C.; Farré-Armengol, G.; Peñuelas, J. Impact of aridity rise and arid lands expansion on carbon-storing capacity, biodiversity loss, and ecosystem services. Glob. Change Biol. 2024, 30, e17292. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Bernal, B.; Nahlik, A.M.; Mander, Ü.; Zhang, L.; Anderson, C.J.; Jørgensen, S.E.; Brix, H. Wetlands, carbon, and climate change. Landsc. Ecol. 2013, 28, 583–597. [Google Scholar] [CrossRef]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Wang, M.; Wang, Y.; Jiang, M.; Yuan, W.; Luo, L.; Feng, K.; Wang, D.; Xiang, H.; Ren, Y. The trajectory of wetland change in China between 1980 and 2020: Hidden losses and restoration effects. Sci. Bull. 2025, 70, 587–596. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, Y.; Wang, J.; Wu, X. Monitoring Environmental Degradation and Restoration of Wetlands and Arid Lands Using Remote Sensing and Big Geospatial Data. Land 2025, 14, 2430. https://doi.org/10.3390/land14122430
Wang X, Liu Y, Wang J, Wu X. Monitoring Environmental Degradation and Restoration of Wetlands and Arid Lands Using Remote Sensing and Big Geospatial Data. Land. 2025; 14(12):2430. https://doi.org/10.3390/land14122430
Chicago/Turabian StyleWang, Xinxin, Yongchao Liu, Jie Wang, and Xiaocui Wu. 2025. "Monitoring Environmental Degradation and Restoration of Wetlands and Arid Lands Using Remote Sensing and Big Geospatial Data" Land 14, no. 12: 2430. https://doi.org/10.3390/land14122430
APA StyleWang, X., Liu, Y., Wang, J., & Wu, X. (2025). Monitoring Environmental Degradation and Restoration of Wetlands and Arid Lands Using Remote Sensing and Big Geospatial Data. Land, 14(12), 2430. https://doi.org/10.3390/land14122430

