Spatio-Temporal Evolution and Zonal Control of Non-Grain Cultivated Land in Major Grain Producing Areas: A Case Study of Henan Province
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Measurement of Cultivated Land Non-Grain Conversion
2.4. Selection of Driving Factors for Non-Grain Cultivated Land
2.5. Spatial Autocorrelation Analysis
2.6. Multiple Linear Regression Model
2.7. Geographically and Temporally Weighted Regression Model
2.8. Division of Non-Grain Controlled Regions for Cultivated Land
3. Results
3.1. Evolution Characteristics of Non-Grain Cultivated Land in Henan Province
3.2. Spatial Clustering Analysis of Non-Grain Cultivated Land in Henan Province
3.3. Analysis of Driving Factors for Non-Grain Cultivated Land Production in Henan Province
3.3.1. Significance Analysis of Driving Factors
3.3.2. Analysis of GTWR Model Results
3.4. Zoning of Non-Grain Cultivated Land in Henan Province
3.5. Zoning-Based Control Measures for No-Grain Cultivated Land
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, D. Economic Mechanisms and Governance Pathways of Cultivated Land “Non-Grain Production”. China Land 2021, 9–11. [Google Scholar] [CrossRef]
 - He, T.; Jiang, S.; Xiao, W.; Zhang, M.; Tang, T.; Zhang, H. A non-grain production on cropland spatiotemporal change detection method based on Landsat time-series data. Land Degrad. Dev. 2024, 35, 3031–3047. [Google Scholar] [CrossRef]
 - Zhou, Y.; Li, X.; Liu, Y. Cultivated Land Protection and Rational Use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
 - Barbier, E.B. The Economic Determinants of Land Degradation in Developing Countries. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 891–899. [Google Scholar] [CrossRef]
 - MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Lazpita, J.G.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
 - Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the Efficiency of Changes in Land Use for Mitigating Climate Change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
 - Lark, T.J.; Hendricks, N.P.; Smith, A.; Pates, N.; Spawn-Lee, S.A.; Bougie, M.; Booth, E.G.; Kucharik, C.J.; Gibbs, H.K. Environmental Outcomes of the US Renewable Fuel Standard. Proc. Natl. Acad. Sci. USA 2022, 119, e2101084119. [Google Scholar] [CrossRef] [PubMed]
 - Morimoto, T.; Munthali, K.; Murayama, Y. Land Use Changes and Agricultural Abandonment in the Hills of Nepal: A Case Study of the Mardi Watershed. Land 2022, 11, 1425. [Google Scholar] [CrossRef]
 - Osawa, T.; Kohyama, K.; Mitsuhashi, H. Multiple Factors Drive Regional Agricultural Abandonment in Japan. Sci. Total Environ. 2016, 542, 478–483. [Google Scholar] [CrossRef]
 - Yang, L.; Zhao, H.; Song, W.; Qian, J. Spatial-temporal Characteristics and Influencing Factors of Non-grain Cultivated Land in China. Chin. J. Soil Sci. 2025, 56, 301–309. [Google Scholar] [CrossRef]
 - Liang, X.; Jin, X.; Sun, R.; Han, B.; Li, H.; Wang, X.; Gu, Z.; Chen, C.; Zhou, Y. A Typical Phenomenon of Cultivated Land Use in China’s Major Grain-Producing Areas: Taking Binzhou as an Example. Land 2023, 12, 1136. [Google Scholar] [CrossRef]
 - Wu, N.; Wei, Y.; Li, L.; Yang, H. Spatial distribution of non-grain crops and formation mechanism: Empirical analysis of Ningling County, Henan Province. Prog. Geogr. 2023, 42, 1298–1310. [Google Scholar] [CrossRef]
 - Li, J.; Fang, A.; Wu, K.; Zhao, H.; Chen, W.; Liu, H. Analysis of Spatial Differentiation Characteristics and Driving Factors of “Non-Grain” Cultivated Land in Henan Province. Chin. J. Agric. Resour. Reg. Plan. 2024, 45, 23–34. (In Chinese) [Google Scholar] [CrossRef]
 - Yang, B.; Liu, F.; Chen, H.; Ji, G. Spatial-temporal differentiation and driving factors of non-grain production of cultivated land in Henan province from 2000 to 2020. Shanghai Land Resour. 2024, 45, 72–78. [Google Scholar] [CrossRef]
 - Wu, Y.; Zhang, P.; Yu, Y.; Xie, R. Progress Review on and Prospects for Non-grain Cultivated Land in China from the Perspective of Food Security. China Land Sci. 2021, 35, 116–124. [Google Scholar] [CrossRef]
 - Tang, T.; Wang, Y.; Yu, T.; Wen, S. Spatiotemporal Evolution and Driving Mechanisms of Non-Grain Production of Cultivated Land in County-Level Units of Heilongjiang Province from the Perspective of Grain Security. Chin. J. Agric. Resour. Reg. Plan. 2025. Available online: https://link.cnki.net/urlid/11.3513.S.20250715.1356.020 (accessed on 31 March 2025).
 - Xijiri; Zhou, R.; Bao, B.; Burenjirigala. Spatiotemporal patterns and drivers of cultivated land conversion in Inner Mongolia Autonomous Region, northern China. J. Arid. Land 2024, 16, 1197–1213. [Google Scholar] [CrossRef]
 - Qu, Y.; Wang, W.; Cui, Y.; Zhan, L.; Wang, D. Spatiotemporal change characteristics and driving mechanisms of “non-grain” production of cultivated land in China based on meta-analysis. Prog. Geogr. 2025, 44, 1559–1577. [Google Scholar] [CrossRef]
 - Wang, Y.; Zeng, X.; Liu, Z.; Dong, S.; Jiang, Y. Determinants of the spatiotemporal differentiation of cultivated land non-grain conversion in Liaoning Province: The role of multiple stakeholder decisions. Resour. Sci. 2023, 45, 980–993. [Google Scholar] [CrossRef]
 - Wu, D.; Wu, Z.; Li, S.; Liang, Y.; Ma, P.; Li, Z.; Lin, T. Spatiotemporal Evolution and Influencing Factors of Non-grain Cultivated Land in Northern Mountainous Areas of Guangdong Province. Econ. Geogr. 2023, 43, 144–153. [Google Scholar] [CrossRef]
 - Wang, Y.; Song, D.; Liu, C.; Li, S.; Yuan, M.; Gong, J.; Yang, J. Spatial Correlation of Non-Agriculturalization and Non-Grain Utilization Transformation of Cultivated Land in China and Its Implications. Land 2025, 14, 1031. [Google Scholar] [CrossRef]
 - Zhang, W.; Ma, L.; Wang, X.; Chang, X.; Zhu, Z. The Impact of Non-Grain Conversion of Cultivated Land on the Relationship between Agricultural Carbon Supply and Demand. Appl. Geogr. 2024, 162, 103166. [Google Scholar] [CrossRef]
 - Ren, G.; Song, G.; Wang, Q.; Sui, H. Impact of “Non-Grain” in Cultivated Land on Agricultural Development Resilience: A Case Study from the Major Grain-Producing Area of Northeast China. Appl. Sci. 2023, 13, 3814. [Google Scholar] [CrossRef]
 - Li, Y.; Zhao, B.; Huang, A.; Xiong, B.; Song, C. Characteristics and Driving Forces of Non-Grain Production of Cultivated Land from the Perspective of Food Security. Sustainability 2021, 13, 14047. [Google Scholar] [CrossRef]
 - Liu, Y.; Shen, G.; He, T. Cropping and Transformation Features of Non-Grain Cropland in Mainland China and Policy Implications. Land 2025, 14, 561. [Google Scholar] [CrossRef]
 - Yang, Q.; Zhang, D. The influence of agricultural industrial policy on non-grain production of cultivated land: A case study of the “one village, one product” strategy implemented in Guanzhong Plain of China. Land Use Policy 2021, 108, 105579. [Google Scholar] [CrossRef]
 - Guan, X.; Wang, X.; Zhao, Y. Morphological Characteristics Identification and Optimization of “Non-grain” Cultivated Land along Yellow River Basin. Trans. Chin. Soc. Agric. Mach. 2021, 52, 233–242. [Google Scholar]
 - Xu, C.; Guo, J.; Yi, J.; Ou, M. Analysis on the Evolution of Spatiotemporal Pattern and Driving Factors of Non-grain Cultivated Land in Jiangsu Province from 1996 to 2020. Resour. Environ. Yangtze Basin 2024, 33, 436–447. [Google Scholar]
 - Su, Y.; Li, C.; Wang, K.; Deng, J.; Shahtahmassebi, A.R.; Zhang, L.; Ao, W.; Guan, T.; Pan, Y.; Gan, M. Quantifying the spatiotemporal dynamics and multi-aspect performance of non-grain production during 2000–2015 at a fine scale. Ecol. Indic. 2019, 101, 410–419. [Google Scholar] [CrossRef]
 - Tang, T.; Wang, Y.; Wen, S.; Yu, T.; Liu, L.; Yang, H. Spatiotemporal Evolution and Driving Mechanisms of Non-Grain Production Rate of Planting Structure in Jilin Province from the Perspective of Grain Security. Land 2025, 14, 212. [Google Scholar] [CrossRef]
 - Wang, L.; Xu, J.; Liu, Y.; Zhang, S. Spatial Characteristics of the Non-Grain Production Rate of Cropland and Its Driving Factors in Major Grain-Producing Area: Evidence from Shandong Province, China. Land 2023, 13, 22. [Google Scholar] [CrossRef]
 - Su, Y.; Zhu, J.; Liu, X.; Zhu, C.; Yang, L.; Zhi, J.; Sun, H. Spatiotemporal Evolution Characteristics and Driving Mechanism of Non-Grain Production of Cultivated Land in Typical Counties of Central and Eastern China. Chin. J. Agric. Resour. Reg. Plan. Available online: https://link.cnki.net/urlid/11.3513.S.20250908.1353.004 (accessed on 8 September 2025).
 - Zhang, Y.; Feng, Y.; Wang, F.; Chen, Z.; Li, X. Spatiotemporal differentiation and driving mechanism of cultivated land non- grain conversion in Guangdong Province. Resour. Sci. 2022, 44, 480–493. [Google Scholar] [CrossRef]
 - Bo, H.; Shang, G.; Zhang, Y.; Zhang, Y.; Gao, J.; Guo, X. Analysis of spatial and temporal characteristics and driving factors of “non-grain” cultivated land in Hebei Province. Chin. J. Eco-Agric. 2025, 33, 960–972. [Google Scholar]
 - Yang, J.; Zhang, G. Spatial Pattern and Driving Factors of Non grain Cultivated Land in Arid Northwest China: Take Xinjiang as an Example. Areal Res. Development. 2024, 43, 151–157. [Google Scholar]
 - Wu, Y.; Xing, P.; Zheng, W.; Xia, X.; Zhang, C. Dynamic evolution and zoning control of cultivated land non-grain in grain production and marketing balance area: A case of Shaanxi Province. Arid. Land Geogr. 2025, 48, 153–167. [Google Scholar] [CrossRef]
 - Zhan, W.; Wu, Y.; Zheng, W.; Zhang, H.; Zhang, B. Impacts of Changes of Multi-temporal Land Use/Landscape Patterns on Water Quality in the Yellow River Basin: An Empirical Study Based on Geographically Weighted Regression Modelling. Environ. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
 - Liu, L.; Liu, Y.; Deng, X.; Liu, L.; Tan, Z.; Cai, D. Spatiotemporal evolution and influencing factors of cultivated land use efficiency in Hunan Province. J. Agric. Resour. Environ. 2025, 1–13. [Google Scholar] [CrossRef]
 - Shi, J.; Wu, X.; Dong, G. Spatial Pattern and Influencing Factors of Non-grain Cultivated Land in the Three River Basin (Yunnan Section). Acta Sci. Nat. Univ. Pekin. 2024, 60, 893–904. [Google Scholar]
 - Niu, J.; Ma, Y.; Jin, P.; Zhang, M.; Shan, Y. Spatio-temporal differentiation and types of drivers of non-grain of arable land in food production and marketing balance areas. J. Agric. Resour. Environ. 2024, 41, 769–779. [Google Scholar]
 - Chen, F.; Liu, J.; Chang, Y.; Zhang, Q.; Yu, H.; Zhang, S. Spatial Pattern Differentiation of Non-grain Cultivated Land and Its Driving Factors in China. China Land Sci. 2021, 35, 33–43. [Google Scholar]
 - Tian, F.; Liu, C.; Zhang, H.; Ding, X. Study on the sensitivity of cultivated land multifunctionality to non-grain utilization in Hebei Province. Geogr. Geo-Inf. Sci. Available online: https://link.cnki.net/urlid/13.1330.P.20250804.1022.002 (accessed on 4 August 2025).
 - Liu, H.; Du, X.; Dong, X. Study on the spatial-temporal differentiation and driving mechanism of non-grain cultivation in the black soil region of Northeast China. J. Shenyang Agric. Univ. 2025, 56, 44–55. [Google Scholar]
 - Yuan, J. Study on Spatial-Temporal Evolution Characteristics and Driving Factors of Cultivated Land Non-Grain in Henan Province from 2000 to 2020. Master’s Thesis, Central China Normal University, Wuhan, China, 2024. [Google Scholar]
 - Yang, C. Spatial-Temporal Characteristics and Driving Factors of Cultivated Land Non-Grain in the Eastern Henan Plain. Master’s Thesis, Northwest A&F University, Xi’an, China, 2024. [Google Scholar]
 - Yuan, X. Study on the Coordinated Evaluation of the Non-Agricultural Pressure of Cultivated Land and the New Urbanization Time and Space in the Core Area of Grain Production. Master’s Thesis, East China University of Technology, Nanchang, China, 2019. [Google Scholar]
 - Sun, H.; Li, E.; Zhang, S.; Cai, J. The Spatial-Temporal Pattern and Influencing Factors of Agricultural Industrial Agglomeration in Henan Province. J. Henan Univ. (Nat. Sci.) 2024, 54, 404–418. [Google Scholar]
 - Fan, X.; Liu, J. Research on spatial-temporal characteristics of producer services in Henan Province: From regional and industry perspectives. J. Henan Univ. (Nat. Sci.) 2016, 46, 9–20. [Google Scholar]
 - Guderjan, L.; Habel, J.C.; Schröder, B.; Schmitt, T. Land-use pattern and landscape structure impact butterfly diversity and abundance in organic agroecosystems. Landsc. Ecol. 2023, 38, 2749–2762. [Google Scholar] [CrossRef]
 - Thien, B.B.; Phuong, V.T.; Kuznetsov, A.N. Examining the impact of land use and land cover changes on land surface temperature in Vientiane capital, Lao PDR using machine learning algorithms. Landsc. Ecol. Eng. 2025, 21, 593–617. [Google Scholar] [CrossRef]
 







| Conditions | Codes | Factors | Unit | Primary Objectives | Synergistic Objectives | 
|---|---|---|---|---|---|
| Natural | X1 | Per capita level of agricultural mechanization  | kw/person | Ecological protection | Grain security: timely field operations stabilize crop yields;  Farmers’ income: cost savings and labour release raise off-farm earnings  | 
| X2 | Per capita cultivated land area | hm2/per person | Grain security | Ecological protection: larger farm sizes reduce the need to reclaim marginal land, thus safeguarding ecosystems | |
| X3 | Annual precipitation | mm | Ecological protection | Grain security: reliable rainfall secures irrigation and stable yields;  Farmers’ income: lower irrigation costs lift net profits  | |
| Social | X4 | Urbanization rate | % | Ecological protection | Grain security: labour outflow may threaten cropping, but contracted services can offset the loss; Farmers’ income: non-farm jobs increase wage income | 
| X5 | Proportion of primary sector | % | Farmers’ income | Grain security: high sectoral dependency stabilises the crop-mix in favour of grain | |
| X6 | Labor force per unit of cultivated land area | person/hm2 | Grain security | Farmers’ income: labour intensity influences opportunity-cost calculations; Ecological protection: excessive labour density heightens over-cultivation risk | |
| Economic | X7 | Agricultural expenditure | CNY 100 million | Grain security | Farmers’ income: subsidies and insurance stabilise income expectations; Ecological protection: eco-compensation and green-tech extension reduce environmental pressure | 
| X8 | Output value per unit of cultivated land area | CNY/hm2 | Grain security | Farmers’ income: higher output enlarges the value pool available to farmers; Ecological protection: intensive inputs raise the risk of non-point-source pollution | |
| X9 | GDP per capita | CNY/per capita | Farmers’ income | Grain security: greater fiscal capacity supports research and infrastructure; Ecological protection: higher wealth improves willingness to pay for conservation | |
| X10 | Per capita disposable income of rural residents | CNY | Farmers’ income | Grain security: rising earnings strengthen incentives and capacity to invest in grain production; Ecological protection: higher wealth increases adoption of green technologies | |
| X11 | Urban–rural income gap | CNY | Farmers’ income | Grain security: a widening gap lowers the comparative return to grain farming and may shrink planted area | 
| Year | Global Moran’s I Index | p Value | 
|---|---|---|
| 2012 | 0.362 | <0.001 | 
| 2017 | 0.312 | <0.001 | 
| 2023 | 0.307 | <0.001 | 
| 2012 | 2017 | 2023 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Factors | Coefficient | Standard Error | p Value | VIF | Coefficient | Standard Error | p Value | VIF | Coefficient | Standard Error | p Value | VIF | 
| X1 | 0.022 | 0.127 | 0.013 | 1.418 | 0.034 | 0.009 | 0.006 | 1.634 | −0.403 | 0.186 | 0.032 | 1.458 | 
| X2 | 0.116 | 0.072 | 0.007 | 3.252 | 0.213 | 0.059 | 0.018 | 3.877 | 0.148 | 0.125 | 0.023 | 3.629 | 
| X3 | 0.146 | 0.06 | 0.016 | 1.825 | 0.079 | 0.129 | 0.047 | 1.995 | −0.094 | 0.095 | 0.032 | 1.649 | 
| X4 | 0.226 | 0.071 | 0.063 | 6.941 | 0.154 | 0.318 | 0.044 | 7.446 | 0.047 | 0.076 | 0.067 | 3.667 | 
| X5 | −0.096 | 0.082 | 0.002 | 3.408 | −0.273 | 0.087 | 0.003 | 3.941 | 0.179 | 0.153 | 0.024 | 4.284 | 
| X6 | −1.700 | 0.222 | 0.001 | 4.503 | −1.451 | 0.211 | 0.026 | 3.104 | 0.047 | 0.138 | 0.007 | 1.297 | 
| X7 | −0.073 | 0.101 | 0.047 | 2.436 | −0.186 | 0.145 | 0.004 | 2.008 | −0.181 | 0.115 | 0.012 | 2.713 | 
| X8 | 1.688 | 0.222 | 0.002 | 4.636 | 2.854 | 0.132 | 0.038 | 4.084 | 0.047 | 0.137 | 0.032 | 1.332 | 
| X9 | −0.18 | 0.09 | 0.046 | 2.994 | −0.241 | 0.036 | 0.027 | 2.216 | −0.048 | 0.11 | 0.035 | 2.017 | 
| X10 | 0.14 | 0.086 | 0.013 | 3.756 | 0.064 | 0.003 | 0.005 | 3.557 | 0.221 | 0.128 | 0.007 | 2.706 | 
| X11 | 0.063 | 0.079 | 0.042 | 1.406 | 0.118 | 0.018 | 0.009 | 1.962 | 0.086 | 0.111 | 0.037 | 1.688 | 
| R2 | 0.742 | 0.696 | 0.811 | |||||||||
| Adjusted R2 | 0.719 | 0.667 | 0.792 | |||||||||
| Model | RSS | RMSE | AICc | R2 | Adjusted R2 | 
|---|---|---|---|---|---|
| OLS | 802.4 | 4.02 | 1398.4 | 0.521 | 0.509 | 
| GWR | 5029 | 3.31 | 1179.4 | 0.741 | 0.736 | 
| GTWR | 3668 | 2.83 | 1093.6 | 0.811 | 0.802 | 
| Factors | PC1 | PC2 | PC3 | 
|---|---|---|---|
| X1 | −0.774 | −0.294 | 0.158 | 
| X2 | 0.841 | −0.087 | −0.17 | 
| X3 | 0.648 | −0.099 | 0.306 | 
| X5 | 0.397 | 0.604 | −0.013 | 
| X6 | −0.170 | 0.378 | 0.161 | 
| X7 | 0.595 | 0.847 | −0.355 | 
| X8 | −0.061 | 0.506 | 0.671 | 
| X9 | −0.539 | −0.055 | −0.231 | 
| X10 | −0.613 | −0.058 | −0.722 | 
| X11 | −0.038 | −0.231 | 0.899 | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, A.; Xing, Z.; Chen, W.; Shi, Y.; Shi, L.; Feng, X.; Ma, Y. Spatio-Temporal Evolution and Zonal Control of Non-Grain Cultivated Land in Major Grain Producing Areas: A Case Study of Henan Province. Land 2025, 14, 2046. https://doi.org/10.3390/land14102046
Fang A, Xing Z, Chen W, Shi Y, Shi L, Feng X, Ma Y. Spatio-Temporal Evolution and Zonal Control of Non-Grain Cultivated Land in Major Grain Producing Areas: A Case Study of Henan Province. Land. 2025; 14(10):2046. https://doi.org/10.3390/land14102046
Chicago/Turabian StyleFang, Aman, Ziyi Xing, Weiqiang Chen, Yuanqing Shi, Lingfei Shi, Xinwei Feng, and Yuehong Ma. 2025. "Spatio-Temporal Evolution and Zonal Control of Non-Grain Cultivated Land in Major Grain Producing Areas: A Case Study of Henan Province" Land 14, no. 10: 2046. https://doi.org/10.3390/land14102046
APA StyleFang, A., Xing, Z., Chen, W., Shi, Y., Shi, L., Feng, X., & Ma, Y. (2025). Spatio-Temporal Evolution and Zonal Control of Non-Grain Cultivated Land in Major Grain Producing Areas: A Case Study of Henan Province. Land, 14(10), 2046. https://doi.org/10.3390/land14102046
        