The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Resources
2.2. Sequestration Basins and Biorefinery Siting
2.3. Biomass Transportation, Logistics, and CO2 Emissions
2.4. Power Generation
- LCOEBECCS = the levelized cost of electricity production from BECCS ($/MWh),
- LCOEref = the levelized cost of electricity production from a reference scenario ($/MWh),
- Eref = total CO2 emissions (tonnes CO2) associated with a reference scenario, and
- EBECCS = total CO2 emissions (tonnes CO2) associated with BECCS, a negative value if CO2 is sequestered net of supply chain emissions.
3. Results
4. Discussion
5. Conclusions
6. Disclaimer and Acknowledgements
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. Bioenergy with Carbon Capture and Storage Approaches for Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop—In Brief; The National Academies Press: Washington, DC, USA, 2018; p. 11. [Google Scholar] [CrossRef]
- Quader, M.A.; Ahmed, S. Chapter four—Bioenergy with carbon capture and storage (BECCS): Future prospects of carbon-negative technologies. In Clean Energy for Sustainable Development; Rasul, M.G., Azad, A.k., Sharma, S.C., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 91–140. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; World Meteorological Organization: Geneva, Switzerland, 2018. [Google Scholar]
- IPCC. Summary for policymakers. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- USDOE. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 1: Economic Availability of Feedstocks; ORNL/TM-2005/66; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016; p. 448.
- Rogers, J.N.; Stokes, B.; Dunn, J.; Cai, H.; Wu, M.; Haq, Z.; Baumes, H. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels Bioprod. Biorefining 2017, 11, 110–128. [Google Scholar] [CrossRef] [Green Version]
- Baik, E.; Sanchez, D.L.; Turner, P.A.; Mach, K.J.; Field, C.B.; Benson, S.M. Geospatial analysis of near-term potential for carbon-negative bioenergy in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, 3290–3295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez, D.L.; Nelson, J.H.; Johnston, J.; Mileva, A.; Kammen, D.M. Biomass enables the transition to a carbon-negative power system across western North America. Nat. Clim. Chang. 2015, 5, 230–234. [Google Scholar] [CrossRef]
- Sanchez, D.L.; Johnson, N.; McCoy, S.T.; Turner, P.A.; Mach, K.J. Near-term deployment of carbon capture and sequestration from biorefineries in the United States. Proc. Natl. Acad. Sci. USA 2018, 115, 4875–4880. [Google Scholar] [CrossRef] [Green Version]
- Vikara, D.; Shih, C.Y.; Lin, S.; Guinan, A.; Grant, T.; Morgan, D.; Remson, D.U.S. DOE’s Economic Approaches and Resources for Evaluating the Cost of Implementing Carbon Capture, Utilization, and Storage (CCUS). J. Sustain. Energy Eng. 2017, 5, 307–340. [Google Scholar] [CrossRef]
- Fuss, S.; Lamb, W.F.; Callaghan, M.W.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 2018, 13, 063002. [Google Scholar] [CrossRef] [Green Version]
- Baker, S.E.; Stolaroff, J.K.; Peridas, G.; Pang, S.H.; Goldstein, H.M.; Lucci, F.R.; Li, W.; Slessarev, E.W.; Pett-Ridge, J.; Ryerson, F.J.; et al. Getting to Neutral: Options for Negative Carbon Emissions in California; LLNL-TR-796100; Lawrence Livermore National Laboratory: Livermore, CA, USA, 2020.
- Agbor, E.; Oyedun, A.O.; Zhang, X.; Kumar, A. Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas. Appl. Energy 2016, 169, 433–449. [Google Scholar] [CrossRef]
- Searchinger, T.; Edwards, R.; Mulligan, D.; Heimlich, R.; Plevin, R. Do biofuel policies seek to cut emissions by cutting food? Science 2015, 347, 1420–1422. [Google Scholar] [CrossRef]
- Smith, K.A.; Searchinger, T.D. Crop-based biofuels and associated environmental concerns. Glob. Chang. Biol. Bioenergy 2012, 4, 479–484. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Beringer, T.; Holtsmark, B.; Kammen, D.M.; Lambin, E.F.; Lucht, W.; Raven, P.; van Ypersele, J.P. Europe’s renewable energy directive poised to harm global forests. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.; McNunn, G.S.; Schulte, L.A.; Bonner, I.J.; Muth, D.J.; Babcock, B.A.; Sharma, B.; Heaton, E.A. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 2016, 11, 014009. [Google Scholar] [CrossRef]
- Brandes, E.; McNunn, G.S.; Schulte, L.A.; Muth, D.J.; VanLoocke, A.; Heaton, E.A. Targeted subfield switchgrass integration could improve the farm economy, water quality, and bioenergy feedstock production. GCB Bioenergy 2018, 10, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Brandes, E.; Plastina, A.; Heaton, E.A. Where can switchgrass production be more profitable than corn and soybean? An integrated subfield assessment in Iowa, USA. GCB Bioenergy 2018. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Hamel, P.; Sharp, R.; Kowal, V.; Wolny, S.; Sim, S.; Mueller, C. Landscape configuration is the primary driver of impacts on water quality associated with agricultural expansion. Environ. Res. Lett. 2016, 11, 074012. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L.; Buford, M.A.; Volk, T.A.; Tattersall Smith, C.; Stupak, I. Incorporating bioenergy into sustainable landscape designs. Renew. Sustain. Energy Rev. 2016, 56, 1158–1171. [Google Scholar] [CrossRef] [Green Version]
- Efroymson, R.A.; Dale, V.H.; Kline, K.L.; McBride, A.C.; Bielicki, J.M.; Smith, R.L.; Parish, E.S.; Schweizer, P.E.; Shaw, D.M. Environmental indicators of biofuel sustainability: What about context? Environ. Manag. 2013, 51, 291–306. [Google Scholar] [CrossRef]
- Englund, O.; Börjesson, P.; Berndes, G.; Scarlat, N.; Dallemand, J.-F.; Grizzetti, B.; Dimitriou, I.; Mola-Yudego, B.; Fahl, F. Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Glob. Environ. Chang. 2020, 60, 101990. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C.; et al. Beneficial biofuels-the food, energy, and environmental trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- Jager, H.I.; Parish, E.S.; Langholtz, M.H.; King, A.W. Perennials in Flood-prone areas of agricultural landscapes: A climate adaptation strategy. Bioscience 2020. [Google Scholar] [CrossRef]
- Langholtz, M.; Webb, E.; Preston, B.L.; Turhollow, A.; Breuer, N.; Eaton, L.; King, A.W.; Sokhansanj, S.; Nair, S.S.; Downing, M. Climate risk management for the U.S. Cellulosic biofuels supply chain. Clim. Risk Manag. 2014, 3, 69–115. [Google Scholar] [CrossRef] [Green Version]
- USDA Economic Research Service. Inflation-adjusted Price Indices for Corn, Wheat, and Soybeans Show Long-Term Declines. Available online: https://www.ers.usda.gov/data-products/chart-gallery/gallery/chart-detail/?chartId=76964 (accessed on 15 June 2020).
- Newton, J. The Verdict is in: Farm bankruptcies up in 2019. In Market Intel; U.S. Farm Bureau: Washington, DC, USA, 2020. [Google Scholar]
- USDA Economic Research Service. Federal Government Direct Farm Program Payments, 2011-2020F. Available online: https://data.ers.usda.gov/reports.aspx?ID=17833 (accessed on 15 May 2020).
- USDOE. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; ORNL/TM-2016/727; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 624.
- Kline, K.; Dale, V.; Lee, R.; Leiby, P. In defense of biofuels, done right. Issues Sci. Technol. 2009, 25, 75–84. [Google Scholar]
- Kline, K.L.; Msangi, S.; Dale, V.H.; Woods, J.; Souza Glaucia, M.; Osseweijer, P.; Clancy, J.S.; Hilbert, J.A.; Johnson, F.X.; McDonnell, P.C.; et al. Reconciling food security and bioenergy: Priorities for action. GCB Bioenergy 2017, 9, 557–576. [Google Scholar] [CrossRef] [Green Version]
- Larson, D.S.; Mirth, A. A case study on the economics of thinning in the wildland urban interface. West. J. Appl. For. 2004, 19, 60–65. [Google Scholar] [CrossRef] [Green Version]
- Staudhammer, C.; Hermansen, A.; Carter, D.; Macie, E. Wood to Energy: Using Southern Interface Fuels for Bioenergy; USFS Southern Research Station: Ashville, NC, USA, 2011; p. 90.
- Voegele, E. Green energy resources to utilize hurricane wood. Biomass Mag. 2008. Available online: http://www.biomassmagazine.com/articles/2115/green-energy-to-utilize-hurricane-biomass/ (accessed on 15 May 2020).
- Bragg, D.C.; Shelton, M.G.; Zeide, B. Impacts and management implications of ice storms on forests in the southern United States. For. Ecol. Manag. 2003, 186, 99–123. [Google Scholar] [CrossRef]
- Toensmeier, E.; Garrity, D. The Biomass Bottleneck, Strategies for drawing down carbon dioxide depend on more trees, grasses and crop residues than the planet can spare. Sci. Am. 2020, 66–71. [Google Scholar] [CrossRef]
- McBride, A.C.; Dale, V.H.; Baskaran, L.M.; Downing, M.E.; Eaton, L.M.; Efroymson, R.A.; Garten, C.T.; Kline, K.L.; Jager, H.I.; Mulholland, P.J.; et al. Indicators to support environmental sustainability of bioenergy systems. Ecol. Indic. 2011, 11, 1277–1289. [Google Scholar] [CrossRef]
- Dale, V.H.; Langholtz, M.H.; Wesh, B.M.; Eaton, L.M. Environmental and socioeconomic indicators for bioenergy sustainability as applied to eucalyptus. Int. J. For. Res. 2013, 2013, 10. [Google Scholar] [CrossRef]
- Norton, M.; Baldi, A.; Buda, V.; Carli, B.; Cudlin, P.; Jones, M.B.; Korhola, A.; Michalski, R.; Novo, F.; Oszlányi, J.; et al. Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 2019, 11, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Haberl, H.; Sprinz, D.; Bonazountas, M.; Cocco, P.; Desaubies, Y.; Henze, M.; Hertel, O.; Johnson, R.K.; Kastrup, U.; Laconte, P.; et al. Correcting a fundamental error in greenhouse gas accounting related to bioenergy. Energy Policy 2012, 45, 18–23. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Hamburg, S.P.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.; Obersteiner, M.; Oppenheimer, M.; et al. Fixing a critical climate accounting error. Science 2009, 326, 527–528. [Google Scholar] [CrossRef]
- Ter-Mikaelian, M.T.; Colombo, S.J.; Chen, J. The burning question: Does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. J. For. 2014, 113, 57–68. [Google Scholar] [CrossRef] [Green Version]
- USDA NRCS. Revised Universal Soil Loss Equation, Version 2 (RUSLE2); US Department of Agriculture: Washington, DC, USA, 2016.
- USDA NRCS. Wind Erosion Prediction System; USDA Agricultural Research Service and NRCS: Washington, DC, USA, 2016.
- Efroymson, R.; Langholtz, M.; Johnson, K.; Negri, C.; Turhollow, A.; Kline, K.; Bonner, I.; Dale, V. Chapter 14: Synthesis, interpretation, and strategies to enhance environmental outcomes. In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; Efroymson, R., Langholtz, M., Johnson, K., Stokes, B., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 624. [Google Scholar] [CrossRef]
- U.S. Department of Energy. 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; ORNL/TM-2005/66; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 642.
- Sharma, B.; Brandt, C.; McCullough-Amal, D.; Langholtz, M.; Webb, E. Assessment of the feedstock supply for siting single- and multiple-feedstock biorefineries in the USA and identification of prevalent feedstocks. Biofuels Bioprod. Biorefining 2020, 14, 578–593. [Google Scholar] [CrossRef]
- Muth, D.J.; Bryden, K.M.; Nelson, R.G. Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment. Appl. Energy 2013, 102, 403–417. [Google Scholar] [CrossRef] [Green Version]
- Preston, B.L.; Langholtz, M.H.; Eaton, L.M.; Daly, C.; Halbleib, M. Chapter 13: Climate Sensitivity of Agricultural Energy Crop Productivity. In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; Efroymson, R., Langholtz, M., Johnson, K., Stokes, B., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 624. [Google Scholar] [CrossRef]
- Mays, G.T.; Belles, R.; Blevins, B.R.; Hadley, S.W.; Harrison, T.J.; Jochem, W.C.; Neish, B.S.; Omitaomu, O.A.; Rose, A.N. Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources; ORNL/TM-2011/157; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2012.
- Omitaomu, O.A.; Blevins, B.R.; Jochem, W.C.; Mays, G.T.; Belles, R.; Hadley, S.W.; Harrison, T.J.; Bhaduri, B.L.; Neish, B.S.; Rose, A.N. Adapting a GIS-based multicriteria decision analysis approach for evaluating new power generating sites. Appl. Energy 2012, 96, 292–301. [Google Scholar] [CrossRef]
- Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802. [Google Scholar] [CrossRef]
- DiPietro, P.; Gerdes, K. Water Requirements for Existing and Emerging Thermoelectric Plant Technologies; DOE/NETL-402/080108; National Energy Technology Laboratory: Washinton, DC, USA, 2009.
- Lautala, P.T.; Hilliard, M.R.; Webb, E.; Busch, I.; Richard Hess, J.; Roni, M.S.; Hilbert, J.; Handler, R.M.; Bittencourt, R.; Valente, A.; et al. Opportunities and challenges in the design and analysis of biomass supply chains. Environ. Manag. 2015, 56, 1397–1415. [Google Scholar] [CrossRef]
- Canter, C.; Qin, Z.; Cai, H.; Dunn, J.; Wang, M.; Scott, D.A. Chapter 4: Fossile energy consumption and greenhouse gas emissions, including soil carbon effects, of producing agriculture and forestry feedstocks. In 2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy, Volume 2: Environmental Sustainability Effects of Select Scenarios from Volume 1; Efroymson, R., Langholtz, M., Johnson, K., Stokes, B., Eds.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2017; p. 624. [Google Scholar] [CrossRef]
- Roni, M.; Thompson, D.; Hartley, D.; Griffel, M.; Hu, H.; Nguyen, Q.; Cai, H. Herbaceous Feedstock 2018 State of Technology Report; Idaho National Laboratory: Idaho Falls, ID, USA, 2018; p. 298.
- Hartley, D.; Thompson, D.; Hu, H.; Cai, H. Woody Feedstock 2017 State of Technology Report; Idaho National Laboratory: Idaho Falls, ID, USA, 2017; p. 85.
- Cai, H.; Benavides, T.; Lee, U.; Wang, M.; Tan, E.; Davis, R.; Dutta, A.; Biddy, M.; Clippinger, J.; Grundl, N.; et al. Supply Chain Sustainability Analysis of Renewable Hydrocarbon Fuels via Indirect Liquefaction, Ex Situ Catalytic Fast Pyrolysis, Hydrothermal Liquefaction, Combined Algal Processing, and Biochemical Conversion: Update of the 2018 State-of-Technology Cases and Design Cases; Argonne National Laboratory: Lemont, IL, USA, 2018; pp. 1–71.
- Wang, M.; Elgowainy, A.; Benavides, P.T.; Burnham, A.; Cai, H.; Dai, Q.; Hawkins, T.R.; Kelly, J.C.; Kwon, H.; Lee, D.-Y.; et al. Summary of Expansions and Updates in GREET® 2018; Systems Assessment Group, Energy Systems Division, Argonne National Laboratory: Lemont, IL, USA, 2018; p. 32.
- Kwon, H.-Y.; Mueller, S.; Dunn, J.B.; Wander, M.M. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production. Biomass Bioenergy 2013, 55, 299–310. [Google Scholar] [CrossRef]
- IECM. Integrated Environmental Control Model (IECM) Version 11.2 (Carnegie Mellon University). Available online: https://www.cmu.edu/epp/iecm/index.html (accessed on 14 June 2020).
- Berkenpas, M.B.; Fry, J.J.; Kietzke, K.; Rubin, E.S.; Zhai, H. IECM User Documentation: User Manual; Carnegie Mellon University: Pittsburgh, PA, USA, 2018. [Google Scholar]
- Moore, F.T. Economies of Scale: Some Statistical Evidence*. Q. J. Econ. 1959, 73, 232–245. [Google Scholar] [CrossRef]
Logging Residues | Trees < 28 cm DBH 2 | Biomass Energy Crops | Agricultural Residues | |
---|---|---|---|---|
Potential supply 1 (million tonnes per year) (2020; 2040) | 17; 19 | 88; 86 | 0; 549 | 118; 169 |
Examples | Tops and limbs from conventional forest operations | Trees less than 30 cm diameter from timberlands | Switchgrass, miscanthus, willow, poplar | Corn stover, wheat straw |
Sustainability constraints | Sensitive lands excluded, no road building, costs assume BMPs 3, harvests are less than growth, >30% of logging residues left for soil conservation. Naturally regenerated stands are not replaced with plantations. | Demands for food, feed, fiber, and export met before biomass resources are available. | Constrained for soil conservation and soil organic carbon. 4 | |
Assessment model and source | ForSEAM (USDOE 2016 Chapter 3) | POLYSYS (USDOE 2016 Chapter 4) | ||
Sustainability considerations 5 | Should be tailored to site-specific silvicultural conditions. | Can be from forest thinnings to favor larger trees and fire risk reduction, or short-rotation plantations. | Can be established on agricultural lands as an alternative to row crops to conserve soil, improve water quality, and improve farm incomes. | Can enhance soil conservation when practiced with no- or reduced-till agriculture, cover crops, and precision/variable rate harvesting. |
System 1 | Feedstocks 2 | Feedstock logistics 3 |
---|---|---|
IGCC | 2020 | Conventional |
IGCC | 2040 | Conventional |
IGCC | 2040 | Depots |
Pulverized combustion | 2040 | Depots |
Existing OR-SAGE Screening Criteria | Exclusion Value |
---|---|
Population density (people/sq. km) | >195/sq. km (500/sq. mile) |
Wetlands/Open Water | No/no go |
Protected lands | No/no go |
Slope | >12% grade |
Landslide Hazard (moderate or high) | No/no go |
100-year floodplain | No/no go |
Cooling water make-up within 32 km (20 miles) (assumes closed-cycle cooling, limits plant to no more than 10% of resource) | 473,000 L per minute (125,000 gallons per minute) |
Geological formations | Outside saline basins |
US Environmental Protection Agency non-attainment areas | No/no go |
Scenario | CO2 Captured (Million Tonnes) | Average Efficiency (%HHV) | Capital Cost ($/kWe/Year) | Fixed O&M Cost ($/kWe/Year) | Variable O&M Cost ($/MWh) | Capacity Factor |
---|---|---|---|---|---|---|
10% | 20 | 28 | 3117 | 146 | 78 | 0.80 |
20% | 40 | 25 | 3397 | 156 | 97 | 0.78 |
30% | 60 | 27 | 3225 | 150 | 87 | 0.79 |
40% | 81 | 25 | 3454 | 158 | 107 | 0.78 |
50% | 101 | 25 | 3410 | 153 | 106 | 0.78 |
60% | 121 | 25 | 3383 | 149 | 110 | 0.78 |
70% | 141 | 28 | 3136 | 136 | 101 | 0.79 |
80% | 161 | 29 | 3130 | 137 | 103 | 0.79 |
90% | 181 | 28 | 3261 | 143 | 120 | 0.79 |
Scenario | CO2 Captured (Million Tonnes) | Average Efficiency (%HHV) | Capital Cost ($/kWe/Year) | Fixed O&M Cost ($/kWe/Year) | Variable O&M Cost ($/MWh) | Capacity Factor |
---|---|---|---|---|---|---|
10% | 82 | 23 | 3566 | 164 | 86 | 0.77 |
20% | 164 | 25 | 3346 | 156 | 72 | 0.78 |
30% | 246 | 25 | 3312 | 149 | 73 | 0.78 |
40% | 328 | 24 | 3390 | 150 | 85 | 0.78 |
50% | 410 | 24 | 3340 | 142 | 86 | 0.78 |
60% | 491 | 24 | 3454 | 146 | 99 | 0.77 |
70% | 573 | 24 | 3400 | 139 | 102 | 0.77 |
80% | 655 | 24 | 3352 | 135 | 104 | 0.78 |
90% | 737 | 25 | 3316 | 131 | 114 | 0.78 |
Scenario | CO2 Captured (Million Tonnes) | Average Efficiency (%HHV) | Capital Cost ($/kWe/Year) | Fixed O&M Cost ($/kWe/year) | Variable O&M Cost ($/MWh) | Capacity Factor |
---|---|---|---|---|---|---|
10% | 82 | 26 | 3298 | 154 | 65 | 0.78 |
20% | 164 | 25 | 3389 | 154 | 80 | 0.78 |
30% | 246 | 26 | 3199 | 144 | 67 | 0.79 |
40% | 328 | 25 | 3263 | 145 | 79 | 0.78 |
50% | 410 | 25 | 3306 | 140 | 83 | 0.78 |
60% | 491 | 25 | 3258 | 135 | 86 | 0.78 |
70% | 573 | 25 | 3328 | 135 | 97 | 0.78 |
80% | 655 | 25 | 3344 | 133 | 104 | 0.78 |
90% | 737 | 25 | 3334 | 131 | 116 | 0.78 |
Scenario | CO2 Captured (Million Tonnes) | Average Efficiency (%HHV) | Capital Cost ($/kWe/Year) | Fixed O&M Cost ($/kWe/Year) | Variable O&M Cost ($/MWh) | Capacity Factor |
---|---|---|---|---|---|---|
10% | 82 | 23 | 3807 | 95 | 78 | 0.66 |
20% | 164 | 23 | 3798 | 96 | 78 | 0.66 |
30% | 246 | 23 | 3799 | 95 | 79 | 0.66 |
40% | 326 | 23 | 3809 | 95 | 81 | 0.66 |
50% | 410 | 23 | 3810 | 95 | 89 | 0.66 |
60% | 491 | 23 | 3848 | 96 | 99 | 0.66 |
70% | 573 | 23 | 3844 | 96 | 100 | 0.66 |
80% | 655 | 23 | 3828 | 97 | 101 | 0.66 |
90% | 736 | 23 | 3858 | 98 | 110 | 0.66 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langholtz, M.; Busch, I.; Kasturi, A.; Hilliard, M.R.; McFarlane, J.; Tsouris, C.; Mukherjee, S.; Omitaomu, O.A.; Kotikot, S.M.; Allen-Dumas, M.R.; et al. The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US. Land 2020, 9, 299. https://doi.org/10.3390/land9090299
Langholtz M, Busch I, Kasturi A, Hilliard MR, McFarlane J, Tsouris C, Mukherjee S, Omitaomu OA, Kotikot SM, Allen-Dumas MR, et al. The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US. Land. 2020; 9(9):299. https://doi.org/10.3390/land9090299
Chicago/Turabian StyleLangholtz, Matthew, Ingrid Busch, Abishek Kasturi, Michael R. Hilliard, Joanna McFarlane, Costas Tsouris, Srijib Mukherjee, Olufemi A. Omitaomu, Susan M. Kotikot, Melissa R. Allen-Dumas, and et al. 2020. "The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US" Land 9, no. 9: 299. https://doi.org/10.3390/land9090299
APA StyleLangholtz, M., Busch, I., Kasturi, A., Hilliard, M. R., McFarlane, J., Tsouris, C., Mukherjee, S., Omitaomu, O. A., Kotikot, S. M., Allen-Dumas, M. R., DeRolph, C. R., Davis, M. R., & Parish, E. S. (2020). The Economic Accessibility of CO2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US. Land, 9(9), 299. https://doi.org/10.3390/land9090299