Challenging a Global Land Surface Model in a Local Socio-Environmental System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location
2.2. Model Description
2.3. Benchmarking Data and CLM Comparisons
2.3.1. Climate
2.3.2. Land Cover and Plant Functional Types
2.3.3. Crop Cover and Irrigation
2.3.4. Leaf Area Index and Phenology
2.3.5. Carbon Fluxes
2.3.6. Soil Moisture
2.3.7. Reflectance
2.4. Model Data Comparisons
3. Results
3.1. Climate Forcing
3.2. Land Cover Forcing
3.3. Land Use Forcing
3.4. Model Output Time Series
3.5. Spatial Variation
4. Discussion
4.1. Model/Data Inputs (Dis)Agreement
4.2. Model/Data Outputs (Dis)Agreement
4.3. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreira, A.P.; Joaquim, J.J.; Panagopoulos, T.; Guimarães, M.H. Factors Driving the Population Growth and Decline of Portuguese Cities. Growth Chang. 2017, 48, 853–868. [Google Scholar] [CrossRef]
- Burley, D.M. Losing Ground: Indentity and Land Loss in Coastal Louisiana; University Press of Mississippi: Jackson, MS, USA, 2010; ISBN 9781604734881. [Google Scholar]
- Levis, S.; Badger, A.; Xiaolin, R.; Drewniak, B.; Nevison, C.D. CLMcrop yields and water requirements: Avoided impacts by choosing RCP 4.5 over 8.5. Clim. Chang. 2018, 46, 501–515. [Google Scholar] [CrossRef]
- Ahlswede, B.J.; Thomas, R.Q. Community earth system model simulations reveal the relative importance of afforestation and forest management to surface temperature in Eastern North America. Forests 2017, 8, 499. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Shuster, W.D.; Bonta, J.; Thurston, H.; Warnemuende, E.; Smith, D.R. Impacts of impervious surface on watershed hydrology: A review. Urban Water J. 2005, 2, 263–275. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D.F. Interactions between urbanization, heat stress, and climate change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Thomas, R.Q.; Bonan, G.B.; Goodale, C.L. Insights into mechanisms governing forest carbon response to nitrogen deposition: A model data comparison using observed responses to nitrogen addition. Biogeosciences 2013, 10, 3869–3887. [Google Scholar] [CrossRef] [Green Version]
- Shevliakova, E.; Pacala, S.W.; Malyshev, S.; Hurtt, G.C.; Milly, P.C.D.; Caspersen, J.P.; Sentman, L.T.; Fisk, J.P.; Wirth, C.; Crevoisier, C. Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Global Biogeochem. Cycles 2009, 23, 1–16. [Google Scholar] [CrossRef]
- Kennedy, D.; Swenson, S.; Oleson, K.W.; Lawrence, D.M.; Fisher, R.; Lola da Costa, A.C.; Gentine, P. Implementing Plant Hydraulics in the Community Land Model, Version 5. J. Adv. Model. Earth Syst. 2019, 11, 485–513. [Google Scholar] [CrossRef]
- Lombardozzi, D.L.; Bonan, G.B.; Wieder, W.; Grandy, A.S.; Morris, C.; Lawrence, D.L. Cover Crops May Cause Winter Warming in Snow-Covered Regions. Geophys. Res. Lett. 2018, 45, 9889–9897. [Google Scholar] [CrossRef]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The community climate system model version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Lunt, D.J.; Abe-Ouchi, A.; Bakker, P.; Berger, A.; Braconnot, P.; Charbit, S.; Fischer, N.; Herold, N.; Jungclaus, J.H.; Khon, V.C.; et al. A multi-model assessment of last interglacial temperatures. Clim. Past 2013, 9, 699–717. [Google Scholar] [CrossRef] [Green Version]
- Friedlingstein, P.; Meinshausen, M.; Arora, V.K.; Jones, C.D.; Anav, A.; Liddicoat, S.K.; Knutti, R. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 2014, 27, 511–526. [Google Scholar] [CrossRef] [Green Version]
- Arora, V.K.; Boer, G.J.; Friedlingstein, P.; Eby, M.; Jones, C.D.; Christian, J.R.; Bonan, G.; Bopp, L.; Brovkin, V.; Cadule, P.; et al. Carbon-concentration and carbon-climate feedbacks in CMIP5 earth system models. J. Clim. 2013, 26, 5289–5314. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B. Ecological Climatology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Sitch, S.; Friedlingstein, P.; Gruber, N.; Jones, S.D.; Murray-Tortarolo, G.; Ahlström, A.; Doney, S.C.; Graven, H.; Heinze, C.; Huntingford, C.; et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 2015, 12, 653–679. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.Q.; Randerson, J.T.; Abramowitz, G.; Bacour, C.; Blyth, E.; Carvalhais, N.; Ciais, P.; Dalmonech, D.; Fisher, J.B.; Fisher, R.; et al. A framework for benchmarking land models. Biogeosciences 2012, 9, 3857–3874. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.I.; Prentice, I.C.; Harrison, S.P.; Wang, H.; Simard, M.; Fisher, J.B.; Willis, K.O. A comprehensive benchmarking system for evaluating global vegetation models. Biogeosciences 2013, 10, 3313–3340. [Google Scholar] [CrossRef] [Green Version]
- Collier, N.; Hoffman, F.M.; Lawrence, D.M.; Keppel-Aleks, G.; Koven, C.D.; Riley, W.J.; Mu, M.; Randerson, J.T. The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation. J. Adv. Model. Earth Syst. 2018, 10, 2731–2754. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R.; et al. Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef] [Green Version]
- Dahlin, K.M.; Fisher, R.A.; Lawrence, P.J. Environmental drivers of drought deciduous phenology in the Community Land Model. Biogeosciences 2015, 12, 5061–5074. [Google Scholar] [CrossRef] [Green Version]
- Gosling, S.N.; Zaherpour, J.; Mount, N.J.; Hattermann, F.F.; Dankers, R.; Arheimer, B.; Breuer, L.; Ding, J.; Haddeland, I.; Kumar, R.; et al. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Clim. Chang. 2017, 141, 597–598. [Google Scholar] [CrossRef]
- Swenson, S.C.; Lawrence, D.M. Assessing a dry surface layer-based soil resistance parameterization for the Community Land Model using GRACE and FLUXNET-MTE data. J. Geophys. Res. Atmos. 2014, 119, 299–312. [Google Scholar] [CrossRef]
- Turner, M. Landscape ecology: The effect of patterns on process. Anu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Rhee, J.; Cho, J. Future changes in drought characteristics: Regional analysis for South Korea under CMIP5 projections. J. Hydrometeorol. 2016, 17, 437–451. [Google Scholar] [CrossRef]
- Joshi, N.; Tamaddun, K.; Parajuli, R.; Kalra, A.; Maheshwari, P.; Mastino, L.; Velotta, M. Future changes in water supply and demand for las vegas valley: A system dynamic approach based on CMIP3 and CMIP5 climate projections. Hydrology 2020, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Transeau, E.N. The Prairie Peninsula. Ecology 1935, 16, 423–437. [Google Scholar] [CrossRef]
- WBD. Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD); 11-A3; Section A: Federal Standards in Book 11 Collection and Delineation of Spatial Data; U.S. Geological Survey and U.S. Department of Agriculture, Natural Resources Conservation Service: Reston, VA, USA, 2013.
- Schaetzl, R.J.; Darden, J.T.; Brandt, D. (Eds.) Michigan Geography and Geology; Pearson Custom Publishers: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- NOAA. NOAA Battle Creek GHCND:USC00200552 Data for 2001–2015; National Oceanic and Atmospheric Administration: Ashville, NC, USA, 2018. [Google Scholar]
- Lovis, W.A. Between the Glaciers and Europeans: People from 12,000 to 400 years ago. In Michigan Geography and Geology; Schaetzl, R., Darden, J., Brandt, D., Eds.; Pearson Custom Publishers: New York, NY, USA, 2009; pp. 389–401. [Google Scholar]
- Chapman, K.A.; Brewer, R. Prairie and Savanna in southern lower Michigan: History, Classification, Ecology. Mich. Bot. 2008, 47, 1–48. [Google Scholar]
- USCB. Annual Estimates of the Resident Population: 1 April 2010–1 July 2017; US Census Bureau, Population Division: Washington, DC, USA, 2019. [Google Scholar]
- Lawrence, D.M.; Fisher, R.A.; Koven, C.D.; Oleson, K.W.; Swenson, S.C.; Bonan, G.; Collier, N.; Ghimire, B.; Kampenhout, L.; Kennedy, D.; et al. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 2019, 2, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The community earth system model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Datau 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- CRU; Harris, I.C. CRU JRA v2.0: A Forcings Dataset of Gridded Land Surface Blend of Climatic Research Unit (CRU) and Japanese Reanalysis (JRA) Data. 2019. Available online: https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac4b0ee8f4ed (accessed on 15 September 2020). [CrossRef]
- Chamberlain, S. rnoaa: “NOAA” Weather Data from R. R Package Version 0.8.4. 2019. Available online: https://cran.r-project.org/package=rnoaa (accessed on 1 May 2019).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Sciusco, P.; Ouyang, Z.; Zhang, R.; Henebry, G.M.; John, R.; Roy, D.P. Linear downscaling from MODIS to landsat: Connecting landscape composition with ecosystem functions. Landsc. Ecol. 2019. [Google Scholar] [CrossRef]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Bender, S.M.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; et al. A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- MIDNR. Michigan Circa 1800 Presettlement Vegetation Cover. Michigan Department of Natural Resources Open Data GIS Layer. 2015. Available online: https://www.arcgis.com/home/item.html?id=73be4465aaf6476f981b3a6cf72465be (accessed on 7 May 2019).
- Hurtt, G.C.; Chini, L.P.; Frolking, S.; Betts, R.A.; Feddema, J.; Fischer, G.; Fisk, J.P.; Hibbard, K.; Houghton, R.A.; Janetos, A.; et al. Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Chang. 2011, 109, 117–161. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, D.M.; Hurtt, G.C.; Arneth, A.; Brovkin, V.; Calvin, K.V.; Jones, A.D.; Jones, C.D.; Lawrence, P.J.; De Noblet-Ducoudré, N.; Pongratz, J.; et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geosci. Model Dev. 2016, 9, 2973–2998. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, P.J.; Feddema, J.J.; Bonan, G.B.; Meehl, G.A.; O’Neill, B.C.; Oleson, K.W.; Levis, S.; Lawrence, D.M.; Kluzek, E.; Lindsay, K.; et al. Simulating the biogeochemical and biogeophysical impacts of transient land cover change and wood harvest in the Community Climate System Model (CCSM4) from 1850 to 2100. J. Clim. 2012, 25, 3071–3095. [Google Scholar] [CrossRef] [Green Version]
- Jackson, T.L.; Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Bauer, J.T. Parameterization of urban characteristics for global climate modeling. Ann. Assoc. Am. Geogr. 2010, 100, 848–865. [Google Scholar] [CrossRef]
- USDA-NASS. USDA National Agricultural Statistics Service Cropland Data Layer; Published crop-specific data layer [Online]; USDA-NASS: Washington, DC, USA, 2019. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1950. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1954. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1959. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1964. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1969. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1974. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1978. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1982. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1987. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1992. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 1997. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 2002. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 2007. [Google Scholar]
- USCB. Census of Agriculture; USCB: Washington, DC, USA, 2012. [Google Scholar]
- Myneni, R.B.; Knyazikhin, Y.; Park, T. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Process. DAAC 2015. [Google Scholar] [CrossRef]
- Abraha, M.; Gelfand, I.; Hamilton, S.K.; Shao, C.; Su, Y.J.; Robertson, G.P.; Chen, J. Ecosystem Water-Use Efficiency of Annual Corn and Perennial Grasslands: Contributions from Land-Use History and Species Composition. Ecosystems 2016, 19, 1001–1012. [Google Scholar] [CrossRef]
- Abraha, M.; Chen, J.; Hamilton, S.K.; Robertson, G.P. Long-term evapotranspiration rates for rainfed corn versus perennial bioenergy crops in a mesic landscape. Hydrol. Process. 2020, 34, 810–822. [Google Scholar] [CrossRef] [Green Version]
- Clement, R. EdiRe data software v. 1.5.0.32. University of Edinburgh: Edinburgh, UK, 1999. Available online: https://s.campbellsci.com/documents/eu/technical-papers/edire.pdf (accessed on 15 September 2020).
- Wutzler, T.; Lucas-Moffat, A.; Migliavacca, M.; Knauer, J.; Sickel, K.; Šigut, L.; Menzer, O.; Reichstein, M. Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 2018, 15, 5015–5030. [Google Scholar] [CrossRef] [Green Version]
- Papale, D.; Reichstein, M.; Aubinet, M.; Canfora, E.; Bernhofer, C.; Kutsch, W.; Longdoz, B.; Rambal, S.; Vesala, T.; Valentini, R.; et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: Algorithms and uncertainty estimation. Biogeosciences 2006, 3, 571–583. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, P.E.; Chan, S.; Njoku, E.G.; Jackson, T.; Bindlish, R. SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 5. Natl. Snow Ice Data Cent. 2018, 1–82. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Wang, Z. MCD43A3 MODIS/Terra+Aqua BRDF/Albedo Daily L3 Global—500m V006 [Data set]. NASA EOSDIS Land Process. DAAC 2019. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lawrence, D.; Fisher, R.; Koven, C.; Oleson, K.; Swenson, S.; Vertenstein, M.; Andre, B.; Bonan, G.; Ghimire, B.; van Kampenhout, L.; et al. Technical Description of Version 5.0 of the Community Land Model (CLM); National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Oleson, K.W.; Bonan, G.B.; Schaaf, C.; Gao, F.; Jin, Y.; Strahler, A. Assessment of global climate model land surface albedo using MODIS data. Geophys. Res. Lett. 2003, 30, 3–6. [Google Scholar] [CrossRef]
- Mallya, G.; Zhao, L.; Song, X.C.; Niyogi, D.; Govindaraju, R.S. 2012 Midwest Drought in the United States. J. Hydrol. Eng. 2013, 18, 737–745. [Google Scholar] [CrossRef]
- Dye, D.G.; Tucker, C.J. Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Contosta, A.R.; Casson, N.J.; Garlick, S.; Nelson, S.J.; Ayres, M.P.; Burakowski, E.A.; Campbell, J.; Creed, I.; Eimers, C.; Evans, C.; et al. Northern forest winters have lost cold, snowy conditions that are important for ecosystems and human communities. Ecol. Appl. 2019, 29, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Robertson, W.M.; Robinett, M.; McCullough, D.G. Soil moisture response to white ash mortality following emerald ash borer invasion. Environ. Earth Sci. 2018, 77, 1–14. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Ramankutty, N.; Heller, E.; Rhemtulla, J. Prevailing myths about agricultural abandonment and forest regrowth in the United States. Ann. Assoc. Am. Geogr. 2010, 100, 502–512. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I. Sprawl and forest fragmentation in the U.S. Midwest from 1940 to 2000. Conserv. Biol. 2005, 19, 793–805. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Betts, R.A. Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett. 2001, 2, 39–51. [Google Scholar] [CrossRef]
- USGS. Temporally Smoothed Weekly AQUA Collect 6 (C6) Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) at 250 m. eMODIS Prod. 2019. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Wieder, W.R.; Knowles, J.F.; Blanken, P.D.; Swenson, S.C.; Suding, K.N. Ecosystem function in complex mountain terrain: Combining models and long-term observations to advance process-based understanding. J. Geophys. Res. Biogeosci. 2017, 122, 825–845. [Google Scholar] [CrossRef]
- Poe, J.; Reed, D.E.; Abraha, M.; Chen, J.; Dahlin, K.M.; Desai, A.R. Geospatial coherence of surface-atmosphere fluxes in the upper Great Lakes region. Agric. For. Meteorol. 2020, 295, 108188. [Google Scholar] [CrossRef]
- Poulter, B.; MacBean, N.; Hartley, A.; Khlystova, I.; Arino, O.; Betts, R.; Bontemps, S.; Boettcher, M.; Brockmann, C.; Defourny, P.; et al. Plant functional type classification for earth system models: Results from the European Space Agency’s Land Cover Climate Change Initiative. Geosci. Model Dev. 2015, 8, 2315–2328. [Google Scholar] [CrossRef] [Green Version]
- Hartley, A.J.; Macbean, N.; Georgievski, G.; Bontemps, S. Uncertainty in plant functional type distributions and its impact on land surface models. Remote Sens. Environ. 2017, 203, 71–89. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahlin, K.M.; Akanga, D.; Lombardozzi, D.L.; Reed, D.E.; Shirkey, G.; Lei, C.; Abraha, M.; Chen, J. Challenging a Global Land Surface Model in a Local Socio-Environmental System. Land 2020, 9, 398. https://doi.org/10.3390/land9100398
Dahlin KM, Akanga D, Lombardozzi DL, Reed DE, Shirkey G, Lei C, Abraha M, Chen J. Challenging a Global Land Surface Model in a Local Socio-Environmental System. Land. 2020; 9(10):398. https://doi.org/10.3390/land9100398
Chicago/Turabian StyleDahlin, Kyla M., Donald Akanga, Danica L. Lombardozzi, David E. Reed, Gabriela Shirkey, Cheyenne Lei, Michael Abraha, and Jiquan Chen. 2020. "Challenging a Global Land Surface Model in a Local Socio-Environmental System" Land 9, no. 10: 398. https://doi.org/10.3390/land9100398