Prediction of PM2.5 Concentrations in the Pearl River Delta by Integrating the PLUS and LUR Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. PM2.5 Concentration Prediction Based on LUR
2.2.1. LUR Model
2.2.2. Random Forest
2.2.3. Landscape Indices
2.2.4. Selection of Input Variables for LUR
2.3. Land Use Change Modeling
2.3.1. PLUS
2.3.2. Markov Chain
2.4. Future PM2.5 Prediction with the PLUS-LUR Approach
3. Results
3.1. Modeling Results from LUR
3.2. Land Use Simulation and Forecasting with the PLUS Method
3.3. Predictions of Future PM2.5 Levels
4. Discussion
4.1. Comparison with Prior Research
4.2. Policy Recommendations
4.3. Pros and Cons
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Aravkin, A.Y.; Zheng, P.; Abbafati, C.; Abbas, K.M.; Abbasi-Kangevari, M.; Abd-Allah, F.; Abdelalim, A.; Abdollahi, M.; Abdollahpour, I.; et al. Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Cheng, F.; Lv, Q.; Li, K.; Zhang, T.; Zhou, Y.; Zhao, B.; Xue, W.; Wei, J. Two-Decade Surface Ozone (O3) Pollution in China: Enhanced Fine-Scale Estimations and Environmental Health Implications. Remote Sens. Environ. 2025, 317, 114459. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, W.; Hong, M.; Neophytou, A.M. Urbanization Exacerbates Disparities in Exposure to Air Pollution in China. Environ. Res. 2025, 267, 120661. [Google Scholar] [CrossRef]
- Shi, T.; Hu, Y.; Liu, M.; Li, C.; Zhang, C.; Liu, C. Land Use Regression Modelling of PM2.5 Spatial Variations in Different Seasons in Urban Areas. Sci. Total Environ. 2020, 743, 140744. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Bilal, M.; Ho, H.C.; Omar, A. Urbanization and Regional Air Pollution across South Asian Developing Countries—A Nationwide Land Use Regression for Ambient PM2.5 Assessment in Pakistan. Environ. Pollut. 2020, 266, 115145. [Google Scholar] [CrossRef]
- Wei, Q.; Chen, Y.; Zhang, H.; Jia, Z.; Yang, J.; Niu, B. Simulation and Prediction of PM2.5 Concentrations and Analysis of Driving Factors Using Interpretable Tree-Based Models in Shanghai, China. Environ. Res. 2025, 270, 121003. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Van Donkelaar, A.; Hammer, M.S.; McDuffie, E.E.; Burnett, R.T.; Spadaro, J.V.; Chatterjee, D.; Cohen, A.J.; Apte, J.S.; Southerland, V.A.; et al. Reversal of Trends in Global Fine Particulate Matter Air Pollution. Nat. Commun. 2023, 14, 5349. [Google Scholar] [CrossRef]
- Cao, J.; Pan, G.; Zheng, B.; Liu, Y.; Zhang, G.; Liu, Y. Significant Land Cover Change in China during 2001–2019: Implications for Direct and Indirect Effects on Surface Ozone Concentration. Environ. Pollut. 2023, 335, 122290. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Fang, C.; Tian, N.; Wang, H.; Wang, J. Impacts of Land Use and Land Cover Changes on Local Meteorology and PM2.5 Concentrations in Changchun, Northeast China. Atmos. Res. 2023, 289, 106759. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.; Wang, D.; Fang, C. Influence of Urbanization on Meteorological Conditions and Ozone Pollution in the Central Plains Urban Agglomeration, China. Environ. Pollut. 2024, 356, 124290. [Google Scholar] [CrossRef]
- Zhan, C.; Xie, M.; Lu, H.; Liu, B.; Wu, Z.; Wang, T.; Zhuang, B.; Li, M.; Li, S. Impacts of Urbanization on Air Quality and the Related Health Risks in a City with Complex Terrain. Atmos. Chem. Phys. 2023, 23, 771–788. [Google Scholar] [CrossRef]
- Anav, A.; Sorrentino, B.; Collalti, A.; Paoletti, E.; Sicard, P.; Coulibaly, F.; Manzini, J.; Hoshika, Y.; De Marco, A. Meteorological, Chemical and Biological Evaluation of the Coupled Chemistry-Climate WRF-Chem Model from Regional to Urban Scale. An Impact-Oriented Application for Human Health. Environ. Res. 2024, 257, 119401. [Google Scholar] [CrossRef]
- Dou, X.; Yu, S.; Li, J.; Sun, Y.; Song, Z.; Yao, N.; Li, P. The WRF-CMAQ Simulation of a Complex Pollution Episode with High-Level O3 and PM2.5 over the North China Plain: Pollution Characteristics and Causes. Atmosphere 2024, 15, 198. [Google Scholar] [CrossRef]
- Liu, W.; Xue, Y.; Ling, X.; He, B.; Li, C.; Han, L. Simulation and Analysis of CO2 Concentration in China from 2009 to 2021 Based on the WRF-Chem Model. Atmos. Res. 2026, 333, 108732. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Wang, H.; Wang, M.; Chen, L.; Hu, H.; Zhang, S.; Ai, B.; Cai, M.; Zhang, Z.; et al. Lifetime Exposure to Health-Related Air Pollutants in the United Kingdom: A Spatiotemporal Evaluation (1930–2010) through WRF-CMAQ Modeling. Atmos. Environ. 2025, 346, 121093. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Kim, J.; Woo, J.-H.; Lee, J.-H. Conditional UNet Emulation of CMAQ Simulations for Fine Particulate Matter Concentration Prediction. Sci. Rep. 2025, 15, 38616. [Google Scholar] [CrossRef]
- Gao, Z.; Zhou, X. A Review of the CAMx, CMAQ, WRF-Chem and NAQPMS Models: Application, Evaluation and Uncertainty Factors. Environ. Pollut. 2024, 343, 123183. [Google Scholar] [CrossRef]
- Shin, K.-H.; Hong, S.-C.; Lee, J.-B.; Lee, Y.; Eun, S.-H.; Choi, D.-R.; Sung, J.-W. Evaluation of PM2.5 Prediction Performance of CMAQ and AI Models (LSTM and Transformer) in an Operational Air Quality Forecasting System. J. Ind. Eng. Chem. 2025, in press. [Google Scholar] [CrossRef]
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent Modeling Strategies for Forecasting Air Quality Time Series: A Review. Appl. Soft Comput. 2021, 102, 106957. [Google Scholar] [CrossRef]
- Chen, J.-C.; Wu, Y.J. Discrete-Time Markov Chain for Prediction of Air Quality Index. J. Ambient Intell. Hum. Comput. 2020. [Google Scholar] [CrossRef]
- Latif, S.D.; Lai, V.; Hahzaman, F.H.; Ahmed, A.N.; Huang, Y.F.; Birima, A.H.; El-Shafie, A. Ozone Concentration Forecasting Utilizing Leveraging of Regression Machine Learnings: A Case Study at Klang Valley, Malaysia. Results Eng. 2024, 21, 101872. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Ramli, M.F.; Ash’aari, Z.H. Improving the Capability of an Integrated CA-Markov Model to Simulate Spatio-Temporal Urban Growth Trends Using an Analytical Hierarchy Process and Frequency Ratio. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 65–78. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving Land-Use Change Modeling by Integrating ANN with Cellular Automata-Markov Chain Model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef] [PubMed]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Yue, W.; Qin, C.; Su, M.; Teng, Y.; Xu, C. Simulation and Prediction of Land Use Change in Dongguan of China Based on ANN Cellular Automata-Markov Chain Model. Environ. Sustain. Indic. 2024, 22, 100355. [Google Scholar] [CrossRef]
- Ding, J.; Ren, C.; Wang, J.; Feng, Z.; Cao, S.-J. Spatial and Temporal Urban Air Pollution Patterns Based on Limited Data of Monitoring Stations. J. Clean. Prod. 2024, 434, 140359. [Google Scholar] [CrossRef]
- Xu, S.; Zou, B.; Shafi, S.; Sternberg, T. A Hybrid Grey-Markov/ LUR Model for PM10 Concentration Prediction under Future Urban Scenarios. Atmos. Environ. 2018, 187, 401–409. [Google Scholar] [CrossRef]
- Shen, Y.; De Hoogh, K.; Schmitz, O.; Clinton, N.; Tuxen-Bettman, K.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Geels, C.; Karssenberg, D.; et al. Europe-Wide Air Pollution Modeling from 2000 to 2019 Using Geographically Weighted Regression. Environ. Int. 2022, 168, 107485. [Google Scholar] [CrossRef]
- Van Zoest, V.; Osei, F.B.; Hoek, G.; Stein, A. Spatio-Temporal Regression Kriging for Modelling Urban NO2 Concentrations. Int. J. Geogr. Inf. Sci. 2020, 34, 851–865. [Google Scholar] [CrossRef]
- Wang, B.; Ji, Y.; Yang, X.; Shi, J.; Xu, W.; Ma, J.; Shen, R.; Wang, B.; Zhang, J.; Feng, Y. Population Exposure Evaluation and Value Loss Analysis of PM2.5 and Ozone in China. J. Environ. Manag. 2025, 376, 124480. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qin, K.; Zhao, B. Spatiotemporal Variations in the Association between PM2.5 and Ozone in the Yangtze River Economic Belt: Impacts of Meteorological and Emissions Factors. Atmos. Environ. 2024, 329, 120534. [Google Scholar] [CrossRef]
- Ma, X.; Zou, B.; Deng, J.; Gao, J.; Longley, I.; Xiao, S.; Guo, B.; Wu, Y.; Xu, T.; Xu, X.; et al. A Comprehensive Review of the Development of Land Use Regression Approaches for Modeling Spatiotemporal Variations of Ambient Air Pollution: A Perspective from 2011 to 2023. Environ. Int. 2024, 183, 108430. [Google Scholar] [CrossRef]
- Mo, Y.; Booker, D.; Zhao, S.; Tang, J.; Jiang, H.; Shen, J.; Chen, D.; Li, J.; Jones, K.C.; Zhang, G. The Application of Land Use Regression Model to Investigate Spatiotemporal Variations of PM2.5 in Guangzhou, China: Implications for the Public Health Benefits of PM2.5 Reduction. Sci. Total Environ. 2021, 778, 146305. [Google Scholar] [CrossRef]
- Kerckhoffs, J.; Hoek, G.; Portengen, L.; Brunekreef, B.; Vermeulen, R.C.H. Performance of Prediction Algorithms for Modeling Outdoor Air Pollution Spatial Surfaces. Environ. Sci. Technol. 2019, 53, 1413–1421. [Google Scholar] [CrossRef]
- Lim, C.C.; Kim, H.; Vilcassim, M.J.R.; Thurston, G.D.; Gordon, T.; Chen, L.-C.; Lee, K.; Heimbinder, M.; Kim, S.-Y. Mapping Urban Air Quality Using Mobile Sampling with Low-Cost Sensors and Machine Learning in Seoul, South Korea. Environ. Int. 2019, 131, 105022. [Google Scholar] [CrossRef]
- Wong, P.-Y.; Lee, H.-Y.; Chen, Y.-C.; Zeng, Y.-T.; Chern, Y.-R.; Chen, N.-T.; Candice Lung, S.-C.; Su, H.-J.; Wu, C.-D. Using a Land Use Regression Model with Machine Learning to Estimate Ground Level PM2.5. Environ. Pollut. 2021, 277, 116846. [Google Scholar] [CrossRef]
- Alzu’bi, F.; Al-Rawabdeh, A.; Almagbile, A. Predicting Air Quality Using Random Forest: A Case Study in Amman-Zarqa. Egypt. J. Remote Sens. Space Sci. 2024, 27, 604–613. [Google Scholar] [CrossRef]
- Chadalavada, S.; Faust, O.; Salvi, M.; Seoni, S.; Raj, N.; Raghavendra, U.; Gudigar, A.; Barua, P.D.; Molinari, F.; Acharya, R. Application of Artificial Intelligence in Air Pollution Monitoring and Forecasting: A Systematic Review. Environ. Modell. Software 2025, 185, 106312. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Young, L.-H.; Chen, B.-T.; Hwang, B.-F.; Jung, C.-R. Development of Daily 1 Km Resolution Estimation Models for Outdoor BTEX Using Random Forest with Land-Use Data and Meteorological Variables. J. Hazard. Mater. 2025, 489, 137599. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cohan, D.S.; Xu, H. Spatiotemporal Ozone Pollution LUR Models: Suitable Statistical Algorithms and Time Scales for a Megacity Scale. Atmos. Environ. 2020, 237, 117671. [Google Scholar] [CrossRef]
- Tang, P.; Feng, Y.; Tong, X.; Xi, M.; Li, P.; Chen, S.; Wang, R.; Xu, X.; Wang, C.; Chen, P. Pixel-Level Projection of PM2.5 Using Landsat Images and Cellular Automata Models in the Yangtze River Delta, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6656–6670. [Google Scholar] [CrossRef]
- Bhattarai, H.; Tai, A.P.K.; Val Martin, M.; Yung, D.H.Y. Responses of Fine Particulate Matter (PM2.5) Air Quality to Future Climate, Land Use, and Emission Changes: Insights from Modeling across Shared Socioeconomic Pathways. Sci. Total Environ. 2024, 948, 174611. [Google Scholar] [CrossRef] [PubMed]
- Zou, B.; Xu, S.; Liu, N.; Li, S.; Liu, X.; Guo, Y.; Zhan, F.B. PM2.5 Exposure and Associated Premature Mortality to 2100 in China under Climate and Socioeconomic Change Scenarios. Earth’s Future 2023, 11, e2022EF003416. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wu, T.; An, M.; Zhang, L.; Wu, X.; Li, M. Modeling Urban Expansion and Its Impacts on Carbon Storage through Integrative Scenario Analysis for Sustainable Development in the Changchun-Jilin-Tumen Region. Sustain. Cities Soc. 2024, 117, 105970. [Google Scholar] [CrossRef]
- Yao, Y.; Jiang, Y.; Sun, Z.; Li, L.; Chen, D.; Xiong, K.; Dong, A.; Cheng, T.; Zhang, H.; Liang, X.; et al. Applicability and Sensitivity Analysis of Vector Cellular Automata Model for Land Cover Change. Comput. Environ. Urban Syst. 2024, 109, 102090. [Google Scholar] [CrossRef]
- Lin, J.; Li, X.; Wen, Y.; He, P. Modeling Urban Land-Use Changes Using a Landscape-Driven Patch-Based Cellular Automaton (LP-CA). Cities 2023, 132, 103906. [Google Scholar] [CrossRef]
- Xu, L.; Yu, H.; Zhong, L. Sustainable Futures for Transformational Forestry Resource-Based City: Linking Landscape Pattern and Administrative Policy. J. Clean. Prod. 2025, 496, 145087. [Google Scholar] [CrossRef]
- Yue, H.; Huang, Q.; He, C.; Zhang, X.; Fang, Z. Spatiotemporal Patterns of Global Air Pollution: A Multi-Scale Landscape Analysis Based on Dust and Sea-Salt Removed PM2.5 Data. J. Clean. Prod. 2020, 252, 119887. [Google Scholar] [CrossRef]
- Li, Y.; Huang, L.; Li, S.; Cao, M.; Tan, P.; Wang, Q.; Meng, H.; Yin, S.; Zhang, W. The Role of Urban Green Space Landscape Patterns in the Synergistic Prevention of PM2.5 and Ozone Pollution: A Case Study in Shenyang City, China. Atmos. Pollut. Res. 2024, 15, 102278. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, P.; Wang, N.; Zhang, F.; Ma, W.; Wen, F.; Li, M.; Wang, Y.; Fan, X.; Hou, K.; et al. Investigating the Multiscale Associations between Urban Landscape Patterns and PM1 Pollution in China Using a New Combined Framework. J. Cleaner Prod. 2024, 456, 142306. [Google Scholar] [CrossRef]
- Tian, H.; Zhao, Y.; Luo, M.; He, Q.; Han, Y.; Zeng, Z. Estimating PM2.5 from Multisource Data: A Comparison of Different Machine Learning Models in the Pearl River Delta of China. Urban Clim. 2021, 35, 100740. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, L. Added Value of Merging Techniques in Precipitation Estimates Relative to Gauge-Interpolation Algorithms of Varying Complexity. J. Hydrol. 2024, 645, 132214. [Google Scholar] [CrossRef]
- Zhang, L.; Li, X.; Zheng, D.; Zhang, K.; Ma, Q.; Zhao, Y.; Ge, Y. Merging Multiple Satellite-Based Precipitation Products and Gauge Observations Using a Novel Double Machine Learning Approach. J. Hydrol. 2021, 594, 125969. [Google Scholar] [CrossRef]
- Han, L.; Zhao, J.; Gao, Y.; Gu, Z.; Xin, K.; Zhang, J. Spatial Distribution Characteristics of PM2.5 and PM10 in Xi’an City Predicted by Land Use Regression Models. Sustain. Cities Soc. 2020, 61, 102329. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, X.; Zhao, Y.; Liu, L.; Li, Z.; Tao, L.; Wang, X.; Guo, X.; Luo, Y. Application of Nonlinear Land Use Regression Models for Ambient Air Pollutants and Air Quality Index. Atmos. Pollut. Res. 2021, 12, 101186. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Li, Y.; Cao, M.; Yan, S.; Meng, H.; Wang, Q.; Li, S.; Zhang, T.; Zhang, Z.; Liang, L.; Zhang, W. Assessing the Contribution of Urban Green Space Landscape Patterns to Ozone Concentration Variations. Environ. Res. 2025, 275, 121434. [Google Scholar] [CrossRef] [PubMed]
- Łowicki, D. Landscape Pattern as an Indicator of Urban Air Pollution of Particulate Matter in Poland. Ecol. Indic. 2019, 97, 17–24. [Google Scholar] [CrossRef]
- Meng, J.; Han, W.; Yuan, C. Seasonal and Multi-Scale Difference of the Relationship between Built-up Land Landscape Pattern and PM2.5 Concentration Distribution in Nanjing. Ecol. Indic. 2023, 156, 111079. [Google Scholar] [CrossRef]
- Chen, X.; Wei, F. Impact of Territorial Spatial Landscape Pattern on PM2.5 and O3 Concentrations in the Yangtze River Delta Urban Agglomeration: Exploration and Planning Strategies. J. Cleaner Prod. 2024, 452, 142172. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Zhu, Y.; Yang, L.; Bi, P. Analysis of the Impact of Multiscale Green Landscape on Urban PM2.5. Air Qual. Atmos. Health 2022, 15, 1319–1332. [Google Scholar] [CrossRef]
- Wong, P.-Y.; Su, H.-J.; Lung, S.-C.C.; Wu, C.-D. An Ensemble Mixed Spatial Model in Estimating Long-Term and Diurnal Variations of PM2.5 in Taiwan. Sci. Total Environ. 2023, 866, 161336. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Qin, N.; Zhao, W.; Tian, Q.; Si, Q.; Wu, W.; Iskander, N.; Yang, Z.; Zhang, Y.; Duan, X. A three-dimensional LUR framework for PM2.5 exposure assessment based on mobile unmanned aerial vehicle monitoring. Environ. Pollut. 2022, 301, 118997. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wu, Z.; Tu, W.; Cao, Z. Applying LUR model to estimate spatial variation of PM2.5 in the Greater Bay Area, China. In Spatiotemporal Analysis of Air Pollution and Its Application in Public Health; Li, L., Zhou, X., Tong, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–215. ISBN 978-0-12-815822-7. [Google Scholar]
- Ndiaye, A.; Shen, Y.; Kyriakou, K.; Karssenberg, D.; Schmitz, O.; Flückiger, B.; Hoogh, K.D.; Hoek, G. Hourly Land-Use Regression Modeling for NO2 and PM2.5 in the Netherlands. Environ. Res. 2024, 256, 119233. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-Scenario Simulation and Ecological Risk Analysis of Land Use Based on the PLUS Model: A Case Study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, Y.; Wu, T.; Zhang, M.; Qiu, Y. A Cellular Automata Model Coupled with Partitioning CNN-LSTM and PLUS Models for Urban Land Change Simulation. J. Environ. Manag. 2024, 351, 119828. [Google Scholar] [CrossRef]
- Rao, Z.; Li, J.; Lin, J. Forecasting Carbon Emissions by Considering the Joint Influences of Urban Form and Socioeconomic Development—An Empirical Study in Guangdong, China. ISPRS Int. J. Geo-Inf. 2025, 14, 270. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Yang, H.; Ford, A.C.; Dawson, R.J. Enhanced Urban Growth Modelling: Incorporating Regional Development Heterogeneity and Noise Reduction in a Cellular Automata Model-a Case Study of Zhengzhou, China. Sustain. Cities Soc. 2023, 99, 104959. [Google Scholar] [CrossRef]
- Du, L.; Peng, C.; Ren, H.; Wu, Z.; Gao, W. Assessing Annual Carbon Emissions and Its Peak Year in the Yangtze River Economic Belt (2021-2035) through Land Use/Land Cover Analysis. Sustain. Cities Soc. 2025, 127, 106453. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, P.; Zhang, J.; Liu, Y.; Liu, Z.; Chen, Z. Land Use Assessment under Dynamic Evolution: Multi-Objective Optimization and Multi-Scenario Simulation Analysis. J. Environ. Manag. 2025, 373, 123456. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Zhao, X.; Rao, Z.; Lin, J.; Zhang, X. Scenario Forecasting of Carbon Neutrality by Combining the LEAP Model and Future Land-Use Simulation: An Empirical Study of Shenzhen, China. Sustain. Cities Soc. 2025, 125, 106367. [Google Scholar] [CrossRef]
- Mohamed, A.; Worku, H. Simulating Urban Land Use and Cover Dynamics Using Cellular Automata and Markov Chain Approach in Addis Ababa and the Surrounding. Urban Clim. 2020, 31, 100545. [Google Scholar] [CrossRef]
- Choudhary, R.; Agarwal, A. Impact of Grid Size on Spatiotemporal Prediction of Fine Particulate Matter. Atmos. Pollut. Res. 2023, 14, 101887. [Google Scholar] [CrossRef]
- Geng, X.; Hu, J.; Zhang, Z.; Li, Z.; Chen, C.; Wang, Y.; Zhang, Z.; Zhong, Y. Exploring Efficient Strategies for Air Quality Improvement in China Based on Its Regional Characteristics and Interannual Evolution of PM2.5 Pollution. Environ. Res. 2024, 252, 119009. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, C.; Hong, S.; Hong, W.; Geng, R.; Ren, Z.; He, X. Dynamic Evolution of PM2.5 Removal by Urban Forests during Rapid Urbanization: From Forest Landscape Pattern Dominance to Impervious Surfaces. J. Cleaner Prod. 2025, 493, 144930. [Google Scholar] [CrossRef]
- Yang, W.; Lin, W.; Li, Y.; Shi, Y.; Xiong, Y. Estimating the Seasonal and Spatial Variation of Urban Vegetation’s PM2.5 Removal Capacity. Environ. Pollut. 2025, 369, 125800. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yang, Y.; Jin, J.; Wang, H.; Li, K.; Wang, P.; Liao, H. Climate-Driven Deterioration of Future Ozone Pollution in Asia Predicted by Machine Learning with Multi-Source Data. Atmos. Chem. Phys. 2023, 23, 1131–1145. [Google Scholar] [CrossRef]
- Li, H.; Yang, Y.; Su, H.; Wang, H.; Wang, P.; Liao, H. Ozone Pollution in China Affected by Climate Change in a Carbon Neutral Future as Predicted by a Process-Based Interpretable Machine Learning Method. Geophys. Res. Lett. 2024, 51, e2024GL109520. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z. Analysis of Spatiotemporal Variation and Relationship to Land Use–Landscape Pattern of PM2.5 and O3 in Typical Arid Zone. Sustain. Cities Soc. 2024, 113, 105689. [Google Scholar] [CrossRef]
- Lu, D.; Mao, W.; Yang, D.; Zhao, J.; Xu, J. Effects of Land Use and Landscape Pattern on PM2.5 in Yangtze River Delta, China. Atmos. Pollut. Res. 2018, 9, 705–713. [Google Scholar] [CrossRef]
- Yang, H.; Leng, Q.; Xiao, Y.; Chen, W. Investigating the Impact of Urban Landscape Composition and Configuration on PM2.5 Concentration under the LCZ Scheme: A Case Study in Nanchang, China. Sustain. Cities Soc. 2022, 84, 104006. [Google Scholar] [CrossRef]
- Ma, D.; Li, C.; Liu, M.; Deng, L.; Zhu, H.; Sandberg, M.; Huang, Z. Beyond urban–rural divide: Urban hotspots benefit more than non-hotspots in PM2.5 reduction. Appl. Geogr. 2026, 186, 103843. [Google Scholar] [CrossRef]
- Chen, X.; Pei, T.; Zhou, Z.; Teng, M.; He, L.; Luo, M.; Liu, X. Efficiency Differences of Roadside Greenbelts with Three Configurations in Removing Coarse Particles (PM10): A Street Scale Investigation in Wuhan, China. Urban For. Urban Green. 2015, 14, 354–360. [Google Scholar] [CrossRef]
- Xing, Y.; Brimblecombe, P. Role of Vegetation in Deposition and Dispersion of Air Pollution in Urban Parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, B.; Yang, Y. Optimizing Air Quality Monitoring Spatial Layout by Maximizing the Coverage of the Population in Beijing–Tianjin–Hebei and Surrounding Areas. Sci. Total Environ. 2024, 955, 177029. [Google Scholar] [CrossRef]
- Zhou, C.; Gao, M.; Li, J.; Bai, K.; Tang, X.; Lu, X.; Liu, C.; Wang, Z.; Guo, Y. Optimal Planning of Air Quality-Monitoring Sites for Better Depiction of PM2.5 Pollution across China. ACS Environ. Au 2022, 2, 314–323. [Google Scholar] [CrossRef]






| Type | Detail | Source |
|---|---|---|
| PM2.5 concentration | - | China Air Quality Real-time Data Platform |
| Land use | 30 m resolution | Wuhan University [53] |
| Socioeconomic | Population density data; 1000 m resolution | LandScan |
| Administrative center; vector | National Geographic Information Resources Catalog Service System | |
| Transportation | Highway, primary, secondary, tertiary roads; vector | |
| Waterway; vector | ||
| Railroad; vector | OpenStreetMap | |
| Industrial pollution sources | Point | Guangdong Provincial Department of Ecology and Environment |
| Meteorology | Mean wind speed, mean air temperature, mean precipitation, mean relative humidity, mean air pressure; 1000 m resolution | National Cryosphere Desert Database [54,55] |
| DEM | 30 m resolution | Geospatial Data Cloud Platform |
| NVDI | 1000 m resolution | MOD13A3 (NASA, Washington, DC, USA) |
| Category | Variable | Buffer Radius (m) |
|---|---|---|
| Natural environment | Elevation, slope, NDVI, mean wind speed, mean air temperature, mean precipitation, mean relative humidity, mean air pressure | - |
| Socioeconomics | Population density | - |
| Number of high-risk, medium-risk, and low-risk industrial pollution sources | 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000 | |
| Land use | Areas of cropland, forest, grassland, water body, barren, and impervious surface | |
| Transportation | Lengths of highways, primary roads, secondary roads, and tertiary roads | |
| Landscape indices | LPI, ED, SHAPE-AM, FRAC-AM, AI, COHESION, PD, LSI |
| Mean Wind Speed | Mean Relative Humidity | Water Body_Area_5000 m | Forest_Area_5000 m |
|---|---|---|---|
| −0.500 ** | −0.580 ** | 0.401 ** | −0.399 ** |
| Impervious surface_area_5000 m | Water body_LPI_2500 m | Water body_ COHESION_2500 m | Impervious surface_LSI_4500 m |
| 0.350 ** | −0.443 ** | −0.403 ** | 0.333 ** |
| Forest_LPI_5000 m | Forest_ED_5000 m | Forest_ COHESION_5000 m | |
| −0.367 ** | −0.327 ** | −0.298 ** |
| Type | Actual_2016 | Simulated_2022 | Actual_2022 | Simulated_2028 | ||||
|---|---|---|---|---|---|---|---|---|
| Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
| Cropland | 14,352.87 | 26.59 | 15,456.53 | 28.64 | 15,455.36 | 28.63 | 16,237.51 | 30.08 |
| Forest | 30,081.20 | 55.73 | 29,187.54 | 54.07 | 29,187.54 | 54.07 | 28,374.15 | 52.57 |
| Grassland | 51.37 | 0.10 | 26.84 | 0.05 | 26.84 | 0.05 | 19.36 | 0.04 |
| Waterbody | 3199.03 | 5.93 | 2393.45 | 4.43 | 2393.45 | 4.43 | 1804.66 | 3.34 |
| Barren | 16.94 | 0.03 | 17.29 | 0.03 | 18.46 | 0.03 | 17.63 | 0.03 |
| Impervious surface | 6274.73 | 11.63 | 6894.49 | 12.77 | 6894.49 | 12.77 | 7522.83 | 13.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, X.; Chen, P.; Cai, Y.; Lin, J. Prediction of PM2.5 Concentrations in the Pearl River Delta by Integrating the PLUS and LUR Models. Land 2026, 15, 240. https://doi.org/10.3390/land15020240
Zhang X, Chen P, Cai Y, Lin J. Prediction of PM2.5 Concentrations in the Pearl River Delta by Integrating the PLUS and LUR Models. Land. 2026; 15(2):240. https://doi.org/10.3390/land15020240
Chicago/Turabian StyleZhang, Xiyao, Peizhe Chen, Ying Cai, and Jinyao Lin. 2026. "Prediction of PM2.5 Concentrations in the Pearl River Delta by Integrating the PLUS and LUR Models" Land 15, no. 2: 240. https://doi.org/10.3390/land15020240
APA StyleZhang, X., Chen, P., Cai, Y., & Lin, J. (2026). Prediction of PM2.5 Concentrations in the Pearl River Delta by Integrating the PLUS and LUR Models. Land, 15(2), 240. https://doi.org/10.3390/land15020240

