Spatiotemporal Evolution and Influencing Factors of A-Level Garden-Type Scenic Areas in Jiangsu Province, China
Abstract
1. Introduction
2. Study Area and Data
2.1. Overview of the Study Area
2.2. Data Source
2.3. A-Level Tourism Grading System in China
2.4. Classification of Garden-Type Scenic Areas
3. Methods
3.1. Kernel Density Estimation
3.2. Average Nearest Neighbor Index
3.3. Geographic Detector
3.4. Time Node Selection
4. Results
4.1. Overall Spatial Distribution Patterns of Garden Scenic Areas
4.1.1. Spatial Density Patterns
4.1.2. Spatial Patterns of Rating Levels
4.1.3. Spatial Distribution of Garden Types
4.2. Local Spatial Clustering and Hotspot Analysis of Garden Scenic Areas
4.2.1. City-Level Temporal Changes
4.2.2. Evolution by Scenic Rating
4.2.3. Evolution by Scenic Type
4.3. Driving Factors of Spatiotemporal Evolution
4.3.1. Natural Resources: The Ecological Foundation
4.3.2. Cultural Resources: The Core Cultural Driver of Scenic Appeal
4.3.3. Socio-Economic Factors: The Internal Engine of Scenic Area Development
4.3.4. Policy Environment: Institutional Guarantee for Spatial Optimization
4.3.5. External Validity and Cross-Provincial Comparison
5. Discussion
- (1)
- Enhancing regional coordination and cross-boundary integration.
- (2)
- Strengthening the radiative role of core cities.
- (3)
- Transitioning from the traditional ticket-based economy.
- (4)
- Prioritizing ecological sustainability and resilience.
- (5)
- Broadening the research and policy agenda.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Wang, L.; Ning, Z.Z. Spatial pattern of tourist attractions and its influencing factors in China. J. Spat. Sci. 2020, 65, 327–344. [Google Scholar] [CrossRef]
- Iqbal, M.; Li, R.J.; Xu, J.Y. Behavior analysis of photo-taking tourists at attraction-level using deep learning and latent dirichlet allocation in conjunction with kernel density estimation. IEEE Access 2024, 12, 92945–92959. [Google Scholar] [CrossRef]
- Peng, R.J.; Gao, W. Spatial distribution pattern and driving mechanism of tourist attractions in Gansu Province based on POI data. PLoS ONE 2023, 18, e0292165. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Wu, X.Y.; Liu, Z.Z.; Chen, H.; Zhao, Y.Y. Spatial Patterns of Tourist Attractions in the Yangtze River Delta Region. Land 2022, 11, 1523. [Google Scholar] [CrossRef]
- Zikirya, B.; Zhou, C.S. Spatial Distribution and Influencing Factors of High-Level Tourist Attractions in China: A Case Study of 9296 A-Level Tourist Attractions. Sustainability 2023, 15, 14339. [Google Scholar] [CrossRef]
- Chen, M.C.; Yang, F.Q.; Sun, J.W.; Deng, L.L.; Luo, J. Spatiotemporal differentiation and driving mechanisms of high-level Grade A tourist attractions in the Yangtze River Delta City Cluster. PLoS ONE 2024, 19, e0300181. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, S.J.; Dai, L.T. Spatial distribution characteristics and influencing factors of tourism resources based on point of interest data. PLoS ONE 2024, 19, e0310487. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Zhang, M. Distribution characteristics and influencing factors of tourist attractions in Tianjin based on POI big data. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Xu, X.; Dong, R.; Li, Z.X.; Jiang, Y.X.; Genovese, P.V. Research on visual experience evaluation of fortress heritage landscape by integrating sbe-sd method and eye movement analysis. Herit. Sci. 2024, 12, 281. [Google Scholar] [CrossRef]
- Li, H.Q.; Pan, J.Y.; Hui, Y.J.; Liu, J.J.; Nijkamp, P. The geography of social media platform attention for tourist attractions- spatial digital data analytics of scenic hot spots in China. East. J. Eur. Stud. 2023, 14, 135–158. [Google Scholar] [CrossRef]
- Wang, Y.W.; Lu, C.; Chen, H.; Zhao, Y.Y. Evaluation and Spatial Characteristics of Cooperation among Tourist Attractions Based on a Geographic Information System: A Case Study of The Yangtze River Delta Region. China. Sustainability 2022, 14, 13041. [Google Scholar] [CrossRef]
- Weng, G.M.; Li, H.Y.; Li, Y. The temporal and spatial distribution characteristics and influencing factors of tourist attractions in Chengdu-Chongqing economic circle. Environ. Dev. Sustain. 2023, 25, 8677–8698. [Google Scholar] [CrossRef]
- Zhang, X.D.; Hu, H.Y.; Tong, Y.J.; Chen, Z.L. Spatial distribution characteristics and driving factors of tourism resources in China. Land 2023, 12, 1029. [Google Scholar] [CrossRef]
- Zou, S.Z.; Wei, C.J.; Tao, B.H.; Zhu, M. Research about rainwater collection and utilization in urban scenic areas-taking the scenic area construction of Nanchang wanshou tower as the example. In Proceedings of the International Seminar on Artificial Intelligence, Networking and Information Technology (ANIT 2017), Bangkok, Thailand, 2–3 December 2017; pp. 32–36. [Google Scholar]
- Luo, F.; Zhang, H.; Pan, A. Spatial Distribution of A-level Tourist Attractions in Qinba Mountainous Area (Sichuan Part) and Its Influencing Factors. J. China West Norm. Univ. 2022, 43, 444–451. [Google Scholar]
- Zhao, J.Y. Research on Spatial Distribution Characteristics and Mechanism of 4A Level and Above Tourism Scenic Spots in Henan Province. IOP Conf. Ser. Earth Environ. Sci. 2018, 186, 12043. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, L. Spatial distribution evolution and accessibility of A-level scenic spots in Guangdong Province from the perspective of quantitative geography. PLoS ONE 2021, 16, e0257400. [Google Scholar] [CrossRef]
- Jin, C.; Xu, J. Quantitative Study on Diversity of Tourism Spot Distribution in Jiangsu Province. Areal Res. Dev. 2012, 31, 92–96. [Google Scholar]
- Gu, C.Y. Reasonable selection and diversification of ornamental garden plants in Jiangsu and Zhejiang area. Probe-Plant Anim. Sci. 2021, 4, 1381. [Google Scholar] [CrossRef]
- Ying, H.; Wang, Y.; Yu, H.; Luo, W.; Wang, K.; Sui, C. Spatial Synergy between Tourism Resources and Tourism Service Facilities in Mountainous Counties: A Case Study of Qimen, Huangshan, China. Land 2024, 13, 999. [Google Scholar] [CrossRef]
- Qiu, Y.-H.; Yin, J.; Zhang, T.; Du, Y.; Zhang, B. Spatiotemporal Dynamic Analysis of A-Level Scenic Spots in Guizhou Province, China. ISPRS Int. J. Geo-Inf. 2021, 10, 568. [Google Scholar] [CrossRef]
- Wang, M.; Han, M.; Chen, G.Z.; Tian, L.X.; Kong, X.L. Spatial distribution changes and influencing factors of A-level tourist attractions based on geodetector: A case study of Shandong Province. China Popul. 2021, 31, 166–176. [Google Scholar]
- Li, K.; Zhang, G. Species Diversity and Distribution Pattern of Heritage Trees in the Rapidly-Urbanizing Province of Jiangsu, China. Forests 2021, 12, 1543. [Google Scholar] [CrossRef]
- Xie, X.; Liang, M. Study of Smart City Tourist Attractions Based on Spatial Pattern POI Data. In Proceedings of the 2023 Smart City Challenges & Outcomes for Urban Transformation (Scout), Singapore, 29–30 July 2023; pp. 1–8. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Chen, Y. A Creative Analysis of Factors Affecting the Landscape Construction of Urban Temple Garden Plants Based on Tourists’ Perceptions. Sustainability 2022, 14, 991. [Google Scholar] [CrossRef]
- Wang, H.X.; Luo, S.X.; Furuya, K. What attracts tourists to press the shutter in cultural heritage tourism? An analysis of visitor-employed photography and visual attributes: A case study on Japan’s kairakuen garden. Tour. Recreat. Res. 2024, 49, 1483–1499. [Google Scholar] [CrossRef]
- Zhu, J. Zhongguo jinxiandai yuanlin shi: Shangpian. In A History of Modern and Contemporary Chinese Gardens: Part I; China Architecture & Building Press: Beijing, China, 2011. [Google Scholar]
- GB/T 17775-1999; Classification and Evaluation of Quality Grades for Tourist Attractions. Standardization Administration of China: Beijing, China, 1999.
- Deng, S.G.; Su, J.H.; Yang, H.P.; Liang, J.L.; Zhu, S.Y. Urban built environment and its impact on university students’ loneliness: A mechanistic study. Front. Public Health 2025, 13, 1514820. [Google Scholar] [CrossRef]
- Hu, L.; Xu, J.; Bao, C.; Pei, T. Influential factor detection for tourism on the qinghai-tibet plateau based on social media data. ISPRS Int. J. Geo-Inf. 2021, 10, 579. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, K.F.; Zong, H.M.; Zhou, T.G.; Shen, J.W. Exploring spatial and temporal connection patterns among the districts in chongqing based on highway passenger flow. Remote Sens. 2019, 12, 27. [Google Scholar] [CrossRef]
- Xiong, S.M.; Wang, H.; Liao, Z.W.; Hashim, R. Exploring the factors and spatial patterns of national night cultural tourism consumption agglomeration zones in China. Heliyon 2024, 10, e24132. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Lv, Z.F.; Liu, Z.Z.; Sun, Y.K. A case study based on space syntax theory: West shu garden of qingxi, dujiangyan scenic area. Sustainability 2024, 16, 9459. [Google Scholar] [CrossRef]
- Lu, S.; Chen, B.; Hu, S.Q. Analysis on landscape tree species composition in the gardens of the west lake scenic area, Hangzhou, China. In Construction and Urban Planning, Proceedings of the International Conference on Structures and Building Materials (ICSBM 2013), Guiyang, China, 9–10 March 2013; Huang, Y., Bao, T., Wang, H., Eds.; PTS 1–4; Trans Tech Publications: Bäch, Switzerland, 2013; pp. 2819–2824. [Google Scholar] [CrossRef]
- Yan, A.B.; Yang, L. Exploration of creative landscape design based on chinese traditional gardening techniques. In Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM), Shenzhen, China, 25–26 November 2017; pp. 245–249. [Google Scholar]
- Zhao, J.; Cheng, Y.L.; Liu, Y.Y.; Shi, X.J.; Zhang, T.T.; Qin, W.T. Characterization and fungicides sensitivity of colletotrichum species causing hydrangea macrophylla anthracnose in Beijing, China. Front. Plant Sci. 2025, 15, 1504135. [Google Scholar] [CrossRef] [PubMed]
- Fischer, V. Landscape as a category of cultural sciences. Z. Fur Volkskd. 2008, 104, 19–39. [Google Scholar]
- Pálsdóttir, A.M.; Spendrup, S.; Mårtensson, L.; Wendin, K. Garden smellscape-experiences of plant scents in a nature-based intervention. Front. Psychol. 2021, 12, 667957. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Li, L.; Chen, L.G.; Chen, L.Q.; Shen, Z.P. Improving aster gdem accuracy using land use-based linear regression methods: A case study of Lianyungang, east China. Isprs Int. J. Geo-Inf. 2018, 7, 145. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.S.; Zhao, Y.J.; Dong, Y.J.; Fu, B.J.; Fan, Z.X.; Wang, X.C. Reconstruction of maximum temperature on zhegu mountain, western sichuan plateau (China). Clim. Res. 2020, 81, 1–14. [Google Scholar] [CrossRef]
- Wang, W.W.; Shen, S.Y.; Liao, Q.L.; Chen, C.Y.; Sun, Y. Landscape assessment of mountain qingxiu using internet landscape discourse and lstm. In Proceedings of the 2020 3rd International Workshop on Environment and Geoscience (IWEG), Chengdu, China, 18–20 July 2020. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.L.; Zhang, K.C.; Yu, J.; Liu, J. Spatial Pattern and Influencing Factors of Tourist Attractions in Coastal Cities: A Case Study of Qingdao. ISPRS Int. J. Geo-Inf. 2024, 13, 444. [Google Scholar] [CrossRef]
- Yang, C.; Wang, Z.R.; Zhou, H.J.; Wu, Y.Y.; Du, M.; Zhu, Y.S.; Ming, L.; Wu, H.B.; Li, J.T.; Chen, Z.Y. Research on the 3d documentation system of classical Chinese gardens in scenic areas—Taking Kunshan suiyuan as an example. In Proceedings of the 29th CIPA Symposium on Documenting, Understanding, Preserving Cultural Heritage—Humanities and Digital Technologies for Shaping the Future, Florence, Italy, 25–30 June 2023; Volume 48-M-2, pp. 1659–1663. [Google Scholar] [CrossRef]
- Miller, P.A.; Sim, J.; Powell, L.; Crump, L. Scenic assessment methodology for preserving scenic viewsheds of virginia, USA. Land 2024, 13, 1010. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.G.; Li, Y.H.; Lin, B.R. Stone forest as a small-scale field model for the study of urban climate. Int. J. Climatol. 2018, 38, 3723–3731. [Google Scholar] [CrossRef]
- Oda, K.; Yamaki, K.; Miyamoto, A.; Otsuka, K.; Jingu, S.; Hirano, Y.; Inoue, M.; Matsuura, T.; Saito, K.; Takayama, N. Unveiling key factors shaping forest interest and visits: Toward effective strategies for sustainable forest use. Forests 2025, 16, 714. [Google Scholar] [CrossRef]
- Zheng, S.J.; Lu, Y.Z.; Miao, W.D.; Teng, C.; Peng, X.Z. The application of image processing technology in the landscape design. In Proceedings of the International Conference on Information and Network Technology (ICINT 2011), Wuhan, China, 20–22 May 2011; pp. 95–99. [Google Scholar]
City | Number | Percentage | Nearest Neighbor Index | Z-Score | p-Value | Pattern |
---|---|---|---|---|---|---|
Wuxi | 19 | 6.67% | 0.925757 | −0.619102 | 0.535849 | Random |
Xuzhou | 24 | 8.42% | 0.835045 | −1.545977 | 0.12211 | Random |
Yancheng | 32 | 11.23% | 0.868243 | −1.425873 | 0.153905 | Random |
Yangzhou | 25 | 8.77% | 0.941389 | −0.560632 | 0.575048 | Random |
Taizhou | 16 | 5.61% | 1.088181 | 0.674784 | 0.499813 | Random |
Suqian | 23 | 8.07% | 0.858215 | −1.300847 | 0.193311 | Random |
Zhenjiang | 13 | 4.56% | 1.123297 | 0.850465 | 0.395067 | Random |
Lianyungang | 26 | 9.12% | 0.782717 | −2.119545 | 0.034044 | Dispersed |
Changzhou | 13 | 4.56% | 0.728545 | −1.87241 | 0.06115 | Dispersed |
Huaian | 22 | 7.72% | 0.848323 | −1.361015 | 0.173509 | Random |
Nanjing | 25 | 8.77% | 0.924072 | −0.726278 | 0.467668 | Random |
Nantong | 23 | 8.07% | 0.798212 | 0.798212 | 0.064118 | Dispersed |
Suzhou | 24 | 8.42% | 0.702506 | −2.788138 | 0.005301 | Dispersed |
Type | A | 2A | 3A | 4A | 5A |
---|---|---|---|---|---|
Rural and Mountainous Gardens | 0 | 5 | 55 | 49 | 10 |
Private Gardens | 1 | 8 | 13 | 8 | 2 |
Public Facility-Attached Gardens | 0 | 0 | 3 | 4 | 0 |
Urban Parks and Gardens | 0 | 25 | 73 | 20 | 4 |
Religious Gardens | 1 | 1 | 5 | 0 | 0 |
Total | 0 | 39 | 149 | 81 | 16 |
City | Rural and Mountainous Gardens | Private Gardens | Public Facility-Attached Gardens | Urban Parks and Gardens | Religious Gardens |
---|---|---|---|---|---|
Wuxi | 2 | 1 | 0 | 9 | 1 |
Xuzhou | 8 | 3 | 1 | 10 | 0 |
Yancheng | 16 | 1 | 0 | 9 | 0 |
Yangzhou | 15 | 0 | 0 | 10 | 0 |
Taizhou | 8 | 2 | 0 | 13 | 0 |
Suqian | 11 | 7 | 1 | 5 | 0 |
Zhenjiang | 6 | 3 | 1 | 13 | 0 |
Lianyungang | 7 | 3 | 0 | 6 | 0 |
Changzhou | 10 | 2 | 0 | 6 | 1 |
Huaian | 15 | 0 | 0 | 9 | 0 |
Nanjing | 10 | 1 | 2 | 17 | 2 |
Nantong | 6 | 7 | 2 | 8 | 2 |
Suzhou | 5 | 1 | 0 | 7 | 0 |
Type | Nearest Neighbor Index | Z-Score | p-Value | Pattern |
---|---|---|---|---|
Rural and Mountainous Gardens | 0.688008 | −6.51101 | 0 | Dispersed |
Private Gardens | 0.956651 | −0.46174 | 0.64427 | Random |
Public Facility-Attached Gardens | 1.615451 | 3.115111 | 0.001839 | Clustered |
Urban Parks and Gardens | 0.823313 | −3.73349 | 0.000189 | Dispersed |
Religious Gardens | 0.823313 | −3.73349 | 0.000189 | Dispersed |
Total | 0.648076 | −11.3659 | 0 | Dispersed |
City | 1999–2003 | 2004–2007 | 2008–2011 | 2012–2016 | 2017–2024 |
---|---|---|---|---|---|
Wuxi | 3 | 0 | 3 | 3 | 6 |
Xuzhou | 1 | 3 | 5 | 5 | 10 |
Yancheng | 2 | 2 | 8 | 8 | 11 |
Yangzhou | 2 | 3 | 3 | 3 | 14 |
Taizhou | 0 | 1 | 5 | 5 | 13 |
Suqian | 3 | 6 | 7 | 7 | 4 |
Zhenjiang | 0 | 0 | 8 | 8 | 10 |
Lianyungang | 0 | 1 | 6 | 6 | 6 |
Changzhou | 3 | 1 | 7 | 7 | 5 |
Huaian | 1 | 0 | 11 | 11 | 11 |
Nanjing | 1 | 0 | 1 | 1 | 29 |
Nantong | 0 | 1 | 4 | 4 | 19 |
Suzhou | 0 | 2 | 5 | 5 | 6 |
Rating | 1999–2003 | 2004–2007 | 2008–2011 | 2012–2016 | 2017–2024 |
---|---|---|---|---|---|
A | 0 | 0 | 0 | 0 | 0 |
2A | 4 | 4 | 5 | 10 | 16 |
3A | 13 | 6 | 12 | 31 | 87 |
4A | 2 | 9 | 9 | 22 | 39 |
5A | 1 | 1 | 2 | 10 | 2 |
Type | 1999–2003 | 2004–2007 | 2008–2011 | 2012–2016 | 2017–2024 |
---|---|---|---|---|---|
Rural and Mountainous Gardens | 7 | 10 | 16 | 39 | 47 |
Private Gardens | 4 | 5 | 1 | 7 | 14 |
Public Facility-Attached Gardens | 0 | 0 | 0 | 0 | 7 |
Urban Parks and Gardens | 9 | 5 | 11 | 26 | 71 |
Religious Gardens | 0 | 0 | 0 | 1 | 5 |
Primary Dimension | Secondary Dimension | Variable Name | Description | Unit/Type | Data Source |
---|---|---|---|---|---|
Natural Resources | Natural Landscape | X1 | Total number of national forest parks, nature reserves, and natural garden-type scenic areas | Count | Ministry of Natural Resources; National Forestry and Grassland Administration |
Urban Green Space | X2 | Green coverage rate in built-up urban areas | % | Housing and Urban-Rural Development Bureau; Urban Yearbook | |
Cultural Resources | Historical and Cultural Heritage | X3 | Total number of national key cultural relic protection units and cultural garden-type scenic areas | Count | Department of Culture and Tourism; Cultural Heritage Administration |
Socio-economic Factors | Tourism Demand | X4 | Annual number of tourist arrivals | 10,000 person-times | Tourism Yearbook |
Economic Development | X5 | Gross Domestic Product (GDP) | 100 million CNY | Statistical Yearbook | |
Tertiary Industry Share | X6 | Proportion of tertiary industry value added in GDP | % | Statistical Yearbook | |
Population Distribution | X7 | Permanent resident population | 10,000 persons | National Bureau of Statistics | |
Transportation Conditions | X8 | Total highway mileage at year-end | Kilometers | Transportation Yearbook | |
Policy Environment | Policy Orientation | X9 | Frequency of the term “tourism” appearing in government reports | Count (text mining) | Government websites; text mining analysis |
Year | Natural Resources (X1) | Cultural Resources (X2) | Tourist Visits (X3) | GDP (X4) | Tertiary Industry Share (X5) | Resident Population (X6) | Road Network Length (X7) | Policy Environment (X8) |
---|---|---|---|---|---|---|---|---|
1999–2003 | 0.238 * | 0.216 | 0.294 * | 0.321 * | 0.342 ** | 0.305 * | 0.278 * | 0.133 |
2004–2011 | 0.376 ** | 0.421 ** | 0.405 ** | 0.390 ** | 0.310 * | 0.511 *** | 0.360 * | 0.261 * |
2012–2016 | 0.458 ** | 0.493 *** | 0.468 *** | 0.429 ** | 0.298 * | 0.583 *** | 0.447 *** | 0.316 * |
2017–2024 | 0.586 *** | 0.558 *** | 0.527 *** | 0.456 ** | 0.289 * | 0.628 *** | 0.531 *** | 0.481 *** |
Interaction Pair | q-Value | Enhancement Type | Interpretation |
---|---|---|---|
X1 (Natural Resources) ∩ X2 (Cultural Resources) | 0.712 *** | Nonlinear enhancement | Synergy between natural and cultural endowments creates stronger attraction. |
X1 (Natural Resources) ∩ X3 (Tourist Visits) | 0.695 *** | Bi-factor enhancement | Supply–demand dynamics reinforce scenic area growth. |
X3 (Tourist Visits) ∩ X4 (GDP) | 0.672 *** | Bi-factor enhancement | Tourism consumption and economic base strengthen each other. |
X4 (GDP) ∩ X6 (Resident Population) | 0.701 *** | Nonlinear enhancement | Population scale and economic strength jointly expand development capacity. |
X5 (Tertiary Industry Share) ∩ X7 (Road Network) | 0.668 *** | Bi-factor enhancement | Industrial upgrading combined with accessibility promotes diffusion. |
X7 (Road Network) ∩ X8 (Policy Environment) | 0.654 ** | Bi-factor enhancement | Infrastructure and policy orientation shape spatial patterns. |
X2 (Cultural Resources) ∩ X8 (Policy Environment) | 0.693 *** | Nonlinear enhancement | Policy emphasis on heritage areas generates clustered effects. |
X1 (Natural Resources) ∩ X6 (Resident Population) | 0.684 *** | Bi-factor enhancement | Resource availability aligns with population concentration to elevate scenic status. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Yin, Y.; Liu, X.; Xiao, X.; He, P. Spatiotemporal Evolution and Influencing Factors of A-Level Garden-Type Scenic Areas in Jiangsu Province, China. Land 2025, 14, 1915. https://doi.org/10.3390/land14091915
Zhou L, Yin Y, Liu X, Xiao X, He P. Spatiotemporal Evolution and Influencing Factors of A-Level Garden-Type Scenic Areas in Jiangsu Province, China. Land. 2025; 14(9):1915. https://doi.org/10.3390/land14091915
Chicago/Turabian StyleZhou, Lin, Yingyuqing Yin, Xue Liu, Xianjing Xiao, and Peiling He. 2025. "Spatiotemporal Evolution and Influencing Factors of A-Level Garden-Type Scenic Areas in Jiangsu Province, China" Land 14, no. 9: 1915. https://doi.org/10.3390/land14091915
APA StyleZhou, L., Yin, Y., Liu, X., Xiao, X., & He, P. (2025). Spatiotemporal Evolution and Influencing Factors of A-Level Garden-Type Scenic Areas in Jiangsu Province, China. Land, 14(9), 1915. https://doi.org/10.3390/land14091915