The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overview of Ecological Engineering
2.3. Data Sources
2.4. Research Methodology
2.4.1. Land Use Forecasting and CA-Markov Modeling
2.4.2. Carbon Density Correction
2.4.3. Hot Spot Analysis
2.4.4. Correlation Analysis
2.4.5. Moran Index
3. Results
3.1. Spatial and Temporal Variation in Carbon Stocks
3.2. Characterization of Carbon Stocks Under Different Ecological Restoration Measures
3.3. Differences in Carbon Density Under Different Levels of Rocky Desertification
3.4. Driver Analysis
3.5. Spatial Correlation Analysis
4. Discussion
4.1. Differences in Carbon Stocks and Mechanisms of Ecological Restoration Measures
4.2. Spatial Heterogeneity Analysis of Carbon Stock Drivers
4.3. Research Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 2022, 3, 141–155. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, M.; Yuan, Z. The Global Situation of Karst Desertification Research Based on Forest Ecology. Forests 2024, 15, 126. [Google Scholar] [CrossRef]
- Wen, D.; Huang, Y.; Huang, Y.; Ding, N.; Ni, K.; Wang, H.; Müller, C. Karst rocky desertification restoration increases soil inorganic N supply to reduce plant N limitation. Catena 2024, 241, 108012. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar]
- Gao, A.J. Study on Water-Fertilizer Coupling and Fruit Quality Improvement Techniques for Rosa roxburghii in Karst Rocky Desertification Control; Guizhou Normal University: Guiyang, China, 2021. (In Chinese) [Google Scholar]
- Quan, X.Y.; Su, W.C.; Gou, R.; Huang, X.F. Analysis of Spatiotemporal Differentiation Characteristics and Trade-off/Synergy Relationships of Ecosystem Services in the FAST Radio Quiet Zone. China Environ. Sci. 2024, 44, 5145–5159. (In Chinese) [Google Scholar] [CrossRef]
- Lan, G.W.; Zhang, F.; Wu, J.; Jiang, F. Spatiotemporal Differentiation Characteristics and Dynamic Simulation of “Production-Living-Ecological” Functions in the Lijiang River Basin. Res. Soil Water Conserv. 2024, 31, 431–442. (In Chinese) [Google Scholar]
- Wang, S.J.; Li, Y.B.; Li, R.L. Formation Background, Evolution and Control of Karst Rocky Desertification. Quat. Sci. 2003, 6, 657–666. (In Chinese) [Google Scholar]
- Xiong, H.F.; Wang, S.J.; Rong, L.; Cheng, A.y.; Li, Y.B. Effects of Extreme Drought on Plants in Karst Areas of Guizhou Province. Chin. J. Appl. Ecol. 2011, 22, 1127–1134. (In Chinese) [Google Scholar]
- Yu, Q.H. Research on Employment Issues in the Process of Economic Growth in Guizhou Province; Minzu University of China: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Huang, J.; Shi, Q.; Ou, G.W.; Cui, W.; Sun, Q. Dilemmas and Countermeasures for the Development of Modern Mountain Efficient Agriculture in Guizhou. Guizhou Agric. Sci. 2015, 43, 275–279. (In Chinese) [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Cao, M.K.; Li, K.R. Study on Spatiotemporal Dynamic Changes of Vegetation Carbon Storage in China’s Forest Ecosystems. Prog. Geogr. 2007, 6, 1–10. (In Chinese) [Google Scholar]
- Ding, Y.L.; Zhou, Y.C. Study on the Coupling Relationship Between Slope-Soil Thickness and Rock Exposure Rate in a Karst Small Watershed. Chin. J. Soil Sci. 2019, 50, 1053–1061. (In Chinese) [Google Scholar]
- Lei, Z.B. Discussion on the Causes and Control Countermeasures of Rocky Desertification in Karst Areas of Zhijin County. Subtrop. Soil Water Conserv. 2009, 21, 52–54. (In Chinese) [Google Scholar]
- Huang, F. Economic Value of Forest Carbon Sinks. Guangxi For. 2006, 5, 42–44. (In Chinese) [Google Scholar]
- Huang, Y. Research on Forest Carbon Sinks in the Era of Low-Carbon Economy. J. Northwest For. Univ. 2012, 27, 260–268. (In Chinese) [Google Scholar]
- Yin, R.; Yin, G. China’s primary programs of terrestrial ecosystem restoration: Initiation, implementation, and challenges. Environ. Manag. 2010, 45, 429–441. [Google Scholar] [CrossRef]
- Vogler, K.C.; Ager, A.A.; Day, M.A.; Jennings, M.; Bailey, J.D. Prioritization of forest restoration projects: Tradeoffs between wildfire protection, ecological restoration and economic objectives. Forests 2015, 6, 4403–4420. [Google Scholar] [CrossRef]
- Fu, H.; Yan, Y. Ecosystem service value assessment in downtown for implementing the “Mountain-River-Forest-Cropland-Lake-Grassland system project”. Ecol. Indic. 2023, 154, 110751. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Yu, G. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Xu, C.; Jiang, Y.; Su, Z.; Liu, Y.; Lyu, J. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecol. Indic. 2022, 137, 108757. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Yu, D.; Liu, J.; Reta, G.; Zhao, W.; Su, B. An alternative to the Grain for Green Program for soil and water conservation in the upper Huaihe River basin, China. J. Hydrol. Reg. Stud. 2022, 43, 101180. [Google Scholar] [CrossRef]
- Egusa, T.; Nakahata, R.; Neumann, M.; Kumagai, T.O. Carbon stock projection for four major forest plantation species in Japan. Sci. Total Environ. 2024, 927, 172241. [Google Scholar] [CrossRef] [PubMed]
- Nie, Q.; Wu, G.; Li, L.; Man, W.; Ma, J.; Bao, Z.; Li, H. Exploring scaling differences and spatial heterogeneity in drivers of carbon storage Changes: A comprehensive geographic analysis framework. Ecol. Indic. 2024, 165, 112193. [Google Scholar] [CrossRef]
- Feng, Q.; Zhou, Z.; Chen, Q.; Zhu, C.; Zhang, L. Evaluating the Ecological Restoration Effectiveness of Poverty Alleviation Relocation through Carbon Storage Analysis: Insights from Karst Regions. Forests 2024, 15, 1006. [Google Scholar] [CrossRef]
- Li, Y.; Luo, H.F. Spatio-temporal Evolution and Multi-scenario Simulation of Carbon Storage in Karst Regions of Central Guizhou Province: Taking Puding County as An Example. Environ. Sci. 2024, 45, 961–973. [Google Scholar]
- Qasha, V.; Manyevere, A.; Flynn, T.; Mashamaite, C.V. Assessing the impact of ecological forest restoration on soil carbon stocks in Sub-Saharan Africa: A systematic review. Carbon Manag. 2024, 15, 2404409. [Google Scholar] [CrossRef]
- Liu, J.; Gao, W.; Liu, T.; Dai, L.; Wu, L.; Miao, H.; Yang, C. A bibliometric analysis of the impact of ecological restoration on carbon sequestration in ecosystems. Forests 2023, 14, 1442. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Xie, T.; Li, Y.; Liu, H.; Wang, Q. Impact of Ecological Restoration on Carbon Sink Function in Coastal Wetlands: A Review. Water 2025, 17, 488. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Z.; Zhang, L.; Chen, Q.; Huang, D.; Feng, Q.; Wu, T.; Wu, L. Evolution and driver analysis of forest carbon stocks in karst mountainous areas of southwest China in the context of rocky desertification management. Catena 2024, 246, 108335. [Google Scholar] [CrossRef]
- Lin, T.; Wu, D.; Yang, M.; Ma, P.; Liu, Y.; Liu, F.; Gan, Z. Evolution and simulation of terrestrial ecosystem carbon stock and sustainability assessment in Karst Areas: A case study of Guizhou Province. Int. J. Environ. Res. Public Health 2022, 19, 16219. [Google Scholar]
- Lyons, K.G.; Török, P.; Hermann, J.M.; Kiehl, K.; Kirmer, A.; Kollmann, J.; Temperton, V.M. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 2023, 46, e02612. [Google Scholar] [CrossRef]
- Fu, K.; Chen, L.; Yu, X.; Jia, G. How has carbon storage changed in the Yili-Tianshan region over the past three decades and into the future? What has driven it to change? Sci. Total Environ. 2024, 945, 174005. [Google Scholar]
- Ke, X.L.; Tang, L.P. Impact of Coupling between Urban Expansion and Cultivated Land Protection on Terrestrial Ecosystem Carbon Storage: A Case Study of Hubei Province. Acta Ecol. Sin. 2019, 39, 672–683. (In Chinese) [Google Scholar]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Peng, S.L.; He, N.P. 2004–2014 Chinese Forest Carbon Density Dataset. Chin. Acad. Sci. 2018. (In Chinese) [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Z.F.; Chen, Q.; Zhang, L.; Wu, L.; Wu, T.Y. Response of Carbon Storage to Land Use Patterns in Karst Areas: A Case Study of Nanpanjiang and Beipanjiang River Basins. Acta Ecol. Sin. 2023, 43, 3500–3516. (In Chinese) [Google Scholar]
- Gwal, S.; Sena, D.R.; Srivastava, P.K.; Srivastava, S.K. Identifying Conservation Priority Areas of Hydrological Ecosystem Service Using Hot and Cold Spot Analysis at Watershed Scale. Remote Sens. 2024, 16, 3409. [Google Scholar] [CrossRef]
- Qi, Z.; Li, S.; Pang, Y.; Zheng, G.; Kong, D.; Li, Z. Assessing spatiotemporal variations of forest carbon density using bi-temporal discrete aerial laser scanning data in Chinese boreal forests. For. Ecosyst. 2023, 10, 100135. [Google Scholar] [CrossRef]
- Gao, S.C.; Chen, Y.Q.; Chen, Z.Z.; Lei, J.R.; Wu, T.T. Carbon Storage and Its Spatial Distribution Characteristics in Forest Ecosystems of Hainan Island. Acta Ecol. Sin. 2023, 43, 3558–3570. (In Chinese) [Google Scholar] [CrossRef]
- Pan, H.; Shuai, J.; Li, J.; Li, H.; Zhang, H.; Zhang, T.; Ji, X. Analysis of Deformation Behavior Characteristics of Double-Prevention Boreholes Based on Pearson Correlation Coefficient. Rock Mech. Rock Eng. 2025, 58, 6893–6915. [Google Scholar] [CrossRef]
- Lemmerz, T.; Herlé, S.; Blankenbach, J. Geostatistics on real-time geodata streams—An extended spatiotemporal moran’s I index with distributed stream processing technologies. ISPRS Int. J. Geo-Inf. 2023, 12, 87. [Google Scholar]
- Tan, J.; Rong, L.; Xiong, K.N. Correlation Study Between Rocky Desertification Grade and Vegetation Carbon Storage: Taking Dingtan Small Watershed as an Example. J. Guizhou Norm. Univ. Nat. Sci. 2013, 31, 88–91+108. (In Chinese) [Google Scholar]
- Huang, D.M.; Chen, Y.L.; Mo, J.F.; Huang, X.H.; Mao, Y.C.; Qing, B.Y. Variation Characteristics of Vegetation Coverage with Terrain in Typical Geomorphology of Guangxi. Guangxi For. Sci. 2022, 51, 626–633. (In Chinese) [Google Scholar]
- Clifton, B.; Ghezzehei, T.A.; Viers, J.H. Carbon stock quantification in a floodplain restoration chronosequence along a Mediterranean-montane riparian corridor. Sci. Total Environ. 2024, 946, 173829. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Du, H.; Song, T.Q.; Zeng, F.P.; Peng, W.X.; Liu, Y.X.; Fan, Z.L.; Zhang, J.Y. Carbon Storage and Its Influencing Factors of Major Forest Vegetation in Guangxi. Acta Ecol. Sin. 2019, 39, 2043–2053. (In Chinese) [Google Scholar]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the geographical environment and the forest carbon sink capacity in China based on an individual-tree growth-rate model. Ecol. Indic 2022, 138, 108814. [Google Scholar] [CrossRef]
- Shi, Q.W.; Ke, L.P.; Nie, X.; Zhao, Y.; Zhao, T.F. Analysis of Spatiotemporal Distribution Characteristics of Short-time Heavy Precipitation in Zhijin County. Meteorol. Hydrol. Mar. Instrum. 2022, 39, 49–52. (In Chinese) [Google Scholar]
- Qiu, Z.X. Research on Methods and Applications for Measuring Forest Vegetation Carbon Sinks on China’s Land Surface; Beijing Forestry University: Beijing, China, 2020. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.; Sun, J.; Xia, J.; He, N.; Li, M.; Niu, S. Soil and vegetation carbon turnover times from tropical to boreal forests. Funct. Ecol. 2018, 32, 71–82. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Reichstein, M. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Z.; Song, Q.; Yu, G.; Sun, X. Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest. Atmos. Environ. 2010, 44, 3886–3893. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.P.; Cheng, Z.; Guo, L. Remote sensing for vegetation monitoring in carbon capture storage regions: A review. Appl. Energy 2019, 240, 312–326. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.; Zhao, J.; Yang, A.; Wu, S.; Zhang, H.; Yu, S. Remote sensing monitoring and assessment of global vegetation status and changes during 2016–2020. Sensors 2023, 23, 8452. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.M.; Wang, Y.Q.; Lin, G.B.; Huo, C.B.; Sun, X.B. Construction of the Value Realization Mechanism of Forest Carbon Sink Resource Assets from the Perspective of Income System. Resour. Ind. 2024, 26, 13–22. (In Chinese) [Google Scholar]
Date Type | Resolution | Processing Method | Source |
---|---|---|---|
Ecological engineering | 30 m | Processed with ArcGIS to a resolution of 30 m | County Forestry Bureau |
Bedrock Exposure Rate, Soil Layer Thickness | 30 m | Processed with ArcGIS to a resolution of 30 m | https://sck.gznu.edu.cn (accessed on 20 August 2024) |
DEM Terrain Data | 30 m | Direct acquisition | https://www.gscloud.cn (accessed on 18 July 2024) |
Soil Data | 30 m | Kriging interpolation downscaled to the study area resolution | https://data.casearth.cn (accessed on 12 August 2024) |
Land Use Data | 30 m | Image interpretation (accuracy ≥ 85%) + spatiotemporal consistency correction | https://www.geodata.cn (accessed on 18 July 2024) |
Terrain Roughness | 30 m | Direct acquisition | https://portal.opentopography.org (accessed on 12 August 2024) |
Temperature | 30 m | Kriging interpolation downscaled to the study area resolution | https://www.ncei.noaa.gov (accessed on 3 September 2024) |
Precipitation | 30 m | Corrected using the vertical temperature lapse rate to a resolution of 30 m | https://data.tpdc.ac.cn (accessed on 3 September 2024) |
GDP, POP | 100 m | Data fusion estimation | https://hub.worldpop.org (accessed on 3 September 2024) |
Carbon Density | R2 | Coefficient | Value | SE | t | p |
---|---|---|---|---|---|---|
AGC | 0.642 | Intercept | 15.626 | 3.1234 | 5.0024 | <0.01 |
Slope | 0.838 | 0.066 | 12.7731 | <0.01 | ||
BGC | 0.364 | Intercept | 4.575 | 1.0131 | 6.9403 | <0.01 |
Slope | 0.223 | 0.0322 | 8.6266 | <0.01 | ||
DMC | 0.018 | Intercept | 1.413 | 0.5271 | 0.0406 | <0.05 |
Slope | 0.043 | 0.0052 | 0.8558 | – | ||
SOC | 0.001 | Intercept | 149.77 | 144.95 | 15.97 | <0.01 |
Slope | 0.332 | 0.2849 | 1.1543 | – |
Land Use Type | AGC | BGC | DMC | SOC |
---|---|---|---|---|
Cropland | 0 | 0 | 0 | 104.2 |
Woodland | 53.42 | 14.63 | 3.35 | 164.74 |
Scrubland | 15.01 | 9.41 | 0 | 89.93 |
Grassland | 0.95 | 9 | 0 | 119.61 |
Wetland | 0.65 | 0.26 | 0 | 190.64 |
Building land | 0 | 0 | 0 | 0 |
Water | 0 | 0 | 0 | 0 |
Z(Gi*) Range | ≤−1.96 | [−1.95, −1.65] | (−1.65, 1.65) | [1.65,1.95] | [1.96, 2.58) | ≧−2.58 |
---|---|---|---|---|---|---|
partitions | significant cold spot | Cold spots | Not significant | Hot spots | Significant hot spots | Very significant hot spots |
Year | Cropland | Woodland | Scrubland | Grassland | Wetland | Building Land | Water |
---|---|---|---|---|---|---|---|
2000 | 43,390.21 | 223,636.52 | 1231.85 | 15,745.90 | 432.83 | 1635.10 | 608.69 |
2005 | 42,814.43 | 223,143.89 | 1328.90 | 14,964.44 | 1167.51 | 2108.96 | 1152.87 |
2010 | 42,436.57 | 221,818.21 | 1309.41 | 15,908.67 | 758.41 | 2831.16 | 1621.00 |
2015 | 41,109.96 | 219,506.26 | 1293.72 | 17,061.18 | 573.02 | 5020.19 | 2119.29 |
2020 | 41,209.67 | 217,697.82 | 1281.34 | 17,867.17 | 483.24 | 5583.14 | 2526.70 |
2025 | 37,520.50 | 186,093.87 | 1244.47 | 35,198.51 | 1379.95 | 21,706.54 | 3488.59 |
2030 | 37,159.03 | 183,994.16 | 1268.44 | 35,941.06 | 1184.86 | 22,735.97 | 4411.37 |
Time Period | Growth Rate of Planted Forests (%) | Growth Rate of Forest Closure (%) | Growth Rate of Other Regions (%) |
---|---|---|---|
2000–2005 | 0.42 | 1.77 | 0.14 |
2005–2010 | 0.37 | 0.46 | 0.27 |
2010–2015 | 0.29 | 0.42 | 0.15 |
2015–2020 | 0.34 | 0.46 | 0.24 |
2020–2025 | −1.31 | −0.97 | −1.70 |
2025–2030 | 0.17 | 0.20 | 0.18 |
2000–2030 | 0.05 | 0.39 | −0.12 |
Factors | Carbon Stocks | Planted Forests | Forest Closure | I | |||
---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||
Traffic location | −0.05 | <0.01 | 0.18 | <0.01 | 0.11 | <0.01 | −0.03 |
Temperature | −0.14 | <0.01 | −0.07 | <0.01 | −0.04 | <0.01 | −0.21 |
Tree height | −0.03 | <0.01 | 0.17 | <0.01 | 0.09 | <0.01 | 0 |
Trees per hectare | 0.04 | <0.01 | 0.12 | <0.01 | 0.01 | <0.01 | 0.1 |
Accumulation | 0.01 | <0.01 | 0.12 | <0.01 | 0.04 | <0.01 | 0.06 |
DBH | 0.01 | - | 0.14 | <0.01 | 0.04 | <0.01 | 0.02 |
Tree species | −0.05 | <0.01 | −0.08 | <0.01 | −0.01 | <0.01 | −0.12 |
Canopy density | 0.02 | <0.01 | 0.2 | <0.01 | 0.2 | <0.01 | 0.03 |
Forest category | −0.13 | <0.01 | −0.11 | <0.01 | −0.08 | <0.01 | −0.05 |
Age group | −0.06 | <0.01 | 0.15 | <0.01 | 0.02 | <0.01 | 0.03 |
Forest species | −0.13 | <0.01 | 0 | <0.01 | −0.08 | <0.01 | −0.06 |
GDP | −0.01 | <0.01 | −0.02 | <0.01 | 0 | <0.01 | −0.18 |
NDVI | 0.29 | <0.01 | 0.33 | <0.01 | 0.38 | <0.01 | 0.34 |
Precipitation | 0.01 | <0.01 | 0.08 | <0.01 | 0.06 | <0.01 | 0.12 |
POP | −0.23 | <0.01 | −0.14 | <0.01 | −0.1 | - | −0.23 |
DEM | 0.28 | <0.01 | 0.29 | <0.01 | 0.16 | <0.01 | 0.48 |
Terrain roughness | 0.19 | <0.01 | 0.26 | <0.01 | 0.05 | <0.01 | 0.26 |
Soil thickness | 0.05 | <0.01 | 0.13 | <0.01 | 0.06 | <0.01 | 0.1 |
soil types | −0.02 | <0.01 | 0.13 | <0.01 | 0 | - | −0.06 |
Slope | 0.1 | <0.01 | 0.21 | <0.01 | 0.14 | <0.01 | 0.16 |
Slope position | −0.06 | <0.01 | −0.05 | <0.01 | −0.06 | <0.01 | −0.17 |
Aspect | −0.05 | <0.01 | −0.05 | <0.01 | −0.06 | <0.01 | −0.03 |
Rocky desertification | −0.11 | <0.01 | −0.17 | <0.01 | −0.13 | <0.01 | −0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yang, P.; Yang, C.; Zhang, H.; Gao, X. The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control. Land 2025, 14, 1903. https://doi.org/10.3390/land14091903
Li S, Yang P, Yang C, Zhang H, Gao X. The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control. Land. 2025; 14(9):1903. https://doi.org/10.3390/land14091903
Chicago/Turabian StyleLi, Shui, Pingping Yang, Changxin Yang, Haoru Zhang, and Xiong Gao. 2025. "The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control" Land 14, no. 9: 1903. https://doi.org/10.3390/land14091903
APA StyleLi, S., Yang, P., Yang, C., Zhang, H., & Gao, X. (2025). The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control. Land, 14(9), 1903. https://doi.org/10.3390/land14091903