Clustering Comfort: A Cluster Analysis on Housing Conditions and Nature-Based Solutions in Polish Cities
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey
2.2. Cluster Analysis
3. Results
3.1. Survey Results
3.1.1. Socio-Demographics
3.1.2. Housing Conditions
3.1.3. Climate Change Perceptions and Urban Strategies
3.2. Cluster Analysis Results
3.2.1. Description of Clusters
3.2.2. Comparisons Between Clusters
4. Discussion
4.1. Real Living Conditions Versus Perceived Heat Experience
4.2. Desires for NbS Achievements
4.3. Subjective Perceptions, Housing Conditions and Socio-Economic Factors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EU | European Union |
NbS | Nature-based solution |
References
- Berland, A.; Shiflett, S.A.; Shuster, W.D.; Garmestani, A.S.; Goddard, H.C.; Herrmann, D.L.; Hopton, M.E. The role of trees in urban stormwater management. Landsc. Urban Plan. 2017, 162, 167–177. [Google Scholar] [CrossRef]
- Eisenman, T.S.; Churkina, G.; Jariwals, S.P.; Kumar, P.; Lovasi, G.S.; Pataki, D.E.; Weinberger, K.R.; Whitlow, T.H. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 2019, 187, 47–49. [Google Scholar] [CrossRef]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon sequestration potential for mitigating the carbon footprint of green stormwater infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 47–59. [Google Scholar] [CrossRef]
- Meo, S.A.; Abukhalaf, A.A.; Alomar, A.A.; Alessa, O.M.; Sami, W.; Klonoff, S.C. Effect of environmental pollutants PM-2.5, carbon monoxide, and ozone on the incidence and mortality of SARS-COV-2 infection in ten wildfire affected counties in California. Sci. Total Environ. 2021, 757, 143948. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.; Hochuli, D.F. Defining greenspace: Multiple uses across multiple disciplines. Landsc. Urban Plan. 2017, 158, 25–38. [Google Scholar] [CrossRef]
- Wanner, A.; Pröbstl-Haider, U.; Feilhammer, M. New green infrastructure european cities: Multiple ways for improvement and climate change adaptation. In The Sustianable City XVI; WIT Press: Southampton, UK, 2022; pp. 121–133. [Google Scholar]
- Wilson, E.O. Biophilia; Harvard University Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Onur, M.; Acar, C. Circular Cities Solution with Biophilic Design and Nature-Based Solutions. In Nature-Based Solutions for Circular Management of Urban Water; Springer International Publishing: Cham, Switzerland, 2024; pp. 1–11. [Google Scholar]
- Beatley, T. Handbook of Biophilic City Planning & Design; Island Press: Washington, DC, USA, 2016. [Google Scholar]
- Wanner, A.; Pröbstl-Haider, U.; Jungnickel, M. Leveraging nature for just cities: Planning nature-based solutions in Greece. Urban For. Urban Green. 2025, 106, 128731. [Google Scholar] [CrossRef]
- Seebauer, S.; Firesenecker, M.; Thaler, T.; Schneider, A.; Schwarzinger, S. Feeling hot is being hot? Comparing the mapping and the surveying paradigm for urban heat vulnerability in Vienna. Sci. Total Environ. 2024, 945, 173952. [Google Scholar] [CrossRef]
- Bauer, W. Reframing urban nature-based solutions through perspectives of environmental justice and privilege. Urban Plan. 2023, 8, 334–345. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, G.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Dorst, H.; Jagt, A.v.d.; Toxopeus, H.; Tozer, L.; Raven, R.; Runhaar, H. What’s behind the barriers? Uncovering structural conditions working against urban nature-based solutions. Landsc. Urban Plan. 2022, 220, 104335. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; Borgström, S.; Gorissen, L.; Engermann, M.; Ehnert, F. Nature-Based Solutions Accelerating Urban Sustainability Transition in Cities: Lessonst from Dresden, Genk and Stockholm Cities. In Ature-Based Solutions to Climate Change Adaptation in Urban Areas. Theory and Practice of Urban Sustainability Transitions; Kabisch, N., Korn, H., Stadler, J., Bonn, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Böltken, F. Wohnquartiersbeschreibung durch Befragte—Eine Anwendung. In Regionale Standards, GESIS-Schriftenreihe; GESIS Leibniz-Institut für Sozialwissenschaften, A.R.S.: Mannheim, Germany, 2013; Volume 12, pp. 177–181. [Google Scholar]
- Bai, C.; Kemper, R.; Landwehr, M.; Liembd, U.; Roggo, N. Wohnumfeldqualität: Kriterien und Handlungsansätze für die Planung; Hochschule für Technik Rapperswil (HSR)—Kompetenzzentrum Wohnumfeld, Shaker: Aachen, Germany, 2018. [Google Scholar]
- Pröbstl-Haider, U.; Wanner, A.; Feilhammer, M.; Mostegl, N.; Dabrowska, K. The right fit: Acceptance of nature-based solutions across European Cities. Landsc. Urban Plan. 2024, 252, 105189. [Google Scholar] [CrossRef]
- Pröbstl-Haider, U.; Feilhammer, M.; Wanner, A. The influence of payments and time payments: Preconditions to implement nature-based solutions in Austrian cities. Cities 2025, 162, 105990. [Google Scholar] [CrossRef]
- Grütter, J.K. Wohnraum Planen: Architektur—Psychologie—Sozial—Gesellschaft—Kultur; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Rizwan, A.M.; Dennis, L.Y.C.; Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Jay, O.; Capon, A.; Berry, P.; Broderick, C.; Dear, R.d.; Havenith, G.; Honda, Y.; Kovats, R.; Ma, W.; Malik, A.; et al. Reducing the health effects of hot weather and heat extremes: From personal cooling strategies to green cities. Lancet 2021, 398, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Georgie, J.N.; Dimitriou, D. The contribution of urban green spaces to the improvement of environment in cities: Case study of Chania, Greece. Build. Environ. 2010, 45, 1401–1414. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Hansen, R. Principles for urban nature-based solutions. Ambio 2022, 51, 1388–1401. [Google Scholar] [CrossRef] [PubMed]
- Kato-Huerta, J.; Geneletti, D. Environmental justice implications of nature-based solutions in urban areas: A systematic review of approaches, indicators, and outcomes. Environ. Sci. Policy 2022, 138, 122–133. [Google Scholar] [CrossRef]
- Olsson, J.A.; Brunner, J.; Nordin, A.; Hanson, H.I. A just urban ecosystem service governance at the neighbourhood level—Perspectives from Sofielund, Malmö, Sweden. Environ. Sci. Policy 2020, 112, 305–313. [Google Scholar] [CrossRef]
- Cousins, J. Justice in nature-based solutions: Research and pathways. Ecol. Econ. 2021, 180, 106874. [Google Scholar] [CrossRef]
- Kopycka, K. Die Soziodemographische Struktur der Bevölkerung in Polen; Budenszentrale für politische Bildung: Bonn, Germany, 2023; Available online: https://www.bpb.de/themen/europa/polen/541516/die-soziodemografische-struktur-der-bevoelkerung-in-polen/ (accessed on 11 September 2025).
- Brinkhoff, T. Polen: Größere Städte. 2024. Available online: https://www.citypopulation.de/de/poland/cities (accessed on 11 September 2025).
- Szczepański, M.; Śliz, A. Analyse: Wohnraum und Wohnungspolitik in Polen. Pol. Anal. 2023, 304, 2–5. [Google Scholar]
- Wysmułek, J.; Hełdak, M.; Kucher, A. The analysis of green areas’ accessibility in comparison with statistical data in Poland. Int. J. Environ. Res. Public Health 2020, 17, 4492. [Google Scholar] [CrossRef] [PubMed]
- Suligowski, R.; Ciupa, T.; Cudny, W. Quantity assessment of urban green, blue, and grey spaces in Poland. Urban For. Urban Green. 2021, 64, 127276. [Google Scholar] [CrossRef]
- Statistical Office of the European Union. Eurostat Housing in Europe—2023 Edition; Statistical Office of the European Union: Luxembourg, 2025. [Google Scholar]
- UPSURGE. The Project. Available online: https://www.upsurge-project.eu/the-project/ (accessed on 24 July 2025).
- Bortz, J. Statistik für Sozialwissenschaftler, 4th ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Rudolf, M.; Müller, J. Multivariate Verfahren: Eine praxisorientierte Einführung mit Anwendungsbeispielen in SPSS; Hogrefe: Göttingen, Germany, 2003. [Google Scholar]
- Seebaß, K. Who is feeling the heat? Vulnerabilities and exposures to heat stress—Individual, social and housing explanations. Nat. Cult. 2017, 12, 137–161. [Google Scholar] [CrossRef]
- Szafrańska, E.; de Lille, L.C.; Kazimierczak, J. Urban shrinkage and housing in a post-socialist city: Relationship between the demographic evolution and housing development in Łódź, Poland. J. Hous. Built Environ. 2019, 34, 441–464. [Google Scholar] [CrossRef]
- Bolte, G.; Dandolo, L.; Gepp, S.; Hornberg, C.; Lumbi, S.L. Klimawandel und gesundheitliche Chancengereichtigkeit: Eine Public-Health-Perspective auf Klimagerechtigkeit. J. Health Monit. 2023, 8, 3–38. [Google Scholar] [CrossRef]
- Abramowska-Kmon, A. Demographische Entwicklungen in Polen: Konsequenzen und Herausforderungen für die Sozialpolitik. Pol. Anal. 2023, 308, 2–6. [Google Scholar] [CrossRef]
- Berg, U.; Iblher, T. Frauen gesundheitlich vom Klimawandel stärker betroffen als Männer. ärztin-1/2022. Des Deutscher Ärztinnenbundes e.V. 2022. Available online: https://www.aerztinnenbund.de/Frauen_gesundheitlich_vom_Klimawandel.3715.0.2.html (accessed on 11 September 2025).
- Kunkel, A. Maßnahmen gegen den Urban Heat Island Effect in Städten als spürbare Folge des Klimawandels—Empirische Betrachtung anhand der Stadt Aschaffenburg; IREC Practice Paper: Mainz, Germany, 2023. [Google Scholar]
Socio-Demographic | % of Respondents | |
---|---|---|
Gender | Female | 50.5 |
Male | 48.7 | |
Other | 0.1 | |
Prefer not to say | 0.7 | |
Age | <25 | 10.4 |
25–34 | 24.7 | |
35–50 | 31.4 | |
51–65 | 16.4 | |
66+ | 2.8 | |
Prefer not to say | 14.3 | |
Household size | 1 person | 10.5 |
2 | 26.0 | |
3 | 31.7 | |
4 | 21.8 | |
5+ people | 10.1 | |
Children | Yes | 49.1 |
No | 50.9 | |
Education | Primary | 0.9 |
Secondary | 18.8 | |
Vocational training | 27.4 | |
University | 52.2 | |
Prefer not to say | 0.6 | |
Income (monthly household net) | PLN < 500 | 10.7 |
PLN 500–1000 | 31.9 | |
PLN 1001–2000 | 29.4 | |
PLN 2001–3000 | 11.8 | |
PLN 3001–4000 | 5.5 | |
PLN > 4000 | 3.2 | |
Prefer not to say | 7.5 |
Living Conditions | % of Respondents | |
---|---|---|
City size | 20,000–50,000 | 11.6 |
50,001–100,000 | 16.3 | |
100,001–250,000 | 19.8 | |
250,001–500,000 | 18.5 | |
500,001–1.5 million | 20.4 | |
>1.5 million | 13.4 | |
Area | City center | 48.8 |
Urban districts | 46.2 | |
Suburbs | 5.0 | |
Type of housing | House | 18.3 |
Duplex or row house | 7.1 | |
High-rise | 23.5 | |
Closed block or cluster | 51.2 | |
Building height (stories) | 1 | 6.7 |
2 | 15.7 | |
3–4 | 48.6 | |
5–9 | 17.3 | |
10+ | 11.6 | |
Year built | <1914 | 1.9 |
1914–1939 | 4.3 | |
1940–1969 | 14.7 | |
1970–1989 | 37.6 | |
1990–2009 | 25.2 | |
>2010 | 16.3 |
Cl. 1 | Cl. 2 | Cl. 3 | Cl. 4 | Total | KW-Test (df = 3) | ||
---|---|---|---|---|---|---|---|
Air quality improvement | n | 287 | 171 | 240 | 247 | 945 | KW-H = 25.596 p < 0.001 ** |
M | 3.84 | 3.60 | 3.65 | 3.60 | 3.68 | ||
SD | 0.46 | 0.72 | 0.64 | 0.74 | 0.64 | ||
Temperature reduction | n | 277 | 161 | 223 | 235 | 896 | KW-H = 63.018 p < 0.001 ** |
M | 3.44 | 2.86 | 2.87 | 2.98 | 3.07 | ||
SD | 0.76 | 0.92 | 1.01 | 0.96 | 0.94 | ||
Heat wave mitigation | n | 282 | 166 | 231 | 239 | 918 | KW-H = 69.212 p < 0.001 ** |
M | 3.59 | 3.02 | 3.04 | 3.09 | 3.22 | ||
SD | 0.64 | 0.97 | 0.98 | 0.91 | 0.90 | ||
Storm water management | n | 284 | 171 | 233 | 246 | 934 | KW-H = 38.792 p < 0.001 ** |
M | 3.77 | 3.50 | 3.39 | 3.49 | 3.55 | ||
SD | 0.48 | 0.71 | 0.80 | 0.75 | 0.70 | ||
Biodiversity | n | 285 | 165 | 230 | 241 | 921 | KW-H = 40.627 p < 0.001 ** |
M | 3.72 | 3.45 | 3.39 | 3.35 | 3.49 | ||
SD | 0.56 | 0.74 | 0.79 | 0.82 | 0.74 | ||
Urban climate improvements | n | 281 | 167 | 227 | 243 | 918 | KW-H = 30.411 p < 0.001 ** |
M | 3.76 | 3.43 | 3.48 | 3.49 | 3.56 | ||
SD | 0.46 | 0.82 | 0.72 | 0.73 | 0.69 |
Cl. 1 | Cl. 2 | Cl. 3 | Cl. 4 | Total | χ2-Test | ||
---|---|---|---|---|---|---|---|
Gender | female | 55.6% | 42.6% | 52.9% | 49.4% | 50.9% | χ2 = 7.936, df = 3 p = 0.047 * |
SR (f) | 1.1 | −1.5 | 0.4 | −0.3 | |||
male | 44.4% | 57.4% | 47.1% | 50.6% | 49.1% | ||
SR (m) | −1.1 | 1.6 | −0.4 | 0.3 | |||
Age | <25 | 12.9% | 12.3% | 10.6% | 12.6% | 12.1% | χ2 = 7.510, df = 12 p = 0.822 |
25–34 | 29.3% | 27.1% | 31.7% | 26.7% | 28.8% | ||
35–50 | 34.8% | 38.7% | 33.7% | 40.3% | 36.6% | ||
51–65 | 18.8% | 17.4% | 21.6% | 18.4% | 19.2% | ||
>66 | 4.3% | 4.5% | 2.4% | 1.9% | 3.3% | ||
Children (<18 years) | yes | 42.4% | 51.1% | 41.9% | 62.5% | 49.1% | χ2 = 28.786, df = 3 p < 0.001 ** |
SR (y) | −1.6 | 0.4 | −1.6 | 3.0 | |||
no | 57.6% | 48.9% | 58.1% | 37.5% | 50.9% | ||
SR (n) | 1.6 | −0.4 | 1.6 | −3.0 | |||
Household size | 1 p. | 13.5% | 7.4% | 15.3% | 4.4% | 10.5% | χ2 = 50.706, df = 9 p < 0.001 ** |
SR (1 p.) | 1.6 | −1.3 | 2.4 | −3.0 | |||
2 p. | 32.3% | 24.4% | 29.0% | 16.7% | 26.0% | ||
SR (2 p.) | 2.1 | −0.4 | 0.9 | −2.9 | |||
3 p. | 26.7% | 31.8% | 30.6% | 38.2% | 31.7% | ||
SR (3 p.) | −1.5 | 0.0 | −0.3 | 1.9 | |||
>3 p. | 27.4% | 36.4% | 25.0% | 40.6% | 31.9% | ||
SR (>3 p.) | −1.3 | 1.1 | −1.9 | 2.5 |
Cl. 1 | Cl. 2 | Cl. 3 | Cl. 4 | Total | χ2-Test | ||
---|---|---|---|---|---|---|---|
Education | primary | 24.5% | 30.3% | 30.4% | 30.1% | 28.5% | χ2 = 14.407, df = 6 p = 0.025 * |
SR (p) | −1.3 | 0.4 | 0.5 | 0.5 | |||
secondary | 22.4% | 22.9% | 19.0% | 12.0% | 18.9% | ||
SR (s) | 1.3 | 1.2 | 0.0 | −2.5 | |||
university | 53.1% | 46.9% | 50.6% | 57.8% | 52.6% | ||
SR (u) | 0.1 | −1.0 | −0.4 | 1.1 | |||
Income | PLN < 500 | 14.3% | 10.8% | 12.3% | 8.2% | 11.6% | χ2 = 10.118 df = 12 p = 0.606 |
PLN 500–1000 | 37.0% | 33.5% | 35.7% | 31.0% | 34.5% | ||
PLN 1001–2000 | 29.1% | 31.7% | 31.3% | 35.3% | 31.8% | ||
PLN 2001–3000 | 11.3% | 13.2% | 11.5% | 15.5% | 12.8% | ||
PLN > 3000 | 8.3% | 10.8% | 9.3% | 9.9% | 9.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, A.; Wanner, A.; Pröbstl-Haider, U. Clustering Comfort: A Cluster Analysis on Housing Conditions and Nature-Based Solutions in Polish Cities. Land 2025, 14, 1884. https://doi.org/10.3390/land14091884
Walter A, Wanner A, Pröbstl-Haider U. Clustering Comfort: A Cluster Analysis on Housing Conditions and Nature-Based Solutions in Polish Cities. Land. 2025; 14(9):1884. https://doi.org/10.3390/land14091884
Chicago/Turabian StyleWalter, Anita, Alice Wanner, and Ulrike Pröbstl-Haider. 2025. "Clustering Comfort: A Cluster Analysis on Housing Conditions and Nature-Based Solutions in Polish Cities" Land 14, no. 9: 1884. https://doi.org/10.3390/land14091884
APA StyleWalter, A., Wanner, A., & Pröbstl-Haider, U. (2025). Clustering Comfort: A Cluster Analysis on Housing Conditions and Nature-Based Solutions in Polish Cities. Land, 14(9), 1884. https://doi.org/10.3390/land14091884