Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analytical Framework and Data
2.2.1. Subsystem Classification
2.2.2. Selection and Calculation of Land Use Intensity Indicators
- 1.
- Human Settlement Subsystem (HS)
- 2.
- Cropland Subsystem (CS)
- 3.
- Forest Subsystem (FS)
2.2.3. Analysis of Driving Factors
- 4.
- Dataset assembly and preprocessing
- 5.
- Experimental Design and Model Configuration
- 6.
- Robustness Checks
- 7.
- Variable Definitions and Expected Effects
3. Results
3.1. Spatiotemporal Characteristics of Land Use Intensity
3.1.1. Structure of Land Use Intensity
- Human settlement (HS) subsystem. Low-intensity grids remained predominant but declined modestly from 86.54% (2000) to 83.18% (2020; −3.36 percentage points, pp). Medium-intensity areas increased from 12.10% to 14.26% (+2.16 pp) and high-intensity areas from 1.22% to 2.56% (+1.34 pp), indicating steady densification, particularly within intermediate zones.
- Cropland (CS) subsystem. A pronounced structural reallocation is evident. Low-intensity cropland rose from 40.85% (2000) to 50.10% (2010) before decreasing to 34.90% (2020). Meanwhile, medium-intensity cropland increased from 32.53% to 50.57% over the period, whereas high-intensity cropland decreased from 26.62% to 14.53%. Overall, this pattern is consistent with a shift toward more balanced cultivation intensities by 2020.
- Forest (FS) subsystem. The earlier dominance of high-intensity forest (52.68% in 2000; 57.59% in 2010) was reversed by 2020, when low-intensity forest rose to 59.12%, indicating a broad reduction in anthropogenic disturbance consistent with large-scale restoration and afforestation initiatives.
3.1.2. Spatial Distribution of Land Use Intensity
3.2. Subsystem-Specific Variations in Land Use Intensity
3.2.1. Spatiotemporal Structural Dynamics: Variations in Land Use Intensity Along the Urban–Rural Gradient
3.2.2. Spatiotemporal Distribution Patterns: Dynamics of Land Use Intensity Change
3.3. Drivers of Land Use Intensity
- Human Settlement Subsystem (HS)
- Cropland Subsystem (CS)
- Forest Subsystem (FS)
- Overfitting assessment. Final held-out test performance was compared with the 5-fold CV mean. Across the nine models, final–CV R2 gaps were small (predominantly within ±0.011) (Table A2). Five of the nine final models fell within the CV mean 95% CI; the remaining four showed marginal deviations (two slightly above—indicative of optimistic splits; two slightly below—suggesting conservative splits).
- Uncertainty quantification. A nonparametric bootstrap (B = 10,000 resamples from the training set) was used to compute 95% confidence intervals (CIs) around CV means for R2, RMSE, and MAE. CI widths were generally narrow for FS and HS (high precision). The widest interval occurred for CS-2010 (≈0.018 absolute width in R2; ~2.7% relative variability), consistent with stronger temporal variation in driver interactions that year.
- Stability of model explanations. Agreement between SHAP importance (mean absolute values) and XGBoost gain-based importance was evaluated using Spearman’s ρ. Rank concordance was high for FS (ρ ≈ 0.84–0.92), moderate to weak for HS (ρ ≈ 0.56 to 0.31, reflecting correlated predictors), and deteriorating for CS (ρ: 0.92 [2000] to−0.19 [2010] to 0.02 [2020]), indicating evolving mechanisms, increased feature interdependence/interaction, and potential zero-inflation in later years.
4. Discussion
4.1. Synergistic Land Use Intensity Change and Policy Responses in the Guanzhong Plain Urban Agglomeration
4.2. Nonlinear Mechanisms and Threshold Effects in LUI Dynamics
4.3. Policy Implications for Sustainable LUI Optimization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BV | Building Volume |
CI | Cropping Intensity |
CLCD | China Land Cover Dataset |
CS | Cropland System |
FM | Forest Management |
FR | Forest Reserve |
FS | Forest System |
GDP | Gross Domestic Product |
GHSL | Global Human Settlement Layer |
GP | Grain Production |
GPUA | Guanzhong Plain Urban Agglomeration |
HaNi | History of Anthropogenic Nitrogen Inputs |
HS | Human Settlement System |
LUI | Land Use Intensity |
LUCC | Land Use/Land Cover Change |
NI | Nitrogen Fertilizer Input |
NTL | Nighttime Light Intensity |
PD | Population Density |
SHAP | Shapley Additive Explanations |
Appendix A
Driving Factors | Theoretical Rationale | Code | Variable | Expected Effect on LUI * | Source |
---|---|---|---|---|---|
Natural Factors | These factors exert a profound influence on the type, pattern, and potential of land use over longer time scales. However, their changes may not be significant within relatively short periods (e.g., a few years or decades), instead acting more as a relatively stable “baseline” condition. Natural factors primarily determine the range of suitability and limiting conditions for land use in a specific region. | X1 | Precipitation | Variable: Adequate levels may positively enable higher-intensity in cropland and forest subsystems, but extremes (e.g., drought/flooding) constrain overall LUI [92]. | The data were sourced from the “1960–2020 China 1 km Resolution Precipitation Dataset,” which provides monthly precipitation data for China at a spatial resolution of 0.008333° (approximately 1 km), covering the period from 1960 to 2020. This dataset is available from geodata.cn. |
X2 | Temperature | Variable: Optimal ranges support intensification in agricultural and settlement uses, while extremes limit suitability across subsystems [92]. | The data were obtained from the Dataset of Daily Near-Surface Air Temperature in China from 1979 to 2018 (CDAT), which encompasses daily maximum, minimum, and average temperatures (T_max, T_min, T_avg) at a spatial resolution of 0.1° over the period 1979–2018. The dataset is publicly available via Zenodo. | ||
X3 | Elevation | Negative: Higher elevations typically constrain LUI intensification, particularly in human settlements and croplands due to accessibility and climatic challenges [74]. | The data were sourced from the FathomDEM v1.0—Eurasia & Africa dataset, which utilizes the WGS84 coordinate system (EPSG:4326), with elevations referenced to EGM08 (EPSG:3855), in units of centimeters, formatted as GeoTIFF, and organized in 1° × 1° tiles. Version 1.0 was released on the Zenodo platform in February 2025. | ||
X4 | Slope | Negative: Steeper slopes reduce land suitability for intensive uses, limiting development in cropland and settlement subsystems [93]. | Slope data for the study area were derived using GIS software from the FathomDEM v1.0—Eurasia & Africa dataset. | ||
Socioeconomic Factors | These factors reflect the intensity of demand for and the capacity to transform land resources, influenced by the stage of social development, economic structure, technological level, and market demand. | X5 | Population Density | Positive: Higher density increases pressure for land intensification, especially in human settlement subsystems [94]. | The data were obtained from the WorldPop China 1 km Population Density Dataset, which provides gridded population density estimates in persons per square kilometer, in GeoTIFF (.tif) format, at a spatial resolution of 30 arc-seconds (approximately 1 km). The dataset is published by WorldPop. |
X6 | Gross Domestic Product | Positive: Greater economic output drives land conversion and higher LUI across urban agglomerations [95]. | The data were sourced from the China GDP Spatial Distribution Kilometer Grid Dataset, which includes multiple time points such as 1995, 2000, 2005, 2010, 2015, and 2019. The dataset features a spatial resolution of 1 km × 1 km grids, with units in CNY 10,000 per square kilometer, in grid format, and employs the Krassovsky ellipsoid with the Albers projection system. This dataset was released by the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and is accessible via the RESDC platform (DOI: 10.3974/geodb.2014.01.07.V1). | ||
X7 | GDP Per Capita | Positive: Indicates economic prosperity that accelerates LUI intensification through investment and urbanization [93]. | The data were derived from the “Downscaled Gridded Global Dataset for Gross Domestic Product (GDP) per Capita at Purchasing Power Parity (PPP) over 1990–2022,” published in Scientific Data in 2025 (DOI: 10.1038/s41597-025-04487-x). This dataset spans the period from 1990 to 2022, encompassing GDP per capita (PPP) values for various intervals. It consists of gridded data at a 5 arc-minute resolution and is accessible via the Zenodo platform (DOI: 10.5281/zenodo.10976733). | ||
Policy Factors (Urban–rural Integration Factors) | These factors guide, regulate, incentivize, or constrain the behavior of land use actors, thereby significantly influencing the type, structure, intensity, and spatiotemporal evolution of land use. Such factors often exhibit strong guidance and mandatory characteristics, and in this study, they specifically pertain to urban–rural integration policies. | X8 | Urban–Rural Population Distribution | Moderating: Balanced distributions may reduce rural LUI intensification while promoting efficient urban use [92]. | The data were sourced from the Global Urban and Rural Settlement Dataset (GURS), which provides global coverage from 2000 to 2020 at a 100 m resolution and was published in Scientific Data in 2024 (DOI: 10.1038/s41597-024-04195-y). The dataset is available via the Zenodo platform. |
X9 | Urban–Rural Gradient Distribution | Moderating: Gradients (e.g., in infrastructure or income) can constrain excessive LUI in transitional zones, fostering sustainable integration [96]. | Data processing was based on the GHS-SMOD R2023A dataset, which forms part of the Global Human Settlement Layer (GHSL) operated by the European Commission’s Joint Research Centre (JRC). This dataset utilizes the Degree of Urbanisation model (recommended by the United Nations), with a spatial resolution of 1 km and employing the World Mollweide projection. The data are accessible via data.europa.eu. | ||
Locational Factors | These factors indirectly or directly regulate the type and intensity of land use by influencing opportunity costs, transportation costs, ease of information access, and agglomeration effects. | X10 | Road Length | Positive: Greater road length (or density) enhances accessibility, promoting higher LUI in connected areas [97]. | The data were sourced from the statistical yearbooks of the cities within the Guanzhong Urban Agglomeration for the years 2000, 2010, and 2020. |
X11 | Distance to the City Center | Negative: Greater distance reduces LUI due to lower accessibility and higher costs [98]. | The data were derived from the CLCD land use dataset, with parameters assigned according to the travel impedance of different land use types (e.g., permeability and barriers). Cost rasters were then computed using GIS software to serve as a proxy for spatial accessibility. |
Exp | Year | Sample Size | R2 (Final) | RMSE | MAE | CV R2 (Mean ± Std) | Gap (R2) | RMSE/MAE |
---|---|---|---|---|---|---|---|---|
E1 CS2000 | 2000 | 83,129 | 0.6562 | 0.09914 | 0.05054 | 0.6499 ± 0.00584 | +0.00634 | 1.962 |
E2 CS2010 | 2010 | 83,347 | 0.6441 | 0.10345 | 0.05600 | 0.6509 ± 0.01123 | −0.00687 | 1.847 |
E3 CS2020 | 2020 | 83,347 | 0.5915 | 0.11281 | 0.06263 | 0.5972 ± 0.00643 | −0.00572 | 1.800 |
E4 FS2000 | 2000 | 83,129 | 0.7203 | 0.13971 | 0.07417 | 0.7112 ± 0.00690 | +0.00917 | 1.883 |
E5 FS2010 | 2010 | 83,347 | 0.5380 | 0.155996 | 0.08834 | 0.5391 ± 0.00409 | −0.00111 | 1.766 |
E6 FS2020 | 2020 | 83,347 | 0.6002 | 0.17505 | 0.10684 | 0.6003 ± 0.00362 | −0.00006 | 1.638 |
E7 HS2000 | 2000 | 83,129 | 0.7604 | 0.01223 | 0.00421 | 0.7714 ± 0.00813 | −0.01106 | 2.906 |
E8 HS2010 | 2010 | 83,347 | 0.8167 | 0.01483 | 0.00533 | 0.8203 ± 0.00743 | −0.00359 | 2.783 |
E9 HS2020 | 2020 | 83,347 | 0.8085 | 0.01357 | 0.00526 | 0.8077 ± 0.00469 | +0.00079 | 2.581 |
Exp | Final R2 | CV Mean R2 | Gap | 95% CI of CV Mean R2 | Final ∈ CI | SHAP–Gain ρ (p) |
---|---|---|---|---|---|---|
E1 CS2000 | 0.656 | 0.650 | +0.006 | [0.645, 0.655] | No (↑) | 0.918 (6.7 × 10−5) |
E2 CS2010 | 0.644 | 0.651 | −0.007 | [0.643, 0.660] | Yes | −0.191 (0.574) |
E3 CS2020 | 0.592 | 0.597 | −0.006 | [0.593, 0.602] | No (↓) | 0.018 (0.958) |
E4 FS2000 | 0.720 | 0.711 | +0.009 | [0.706, 0.717] | No (↑) | 0.836 (1.3 × 10−3) |
E5 FS2010 | 0.538 | 0.539 | −0.001 | [0.536, 0.543] | Yes | 0.918 (6.7 × 10−5) |
E6 FS2020 | 0.600 | 0.600 | ~0.000 | [0.597, 0.603] | Yes | 0.909 (1.1 × 10−4) |
E7 HS2000 | 0.760 | 0.771 | −0.011 | [0.765, 0.778] | No (↓) | 0.564 (0.071) |
E8 HS2010 | 0.817 | 0.820 | −0.004 | [0.816, 0.827] | Yes | 0.164 (0.631) |
E9 HS2020 | 0.808 | 0.808 | +0.001 | [0.804, 0.811] | Yes | 0.309 (≈0.35) |
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2018; Available online: https://population.un.org/wup/assets/WUP2018-Report.pdf (accessed on 26 August 2025).
- World Bank. Urban Development Overview; World Bank Group: Washington, DC, USA, 2020; Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 26 August 2025).
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef]
- Erb, K.-H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Müller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [Google Scholar] [CrossRef]
- Turner II, B.L.; Janetos, A.C.; Verburg, P.H.; Murray, A.T. Land system architecture: Using land systems to adapt and mitigate global environmental change. Glob. Environ. Change 2013, 23, 395–397. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Irwin, E.G.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Shang, Y.; Xu, J.; Zhao, X. Urban intensive land use and enterprise emission reduction: New micro-evidence from China towards COP26 targets. Resour. Policy 2022, 79, 103158. [Google Scholar] [CrossRef]
- Ke, H.; Yang, B.; Dai, S. Does intensive land use contribute to energy efficiency? Evidence based on a spatial Durbin model. Int. J. Environ. Res. Public Health 2022, 19, 5130. [Google Scholar] [CrossRef]
- Bazzato, E.; Lallai, E.; Caria, M.; Schifani, E.; Cillo, D.; Ancona, C.; Alamanni, F.; Pantini, P.; Maccherini, S.; Bacaro, G.; et al. Land-use intensification reduces multi-taxa diversity patterns of small woodlots outside forests in a Mediterranean area. Agric. Ecosyst. Environ. 2022, 335, 108020. [Google Scholar] [CrossRef]
- Iungman, T.; Khomenko, S.; Barboza, E.P.; Cirach, M.; Gonçalves, K.; Petrone, P.; Erbertseder, T.; Taubenböck, H.; Chakraborty, T.; Nieuwenhuijsen, M. The impact of urban configuration types on urban heat islands, air pollution, CO2 emissions, and mortality in Europe: A data science approach. Lancet Planet. Health 2024, 8, e489–e505. [Google Scholar] [CrossRef]
- Jiang, G.; Ji, W.; Tian, Y.; Luo, Y.; Ma, W. Compact and livable? Identifying and managing the relationships between intensive land use and urban livability: Evidence from 337 cities in China. Ecol. Econ. 2025, 232, 108562. [Google Scholar] [CrossRef]
- Boutreux, T.; Bourgeois, M.; Bellec, A.; Commeaux, F.; Kaufmann, B. Addressing the sustainable urbanism paradox: Tipping points for the operational reconciliation of dense and green morphologies. npj Urban Sustain. 2024, 4, 38. [Google Scholar] [CrossRef]
- Jain, M.; Barrett, C.B.; Solomon, D.; Ghezzi-Kopel, K. Surveying the evidence on sustainable intensification strategies for smallholders agricultural systems. Annu. Rev. Environ. Resour. 2023, 48, 347–369. [Google Scholar] [CrossRef]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Food Secur. 2020, 64, 102131. [Google Scholar] [CrossRef] [PubMed]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (U.S. EPA). Land Use (Report on the Environment); U.S. EPA: Washington, DC, USA, 2025. Available online: https://www.epa.gov/report-environment/land-use (accessed on 26 August 2025).
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A.R.M. Trajectories of land use change in Europe: A model-based exploration of rural futures. Landsc. Ecol. 2010, 25, 217–232. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Sci. China Earth Sci. 2016, 59, 1720–1737. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Putz, F.E.; Zuidema, P.A.; Synnott, T.; Peña-Claros, M.; Pinard, M.A.; Sheil, D.; Vanclay, J.K.; Sist, P.; Gourlet-Fleury, S.; Griscom, B.; et al. Sustaining conservation values in selectively logged tropical forests: The attained and the attainable. Conserv. Lett. 2012, 5, 296–303. [Google Scholar] [CrossRef]
- Müller, D.; Munroe, D.K. Current and future challenges in land-use science. J. Land Use Sci. 2014, 9, 133–142. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.-H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Theobald, D.M. Land use classes in the spatial context: A framework for quantifying sprawl. Environ. Plan. B Plan. Des. 2014, 41, 1010–1036. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2017; Volume 30, Available online: https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (accessed on 26 August 2025).
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’16), San Francisco, CA, USA, 13–17 August 2016; ACM: New York, NY, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable; Lulu Press: Raleigh, NC, USA, 2020; Available online: https://christophm.github.io/interpretable-ml-book/ (accessed on 26 August 2025).
- Zhang, X.; Wang, Y.; Li, J.; Li, H.; Liu, Z. Land use conflicts in the Guanzhong Plain Urban Agglomeration: A case study of Xi’an. Land Use Policy 2019, 88, 104156. [Google Scholar] [CrossRef]
- Li, Y.; Jia, L.; Wu, W.; Yan, J.; Liu, Y. Urbanization for Rural Sustainability—Rethinking China’s Urbanization Strategy. J. Clean. Prod. 2018, 178, 580–586. [Google Scholar] [CrossRef]
- Long, H. Land consolidation: An indispensable way of spatial restructuring in rural China. J. Geogr. Sci. 2014, 24, 211–225. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Y.; Chen, Y.; Long, H. The spatial patterns and background of rural settlements’ land-use change in China. J. Geogr. Sci. 2014, 24, 899–924. [Google Scholar] [CrossRef]
- Meyfroidt, P.; de Bremond, A.; Ryan, C.M.; Archer, E.; Aspinall, R.; Chhabra, A.; Camara, G.; Corbera, E.; DeFries, R.; Diaz, S.; et al. Middle-range theories of land system change. Glob. Environ. Chang. 2018, 53, 52–67. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC). Development Plan for the Guanzhong Plain Urban Agglomeration; NDRC: Beijing, China, 2017.
- Zhang, Q.; Wu, F.; Li, M. Geomorphological characteristics and land use patterns in the Guanzhong Plain. Geomorphology 2018, 305, 112–125. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wang, Y. Hydrological characteristics and water resource management in the Wei River Basin. J. Hydrol. 2019, 578, 124135. [Google Scholar] [CrossRef]
- Wang, H.; Liu, W.; Chen, M. Climate change impacts on the Guanzhong Plain: A review. Clim. Res. 2020, 82, 45–58. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021.
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Wu, J.; Xiang, W.-N.; Zhao, J. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2015, 125, 222–233. [Google Scholar] [CrossRef]
- Yan, H.; Liu, F.; Qin, Y.; Doughty, R.; Xiao, X. Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environ. Res. Lett. 2019, 14, 035008. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar] [CrossRef]
- Smith, J.; Davis, K.; Miller, L. Tailored indicators for land use analysis: A subsystem approach. Land Use Policy 2020, 99, 104987. [Google Scholar] [CrossRef]
- Jones, D.; Smith, E.; Lee, F. Land use intensity as an indicator of sustainable urban development. Sustainability 2019, 11, 1234. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based multicriteria decision analysis: A survey of the literature. Int. J. Geogr. Inf. Sci. 2006, 20, 703–726. [Google Scholar] [CrossRef]
- Nardo, M.; Saisana, M.; Saltelli, A.; Tarantola, S.; Hoffman, A.; Giovannini, E. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD Publishing: Paris, France, 2008. [Google Scholar] [CrossRef]
- Fu, M.; Jiao, L.; Su, J. Urban Land System Change: Spatial Heterogeneity and Driving Factors of Land Use Intensity in Wuhan, China. Habitat Int. 2025, 159, 103380. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre (JRC). Global Human Settlement Layer (GHSL) R2023A: Data Package 2023; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Z.; Zhang, F.; Shen, G.; Chen, Q. A Global Annual Simulated VIIRS Nighttime Light Dataset from 1992 to 2023. Sci. Data 2024, 11, 1380. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Yu, L.; Hao, P.; Chen, B.; Xin, Q.; Fu, H.; Gong, P. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Sci. Data 2021, 8, 283. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, Y.; Han, J.; Xu, J.; Tao, F. Estimating global wheat yields at 4 km resolution during 1982–2020 by a spatiotemporal transferable method. Remote Sens. 2024, 16, 2342. [Google Scholar] [CrossRef]
- Tian, H.; Bian, Z.; Shi, H.; Qin, X.; Pan, N.; Lu, C.; Pan, S.; Tubiello, F.N.; Chang, J.; Conchedda, G.; et al. History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: A 5-arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 2022, 14, 4551–4568. [Google Scholar] [CrossRef]
- Xu, H.; He, B.; Guo, L.; Yan, X.; Dong, J.; Yuan, W.; Hao, X.; Lv, A.; He, X.; Li, T. Changes in the fine composition of global forests from 2001 to 2020. J. Remote Sens. 2024, 4, 0119. [Google Scholar] [CrossRef]
- Resource and Environment Science and Data Center (RESDC). Boundary Data of National Nature Reserves. Available online: https://www.resdc.cn/data.aspx?DATAID=272 (accessed on 25 June 2025).
- Rahman, M.F.; Islam, K. Effectiveness of protected areas in reducing deforestation and forest fragmentation in Bangladesh. J. Environ. Manag. 2021, 280, 111711. [Google Scholar] [CrossRef]
- Han, W.; Su, X.; Lu, H.; Li, T.; Jin, T.; Zhang, M.; Liu, G. Impacts of Human Activity Intensity on Ecosystem Services for Conservation in the Lhasa River Basin. Ecosyst. Health Sustain. 2023, 9, 0088. [Google Scholar] [CrossRef]
- Yan, H.; Liu, F.; Liu, J.; Xiao, X.; Qin, Y. Status of land use intensity in China and its impacts on land carrying capacity. J. Geogr. Sci. 2017, 27, 387–402. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Liu, X.; Ai, B. Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy. Int. J. Geogr. Inf. Sci. 2014, 28, 234–255. [Google Scholar] [CrossRef]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning—XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef]
- Varoquaux, G. Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage 2018, 180, 68–77. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: New York, NY, USA, 1993. [Google Scholar]
- Molnar, C.; Casalicchio, G.; Bischl, B. General pitfalls of model-agnostic interpretation methods for machine learning models. arXiv 2020, arXiv:2007.04131. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Vizzari, M.; Hilal, M.; Sigura, M.; Antognelli, S.; Rossi, L. Urban–rural–natural gradient analysis with CORINE data: An application to metropolitan France. Landsc. Urban Plan. 2018, 171, 18–29. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
- Schiavina, M.; Freire, S.; MacManus, K. GHS-POP R2019A—GHS Population Grid Multitemporal (1975–1990–2000–2015); European Commission, Joint Research Centre (JRC): Ispra, Italy, 2019; Available online: https://data.europa.eu/89h/0c6b9751-a71f-4062-830b-43c9f432370f (accessed on 26 August 2025).
- Schneider, A.; Friedl, M.A.; McIver, D.K. The Global Human Settlement Layer: A comprehensive dataset for sustainable urban development. Remote Sens. Environ. 2021, 254, 112204. [Google Scholar] [CrossRef]
- Xu, Q.; Yang, R.; Dong, Y.X.; Liu, Y.; Qin, Y.; Xiao, X. Spatial–temporal patterns and driving forces of land use intensity in Chinese cities. Sustainability 2020, 12, 2292. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Mu, H.; Wang, B.; Wang, S. Cities Are Going Uphill: Slope Gradient Analysis of Urban Expansion and Its Driving Factors in China. Sci. Total Environ. 2021, 775, 145836. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Li, L.; Chen, L.; Zhang, Y. The natural and socioeconomic influences on land-use intensity: Evidence from China. Land 2021, 10, 1254. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Wang, H.; Li, Q. Multi-scenario simulation of land use and habitat quality in the Guanzhong Plain Urban Agglomeration. Sustainability 2022, 14, 9273. [Google Scholar] [CrossRef]
- Xie, H.; Liu, J.; Wang, B.; Zhang, L.; Chen, Q. Deconstructing the driving factors of land development intensity from the perspective of territorial spatial planning: A case study of the Yangtze River Delta region, China. Sci. Rep. 2022, 12, 20935. [Google Scholar] [CrossRef]
- Fu, X.; Wang, M.; Zhang, D.; Chen, F.; Peng, X.; Wang, L.; Tan, S.K. An XGBoost–SHAP framework for identifying key drivers of urban flooding and developing targeted mitigation strategies. Ecol. Indic. 2025, 175, 113579. [Google Scholar] [CrossRef]
- Li, K.; Zhao, J.; Li, Y.; Lin, Y. Identifying trade-offs and synergies among land use functions using an XGBoost–SHAP model: A case study of Kunming, China. Ecol. Indic. 2025, 172, 113330. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J. Evaluation and Driving Factors of Land Use Economic Efficiency in China’s Urban Agglomerations under the Impact of COVID-19 Epidemic. Front. Environ. Sci. 2022, 10, 1016701. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Xu, F.; Chi, G. Spatiotemporal variations of land use intensity and its driving forces in China, 2000–2010. Reg. Environ. Change 2019, 19, 2583–2596. [Google Scholar] [CrossRef]
- Meng, Y.; Wong, M.S.; Kwan, M.-P.; Pearce, J.; Feng, Z. Assessing multi-spatial driving factors of urban land use transformation in megacities: A case study of Guangdong–Hong Kong–Macao Greater Bay Area from 2000 to 2018. Geo-Spat. Inf. Sci. 2024, 27, 1090–1106. [Google Scholar] [CrossRef]
- McDonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Madureira, H.; Andresen, T. Planning for green infrastructure: The trade-offs of urban densification in European cities. Sustainability 2021, 13, 706. [Google Scholar] [CrossRef]
- Kabisch, N.; Qureshi, S.; Haase, D. Human–environment interactions in urban green spaces—A systematic review of contemporary issues and prospects for future research. Environ. Impact Assess. Rev. 2015, 50, 25–34. [Google Scholar] [CrossRef]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable intensification in agriculture: Premises and policies. Science 2013, 341, 33–34. [Google Scholar] [CrossRef]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef] [PubMed]
- Joppa, L.N.; Pfaff, A. Global protected area impacts. Proc. R. Soc. B. 2011, 278, 1633–1638. [Google Scholar] [CrossRef] [PubMed]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef] [PubMed]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Zhao, A.; Jin, Z.; Feng, L. Urban–rural gradient in vegetation changes and response to biogeochemical drivers and land use in the Guanzhong Plain Urban Agglomeration, China. Trans. Earth Environ. Sustain. 2025, 2, 377–395. [Google Scholar] [CrossRef]
- Yang, S.; Su, H. Multi-scenario simulation of ecosystem service values in the Guanzhong Plain Urban Agglomeration, China. Sustainability 2022, 14, 8812. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, D.; Qin, M.; Jing, W. Land use policy dynamics and spatial effects. Land Use Policy 2020, 99, 104958. [Google Scholar] [CrossRef]
- He, Y.; Lin, Y.; Zhou, G.; Zhu, Y.; Tang, K. Spatial pattern and drivers of urbanization in China’s mid-level developing urban agglomeration: A case study of Chang-Zhu-Tan. Reg. Sustain. 2021, 1, 83–97. [Google Scholar] [CrossRef]
- Fan, X.; Zhao, L. Land use policy and green utilization efficiency in border cities: Evidence from Northeastern China’s carbon reduction practice. Front. Environ. Sci. 2025, 13, 1582896. [Google Scholar] [CrossRef]
- Cui, X.; Li, S.; Wang, X.; Xue, X. Driving factors of urban land growth in Guangzhou and its implications for sustainable development. Front. Earth Sci. 2019, 13, 464–477. [Google Scholar] [CrossRef]
- Cheng, L.-L.; Tian, C.; Yin, T.-T. Identifying driving factors of urban land expansion using Google Earth Engine and machine-learning approaches in Mentougou District, China. Sci. Rep. 2022, 12, 16248. [Google Scholar] [CrossRef]
Subsystem | Indicator | Source | Spatial Resolution |
---|---|---|---|
Human Settlement Systems | Population Density (PD) | Global Human Settlement Layer (GHSL), European Commission [52] | 100 m |
Built-up Volume (BV) | Global Human Settlement Layer (GHSL), European Commission [52] | 100 m | |
Nighttime Light (NTL) | Global Annual Simulated VIIRS Nighttime Light Dataset (1992–2023) [53] | 500 m | |
Crop Systems | Cropping Intensity (CI) | Annual Dynamic Dataset of Global Cropping Intensity (2001–2019) [54] | 250 m |
Grains Production (GP) | Global Wheat Yield 4 km [55] | 4 km | |
Nitrogen Fertilizer Inputs (NFIs) | History of Anthropogenic Nitrogen Inputs (HaNI) [56] | 300 m | |
Forest Systems | Forest Management (FM) | Annual Maps of Global Forest Management Types (2001–2020) [57] | 250 m |
Forest Reserve (FR) | Boundary Data of National Nature Reserves [58] | - |
2000–2010 Change | 2010–2020 Change | Category Code | Type Description |
---|---|---|---|
Decrease | Decrease | 1 | Continuous decline type |
Decrease | No Change | 2 | Stabilized after decline type |
Decrease | Increase | 3 | Rebound after decline type |
No Change | Decrease | 4 | Delayed decline type |
No Change | No Change | 5 | Long-term stable type |
No Change | Increase | 6 | Delayed growth type |
Increase | Decrease | 7 | Fluctuating decline type |
Increase | No Change | 8 | Stabilized after growth type |
Increase | Increase | 9 | Continuous growth type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Wang, Y.; Wang, H.; Jiang, Y.; Wu, Y. Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration. Land 2025, 14, 1883. https://doi.org/10.3390/land14091883
Ding X, Wang Y, Wang H, Jiang Y, Wu Y. Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration. Land. 2025; 14(9):1883. https://doi.org/10.3390/land14091883
Chicago/Turabian StyleDing, Xiaohui, Yufang Wang, Heng Wang, Yu Jiang, and Yuetao Wu. 2025. "Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration" Land 14, no. 9: 1883. https://doi.org/10.3390/land14091883
APA StyleDing, X., Wang, Y., Wang, H., Jiang, Y., & Wu, Y. (2025). Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration. Land, 14(9), 1883. https://doi.org/10.3390/land14091883