Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
2.2. Trajectory Analysis
- (i)
- annual burned area quantification: the primary output calculates the spatial extent of the burned area (the binary variable of interest) for each year in the time series;
- (ii)
- Pixel-level fire frequency analysis: we calculated the total number of burning events and the frequency of state transitions (burned/unburned) for each pixel over the study period;
- (iii)
- trajectory classification: the algorithm assigned each pixel to a predefined trajectory category based on its complete fire history.
3. Results
3.1. Trajectories for Five Decades of Wildfire Occurrence in Mainland Portugal
3.2. Trajectories for 25-Year Intervals of Wildfire Occurrence in Mainland Portugal
3.3. Trajectories of Wildfire Occurrence at Regional Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupuy, J.L.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire Management in Mediterranean-Type Regions: Paradigm Change Needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernández-Muñoz, S. Fire Regime Changes in the Western Mediterranean Basin: From Fuel-Limited to Drought-Driven Fire Regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- McGee, T.K. Public Engagement in Neighbourhood Level Wildfire Mitigation and Preparedness: Case Studies from Canada, the US and Australia. J. Environ. Manag. 2011, 92, 2524–2532. [Google Scholar] [CrossRef]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems 2018, 21, 619–628. [Google Scholar] [CrossRef]
- Oliveira, S.; Gonçalves, A.; Zêzere, J.L. Reassessing Wildfire Susceptibility and Hazard for Mainland Portugal. Sci. Total Environ. 2021, 762, 143121. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.; Delogu, G.; Fernandes, P.; Ferreira, C.; McCaffrey, S.; McGee, T.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 1, 9. [Google Scholar] [CrossRef]
- Tonini, M.; Parente, J.; Pereira, M. Global Assessment of Land Cover Changes and Rural-Urban Interface in Portugal. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Spreading like Wildfire—The Rising Threat of Extraordinary Landscape Fires; A UNEP Rapid Response Assessment: Nairobi, Kenya, 2022. [Google Scholar]
- Oliveira, S.; Gonçalves, A.; Benali, A.; Sá, A.; Zêzere, J.L.; Pereira, J.M. Assessing Risk and Prioritizing Safety Interventions in Human Settlements Affected by Large Wildfires. Forests 2020, 11, 859. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Felix, J.; Oom, D.; Branco, A.; De Rigo, D.; Suarez-Moreno, M.; et al. Forest Fires in Europe, Middle East and North Africa 2022; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.L.; et al. Increased Likelihood of Heat-Induced Large Wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef]
- Beighley, M.; Hyde, A.C. Portugal Wildfire Management in a New Era: Assessing Fire Risks, Resources and Reforms; Centro de Estudos Florestais–Instituto Superior de Agronomia, Universidade de Lisboa: Lisboa, Portugal, 2018. [Google Scholar]
- Peris-Llopis, M.; Vastaranta, M.; Saarinen, N.; González-Olabarria, J.R.; García-Gonzalo, J.; Mola-Yudego, B. Post-Fire Vegetation Dynamics and Location as Main Drivers of Fire Recurrence in Mediterranean Forests. For. Ecol. Manag. 2024, 568, 122126. [Google Scholar] [CrossRef]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated Fires in Mediterranean Europe Due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef]
- Lozano, O.M.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.T.; Finney, M.A.; Del Giudice, L.; Scoccimarro, E.; Spano, D. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas. Risk Anal. 2017, 37, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Benali, A.; Aparício, B.A.; Gonçalves, A.; Oliveira, S. Defining Priorities for Wildfire Mitigation Actions at the Local Scale: Insights from a Novel Risk Analysis Method Applied in Portugal. Front. For. Glob. Change 2023, 6, 1270210. [Google Scholar] [CrossRef]
- Gonçalves, A.; Oliveira, S.; Zêzere, J.L. Assessing the Implementation of Wildfire Mitigation Initiatives for the Protection of Villages in Portugal. Trees For. People 2025, 21, 100935. [Google Scholar] [CrossRef]
- De Oliveira, E.; Colaço, C.M.; Fernandes, P.M.; Sequeira, A.C. Remains of Traditional Fire Use in Portugal: A acho Historical Analysis. Trees For. People 2023, 14, 100458. [Google Scholar] [CrossRef]
- Moreira, F.; Leal, M.; Bergonse, R.; Canadas, M.J.; Novais, A.; Oliveira, S.; Ribeiro, P.F.; Zêzere, J.L.; Santos, J.L. Recent Trends in Fire Regimes and Associated Territorial Features in a Fire-Prone Mediterranean Region. Fire 2023, 6, 60. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and Mapping Wildfire Ignition Risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef]
- Kanevski, M.; Pereira, M.G. Local Fractality: The Case of Forest Fires in Portugal. Physica A 2017, 479, 400–410. [Google Scholar] [CrossRef]
- Nunes, A.N.; Lourenço, L.; Castro Meira, A.C. Exploring Spatial Patterns and Drivers of Forest Fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- Bergonse, R.; Oliveira, S.; Zêzere, J.L.; Moreira, F.; Ribeiro, P.F.; Leal, M.; Lima e Santos, J.M. Biophysical Controls over Fire Regime Properties in Central Portugal. Sci. Total Environ. 2022, 810, 152314. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Carmo, M.; Rio, J.; Novo, I. Changes in the Seasonality of Fire Activity and Fire Weather in Portugal: Is the Wildfire Season Really Longer? Meteorology 2023, 2, 74–86. [Google Scholar] [CrossRef]
- Bilintoh, T.M.; Pontius, R.G.; Zhang, A. Methods to Compare Sites Concerning a Category’s Change during Various Time Intervals. GIScience Remote Sens. 2024, 61, 2409484. [Google Scholar] [CrossRef]
- DGT (Direção-Geral do Território). Carta de Uso e Ocupação do Solo de Portugal Continental Para 2018 (COS2018); DGT: Lisboa, Portugal, 2018. Available online: https://snig.dgterritorio.gov.pt (accessed on 5 May 2025).
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Felix, J.; Oom, D.; Branco, A.; De Rigo, D.; Suarez-Moreno, M.; et al. Forest Fires in Europe, Middle East and North Africa 2023; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar]
- ICNF Instituto. De Conservação da Natureza. e Florestas. Territórios Ardidos. 2025. Available online: https://geocatalogo.icnf.pt/metadados/area_ardida.html (accessed on 5 May 2025).
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Bilintoh, T.; Pontius, J.R. TimeseriesTrajectories: Analyzes The Trajectories of a Variable During a Time Series, R Package Version 1.0.3. 2025. Available online: https://github.com/bilintoh/timeseriesTrajectories (accessed on 5 May 2025).
- Pereira, M.G.; Gonçalves, N.; Amraoui, M. The Influence of Wildfire Climate on Wildfire Incidence: The Case of Portugal. Fire 2024, 7, 234. [Google Scholar] [CrossRef]
- Gómez-González, S.; Ojeda, F.; Fernandes, P.M. Portugal and Chile: Longing for Sustainable Forestry While Rising from the Ashes. Environ. Sci. Policy 2018, 81, 104–107. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Bergonse, R.; Oliveira, S.; Zêzere, J.L.; Moreira, F.; Ribeiro, P.F.; Leal, M.; Santos, J.M.L. Differentiating Fire Regimes and Their Biophysical Drivers in Central Portugal. Fire 2023, 6, 112. [Google Scholar] [CrossRef]
- Calheiros, T.; Benali, A.; Pereira, M.; Silva, J.; Nunes, J. Drivers of Extreme Burnt Area in Portugal: Fire Weather and Vegetation. Nat. Hazards Earth Syst. Sci. 2022, 22, 4019–4037. [Google Scholar] [CrossRef]
- Benali, A.; Guiomar, N.; Gonçalves, H.; Mota, B.; Silva, F.; Fernandes, P.M.; Mota, C.; Penha, A.; Santos, J.; Pereira, J.M.C.; et al. The Portuguese Large Wildfire Spread Database (PT-FireSprd). Earth Syst. Sci. Data 2023, 15, 3791–3818. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.C.; Silva, J.S.; Moreira, F.; Camia, A.; Ricotta, C.; Conedera, M. Fire Starts and Human Activities. In Towards Integrated Fire Management Outcomes of the European Project Fire Paradox; European Forest Institute: Joensuu, Finland, 2010; pp. 9–21. [Google Scholar]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional Variations in Wildfire Susceptibility of Land-Cover Types in Portugal: Implications for Landscape Management to Minimize Fire Hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of Fire Selectivity in Relation to Land Cover and Topography: A Comparison between Southern European Countries. Int. J. Wildland Fire 2014, 23, 620–630. [Google Scholar] [CrossRef]
- Calheiros, T.; Nunes, J.P.; Pereira, M.G. Recent Evolution of Spatial and Temporal Patterns of Burnt Areas and Fire Weather Risk in the Iberian Peninsula. Agric. For. Meteorol. 2020, 287, 107923. [Google Scholar] [CrossRef]
- Pais, S.; Aquilué, N.; Honrado, J.P.; Fernandes, P.M.; Regos, A. Optimizing Wildfire Prevention through the Integration of Prescribed Burning into ‘Fire-Smart’ Land-Use Policies. Fire 2023, 6, 457. [Google Scholar] [CrossRef]
- Fernandes, P.M. Empirical Support for the Use of Prescribed Burning as a Fuel Treatment. Curr. For. Rep. 2015, 1, 118–127. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Xanthopoulos, G. A Wildfire Risk Management Concept Based on a Social-Ecological Approach in the European Union: Fire Smart Territory. Int. J. Disaster Risk Reduct. 2016, 18, 138–153. [Google Scholar] [CrossRef]
- Oliveira, S.; Zêzere, J.L. Assessing the Biophysical and Social Drivers of Burned Area Distribution at the Local Scale. J. Environ. Manag. 2020, 264, 110449. [Google Scholar] [CrossRef] [PubMed]
- Duane, A.; Aquilué, N.; Gil-Tena, A.; Brotons, L. Integrating Fire Spread Patterns in Fire Modelling at Landscape Scale. Environ. Model. Softw. 2016, 86, 219–231. [Google Scholar] [CrossRef]
Region | Trajectory | 1975–1985 (%) | 1985–1995 (%) | 1995–2005 (%) | 2005–2015 (%) | 2015–2024 (%) | 1975–2000 (%) | 2000–2024 (%) |
---|---|---|---|---|---|---|---|---|
Portugal | 1 | 0.54 | 2.04 | 0.77 | 2.95 | 0.44 | 0.24 | 0.54 |
2 | 0.23 | 1.03 | 0.44 | 0.81 | 0.12 | 0.68 | 0.97 | |
3 | 2.39 | 0.91 | 2.62 | 0.34 | 0.97 | 0.53 | 0.51 | |
4 | 0.66 | 0.39 | 0.97 | 0.16 | 0.52 | 1.00 | 0.95 | |
5 | 0.23 | 0.21 | 0.30 | 0.13 | 0.07 | 0.08 | 0.10 | |
6 | 4.61 | 7.75 | 11.26 | 6.03 | 10.43 | 15.01 | 21.24 | |
8 | 91.34 | 87.67 | 83.64 | 89.59 | 87.45 | 82.45 | 75.69 |
Region | Trajectory | 1975–1985 (%) | 1985–1995 (%) | 1995–2005 (%) | 2005–2015 (%) | 2015–2024 (%) | 1975–2000 (%) | 2000–2024 (%) |
---|---|---|---|---|---|---|---|---|
Norte | 1 | 1.10 | 3.32 | 0.78 | 4.39 | 0.96 | 0.46 | 0.96 |
2 | 0.61 | 2.03 | 0.76 | 2.29 | 0.24 | 1.49 | 1.95 | |
3 | 4.00 | 1.01 | 3.84 | 0.55 | 1.76 | 0.91 | 0.75 | |
4 | 1.26 | 0.73 | 2.74 | 0.37 | 1.26 | 2.10 | 2.14 | |
5 | 0.41 | 0.32 | 0.51 | 0.42 | 0.14 | 0.17 | 0.27 | |
6 | 6.75 | 11.18 | 13.96 | 13.24 | 11.62 | 22.68 | 26.20 | |
8 | 85.87 | 81.41 | 77.40 | 78.75 | 84.02 | 72.19 | 67.73 | |
Algarve | 1 | 0.04 | 0.50 | 0.69 | 0.30 | 0.05 | 0.01 | 0.01 |
2 | 0.04 | 0.01 | 1.47 | 0.00 | 0.00 | 0.07 | 0.05 | |
3 | 0.51 | 2.10 | 0.25 | 0.05 | 0.01 | 0.05 | 0.01 | |
4 | 0.01 | 0.06 | 0.05 | - | - | 0.01 | 0.00 | |
5 | - | 0.00 | 0.00 | - | - | - | - | |
6 | 3.44 | 3.55 | 17.94 | 5.61 | 9.99 | 9.83 | 27.93 | |
8 | 95.96 | 93.78 | 79.60 | 94.04 | 89.96 | 90.02 | 72.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, B.; Gonçalves, A.; Oliveira, S.; Viana, C.M. Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024). Land 2025, 14, 1872. https://doi.org/10.3390/land14091872
Barbosa B, Gonçalves A, Oliveira S, Viana CM. Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024). Land. 2025; 14(9):1872. https://doi.org/10.3390/land14091872
Chicago/Turabian StyleBarbosa, Bruno, Ana Gonçalves, Sandra Oliveira, and Cláudia M. Viana. 2025. "Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024)" Land 14, no. 9: 1872. https://doi.org/10.3390/land14091872
APA StyleBarbosa, B., Gonçalves, A., Oliveira, S., & Viana, C. M. (2025). Mapping Long-Term Wildfire Dynamics in Portugal Using Trajectory Analysis (1975–2024). Land, 14(9), 1872. https://doi.org/10.3390/land14091872