A Participatory SWOT-Based Approach to Nature-Based Solutions Within Urban Fragile Territories: Operational Barriers and Strategic Roadmaps
Abstract
1. Introduction
2. Materials and Methods
2.1. Workshop Organization
- Table A: Assessing Natural Capital in Urban and Peri-Urban ContextsThis thematic table examines and defines innovative approaches and tools for assessing natural capital in urban and peri-urban contexts, focusing on the identification and consideration of social, economic, and ecological dynamics. Opportunities and limitations of existing metrics are explored with respect to the high complexity of assessment demands, to identify emerging assessment needs to develop tools adaptable to different spatial contexts. The goal is to explore evaluation tools to support local governments and planners in implementing effective policies for natural capital management in urban and peri-urban contexts.
- Table B: Co-design and Planning of NBSs for Climate Risk and Environmental ChangeThis thematic table addresses NBS co-designs as a tool to support the development of planning roadmaps as a response to climate risks. The goal is to propose cities that are more resilient, flexible, and able to adapt to climate change by exploring roadmaps to involve different actors in decision-making.
- Table C: Understanding and Designing Multi-Functional NBS ScenariosThis thematic table aims to develop planning roadmaps that enhance the design, implementation, and long-term maintenance of multi-functional and multi-stakeholder NBSs scenarios. These roadmaps seek to incorporate and address the diverse demands for ES expressed by different stakeholders, while addressing environmental, social, and economic challenges specific to vulnerable territories.
- It structured the initial diagnosis of the state of knowledge, governance, and implementation challenges around NBSs and ES;
- It facilitated the comparison of viewpoints and the identification of shared concerns and priorities;
- It grounded the subsequent development of design and planning roadmaps in a systematic reflection process.
2.2. Methodological Phases
- Phase 1: Individual Reflection and Collective Brainstorming
- Phase 2: Collaborative SWOT Matrix Development
- Phase 3: Roadmaps Formulation
- Phase 4: Narrative Synthesis and Submission
3. Results
3.1. Stakeholders Involved in the Three Thematic Tables
3.2. Thematic Table A—Assessing Natural Capital in Urban and Peri-Urban Contexts
3.2.1. Emerging Themes in Thematic Table A
3.2.2. Proposed Roadmaps by Participants of Thematic Table A
3.3. Thematic Table B—Co-Design and Planning of NBSs for Climate Risk and Environmental Change
3.3.1. Emerging Themes in Thematic Table B
3.3.2. Proposed Roadmaps by Participants of Thematic Table B
3.4. Thematic Table C—Understanding and Designing Multi-Functional NBS Scenarios in a Multi-Attribute and Multi-ES Perspective
3.4.1. Emerging Themes in Thematic Table C
3.4.2. Proposed Roadmaps by Participants of Thematic Table C
4. Discussion
4.1. Shared Emerging Themes Among Working Tables
4.2. Roadmaps for Enhancing NBS Governance in Fragile Territories
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. SWOT Matrix Developed in Table A, B, and C
Table A: Assessing Natural Capital in Urban and Peri-Urban Contexts | |
Strengths: S1—Evaluation as supporting tool; S2—Multi-dimensionality; S3—Multi-scalarity; S4—Management of possible conflicts. | Weaknesses: W1—Issues in estimating NBS costs and benefits in monetary terms; W2—Lack of data and context-based information; W3—Model(s) validation; |
Opportunities: O1—Transparency and integration of different values and disciplines; O2—Effective economic resources allocation; O3—Interdisciplinary and multidimensional process. | Threats: T1—Limited knowledge of NBS meaning and features; T2—Difficulty in addressing long-term effects in the ex-ante phase; |
Table B: Co-design and Planning of NBSs for Climate Risk and Environmental Change | |
Strengths: S1—Stakeholder engagement in post-intervention phases; S2—Local stewardship for ensuring long-term NBS maintenance. | Weaknesses: W1—Absence of clear criteria for stakeholder selection; W2—Knowledge and awareness gaps among stakeholders; W3—Risk of disengagement from experienced participants. |
Opportunities: O1—Increasing availability of EU projects and funding frameworks promoting knowledge exchange and co-creation; O2—Building shared understanding through preparatory sessions and educational program. | Threats: T1—Terminological ambiguity: lack of common definitions; T2—Temporal mismatches between political deadlines and ecological processes; T3—Institutional fragmentation limiting continuity of participatory processes; T4—Lack of long-term financial or legal support for civic management initiatives. |
Table C: Understanding and designing multi-functional NBS scenarios | |
Strengths: S1—Versatility of solutions and multi-systemic capacity of the project; S2—Spatial optimization; S3—Multi-functionality facilitates communication of the problems to be addressed. | Weaknesses: W1—Costs: implementation and maintenance; W2—Difficulty in assigning responsibilities; W3—Difficulty in assessing the health and safety of the project and its impacts on citizens; W4—Difficulty in communicating project effectiveness and performance to citizens. |
Opportunities: O1—Multi-layered, multi-scale approach with access to best practices and criticalities from other projects; O2—Multi-disciplinary expertise; O3—Access to multiple strategies/strategic designs from different disciplines. | Threats: T1—Uncertainty of the reference environment (climate change + political context); T2—Availability of space; T3—Misalignment between innovation, legislation, and production/supply chains; T4—Prescriptive (rather than performance-based) regulations; T5—Orphan projects—risk of project abandonment. |
1 | CRAFT is the Competence Center for Anti-Fragile Territories (CRAFT), an initiative of the Department of Architecture and Urban Studies (DAStU) of the Politecnico di Milano. Established under the 2023–2027 Department of Excellence program, CRAFT focuses on developing methodologies and design approaches to address territorial fragility and fragmented decision-making. Through research, education, and collaboration with public institutions, it aims to foster anti-fragile capacities to navigate uncertainty, complexity, and socio-spatial challenges. |
2 | Agritech Center. Available online: https://agritechcenter.it/it/ (accessed on 29 August 2025). |
3 | NBFC (National Biodiversity Future Center). Available online: https://www.nbfc.it (accessed on 29 August 2025). |
4 | Agenzia delle Entrate—Osservatorio del Mercato Immobiliare (OMI). Available online: https://www.agenziaentrate.gov.it/portale/aree-tematiche/osservatorio-del-mercato-immobiliare-omi (accessed on 29 August 2025). |
5 | GrowGreen. Available online: https://growgreenproject.eu/ (accessed on 29 August 2025). |
References
- Garau, C.; Nesi, P.; Zamperlin, P. Beyond the Limits of the City: Strategies to Regenerate Fragile Territories. In Achieving Sustainability in Ukraine Through Military Brownfields Redevelopment; Springer: Berlin/Heidelberg, Germany, 2024; pp. 219–230. [Google Scholar]
- Guo, R.; Zhao, G. Boundaries, Territorial Disputes, and Water Insecurity: Evidence from the Lower Mekong Basin. In Managing Fragile Regions; Springer: New York, NY, USA, 2011; pp. 81–103. [Google Scholar]
- Ryan, C. (Gendered) Resilience in Community-Based Natural Resource Management in Fragile and Conflict-Affected Settings. J. Int. Relations Dev. 2022, 25, 902–924. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of Land Use/Land Cover Changes on Ecosystem Services in Ecologically Fragile Regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef]
- Boyanova, K.; Nedkov, S.; Burkhard, B. Applications of GIS-Based Hydrological Models in Mountain Areas in Bulgaria for Ecosystem Services Assessment: Issues and Advantages. In Sustainable Mountain Regions: Challenges and Perspectives in Southeastern Europe; Springer International Publishing: Cham, Switzerland, 2016; pp. 35–51. [Google Scholar]
- Marando, F.; Salvatori, E.; Sebastiani, A.; Fusaro, L.; Manes, F. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island Effect Mitigation in the Municipality of Rome, Italy. Ecol. Modell. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Sallustio, L.; Quatrini, V.; Geneletti, D.; Corona, P.; Marchetti, M. Assessing Land Take by Urban Development and Its Impact on Carbon Storage: Findings from Two Case Studies in Italy. Environ. Impact Assess. Rev. 2015, 54, 80–90. [Google Scholar] [CrossRef]
- Ellena, M.; Ballester, J.; Mercogliano, P.; Ferracin, E.; Barbato, G.; Costa, G.; Ingole, V. Social Inequalities in Heat-Attributable Mortality in the City of Turin, Northwest of Italy: A Time Series Analysis from 1982 to 2018. Environ. Health A Glob. Access Sci. Source 2020, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Pyrgou, A.; Santamouris, M. Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming. Int. J. Environ. Res. Public Health 2018, 15, 1571. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.; Lionello, P.; Lla-sat, M.; Paz, S.; et al. Risks Associated to Climate and Environmental Changes in the Mediterranean Region. Br. J. Psychiatry 2019, 111, 1009–1010. [Google Scholar]
- Beghelli, S.; Guastella, G.; Pareglio, S. Governance Fragmentation and Urban Spatial Expansion: Evidence from Europe and the United States. Rev. Reg. Res. 2020, 40, 13–32. [Google Scholar] [CrossRef]
- Mears, M.; Brindley, P.; Jorgensen, A.; Maheswaran, R. Population-Level Linkages between Urban Greenspace and Health Inequality: The Case for Using Multiple Indicators of Neighbourhood Greenspace. Health Place 2020, 62, 102284. [Google Scholar] [CrossRef]
- Kato-Huerta, J.; Geneletti, D. A Distributive Environmental Justice Index to Support Green Space Planning in Cities. Landsc. Urban Plan. 2023, 229, 104592. [Google Scholar] [CrossRef]
- Halpern, B.S.; Klein, C.J.; Brown, C.J.; Beger, M.; Grantham, H.S.; Mangubhai, S.; Ruckelshaus, M.; Tulloch, V.J.; Watts, M.; White, C.; et al. Achieving the Triple Bottom Line in the Face of Inherent Trade-Offs among Social Equity, Economic Return, and Conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6229–6234. [Google Scholar] [CrossRef]
- Di Pirro, E.; Sallustio, L.; Sgrigna, G.; Marchetti, M.; Lasserre, B. Strengthening the Implementation of National Policy Agenda in Urban Areas to Face Multiple Environmental Stressors: Italy as a Case Study. Environ. Sci. Policy 2022, 129, 1–11. [Google Scholar] [CrossRef]
- Iglesias-Pascual, R.; Benassi, F.; Hurtado-Rodríguez, C. Social Infrastructures and Socio-Economic Vulnerability: A Socio-Territorial Integration Study in Spanish Urban Contexts. Cities 2023, 132, 104109. [Google Scholar] [CrossRef]
- Adger, W.N.; Safra de Campos, R.; Siddiqui, T.; Szaboova, L. Commentary: Inequality, Precarity and Sustainable Ecosystems as Elements of Urban Resilience. Urban Stud. 2020, 57, 1588–1595. [Google Scholar] [CrossRef]
- Zulian, G.; Marando, F.; Vogt, P.; Barbero Vignola, G.; Babí Almenar, J.; Zurbarán-Nucci, M.; Prince, K. BiodiverCities: A Roadmap to Enhance the Biodiversity and Green Infrastructure of European Cities by 2030. Second Report, JRC129888, 2nd ed.; Publications Office of the European Union: Luxembourg, 2022; ISBN 978-92-76-57023-3. [Google Scholar]
- Hérivaux, C.; Le Coent, P. Introducing Nature into Cities or Preserving Existing Peri-Urban Ecosystems? Analysis of Preferences in a Rapidly Urbanizing Catchment. Sustainability 2021, 13, 587. [Google Scholar] [CrossRef]
- Cortinovis, C.; Geneletti, D.; Hedlund, K. Synthesizing Multiple Ecosystem Service Assessments for Urban Planning: A Review of Approaches, and Recommendations. Landsc. Urban Plan. 2021, 213, 104129. [Google Scholar] [CrossRef]
- Marselle, M.R.; Hartig, T.; Cox, D.T.C.; de Bell, S.; Knapp, S.; Lindley, S.; Triguero-Mas, M.; Böhning-Gaese, K.; Braubach, M.; Cook, P.A.; et al. Pathways Linking Biodiversity to Human Health: A Conceptual Framework. Environ. Int. 2021, 150, 106420. [Google Scholar] [CrossRef]
- European Commission. Nature-Based Solutions: State of the Art in EU-Funded Projects; Freitas, T., Vandewoestijne, S., Wild, T., Eds.; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Valencia, S.C.; Simon, D.; Croese, S.; Nordqvist, J.; Oloko, M.; Sharma, T.; Taylor Buck, N.; Versace, I. Adapting the Sustainable Development Goals and the New Urban Agenda to the City Level: Initial Reflections from a Comparative Research Project. Int. J. Urban Sustain. Dev. 2019, 11, 4–23. [Google Scholar] [CrossRef]
- Escobedo, F.J.; Giannico, V.; Jim, C.Y.; Sanesi, G.; Lafortezza, R. Urban Forests, Ecosystem Services, Green Infrastructure and Nature-Based Solutions: Nexus or Evolving Metaphors? Urban For. Urban Green. 2019, 37, 3–12. [Google Scholar] [CrossRef]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A Framework for Assessing and Implementing the Co-Benefits of Nature-Based Solutions in Urban Areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- van der Jagt, A.; Tozer, L.; Toxopeus, H.; Runhaar, H. Policy Mixes for Mainstreaming Urban Nature-Based Solutions: An Analysis of Six European Countries and the European Union. Environ. Sci. Policy 2023, 139, 51–61. [Google Scholar] [CrossRef]
- Davis, M.; Abhold, K.; Mederake, L.; Knoblauch, D. NBS in European and National Policy Framework. Naturvation 2018, 50, 1–52. [Google Scholar]
- Castellar, J.A.C.; Popartan, L.A.; Pueyo-Ros, J.; Atanasova, N.; Langergraber, G.; Säumel, I.; Corominas, L.; Comas, J.; Acuña, V. Nature-Based Solutions in the Urban Context: Terminology, Classification and Scoring for Urban Challenges and Ecosystem Services. Sci. Total Environ. 2021, 779, 146237. [Google Scholar] [CrossRef] [PubMed]
- Haase, D.; Frantzeskaki, N.; Elmqvist, T. Ecosystem Services in Urban Landscapes: Practical Applications and Governance Implications. Ambio 2014, 43, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-Based Solutions to Climate Change Mitigation and Adaptation in Urban Areas: Perspectives on Indicators, Knowledge Gaps, Barriers, and Opportunities for Action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef]
- Curci, F.; Chiffi, D. Fragility and Antifragility in Cities and Regions; Edward Elgar Publishing: Cheltenham, UK, 2024; ISBN 9781035312542. [Google Scholar]
- Dunlop, T.; Khojasteh, D.; Cohen-Shacham, E.; Glamore, W.; Haghani, M.; van den Bosch, M.; Rizzi, D.; Greve, P.; Felder, S. The Evolution and Future of Research on Nature-Based Solutions to Address Societal Challenges. Commun. Earth Environ. 2024, 5, 132. [Google Scholar] [CrossRef]
- Falconi, S.M.; Palmer, R.N. An Interdisciplinary Framework for Participatory Modeling Design and Evaluation—What Makes Models Effective Participatory Decision Tools? Water Resour. Res. 2017, 53, 1625–1645. [Google Scholar] [CrossRef]
- Sugiyanto, C.; Resosudarmo, B.P. Understanding the Determinants of Livelihood Recovery After a Large Earthquake. In Managing Fragile Regions; Springer: New York, NY, USA, 2011; pp. 105–120. [Google Scholar]
- Gray, S.; Voinov, A.; Paolisso, M.; Jordan, R.; BenDor, T.; Bommel, P.; Glynn, P.; Hedelin, B.; Hubacek, K.; Introne, J.; et al. Purpose, Processes, Partnerships, and Products: Four Ps to Advance Participatory Socio-Environmental Modeling. Ecol. Appl. 2018, 28, 46–61. [Google Scholar] [CrossRef]
- Bremer, L.L.; Auerbach, D.A.; Goldstein, J.H.; Vogl, A.L.; Shemie, D.; Kroeger, T.; Nelson, J.L.; Benítez, S.P.; Calvache, A.; Guimarães, J.; et al. One Size Does Not Fit All: Natural Infrastructure Investments within the Latin American Water Funds Partnership. Ecosyst. Serv. 2016, 17, 217–236. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Andrade, A.; Dalton, J.; Dudley, N.; Jones, M.; Kumar, C.; Maginnis, S.; Maynard, S.; Nelson, C.R.; Renaud, F.G.; et al. Core Principles for Successfully Implementing and Upscaling Nature-Based Solutions. Environ. Sci. Policy 2019, 98, 20–29. [Google Scholar] [CrossRef]
- Forester, J. The Deliberative Practitioner: Encouraging Participatory Planning Processes; The MIT Press: Cambridge, MA, USA, 2001; p. 305. ISBN 9780262561228. [Google Scholar]
- Healey, P. Collaborative Planning. Collab. Plan. 1997. [Google Scholar] [CrossRef]
- Frantzeskaki, N.; McPhearson, T.; Collier, M.J.; Kendal, D.; Bulkeley, H.; Dumitru, A.; Walsh, C.; Noble, K.; Van Wyk, E.; Ordóñez, C.; et al. Nature-Based Solutions for Urban Climate Change Adaptation: Linking Science, Policy, and Practice Communities for Evidence-Based Decision-Making. Bioscience 2019, 69, 455–466. [Google Scholar] [CrossRef]
- Gürel, E. Swot analysis: A theoretical review. J. Int. Soc. Res. 2017, 10, 994–1006. [Google Scholar] [CrossRef]
- Bottero, M.; Assumma, V.; Caprioli, C.; Dell’Ovo, M. Decision Making in Urban Development: The Application of a Hybrid Evaluation Method for a Critical Area in the City of Turin (Italy). Sustain. Cities Soc. 2021, 72, 103028. [Google Scholar] [CrossRef]
- Tzoulas, K.; Galan, J.; Venn, S.; Dennis, M.; Pedroli, B.; Mishra, H.; Haase, D.; Pauleit, S.; Niemelä, J.; James, P. A Conceptual Model of the Social–Ecological System of Nature-Based Solutions in Urban Environments. Ambio 2021, 50, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Dell’Anna, F.; Dell’Ovo, M. A Stakeholder-Based Approach Managing Conflictual Values in Urban Design Processes. The Case of an Open Prison in Barcelona. Land Use Policy 2022, 114, 105934. [Google Scholar] [CrossRef]
- Assumma, V.; Quagliolo, C.; Comino, E.; Mondini, G. Definition of an Integrated Theoretical Framework to Assess the NBS Suitability in Flood Risk Areas. In Computational Science and Its Applications—ICCSA 2022 Workshops; Lecture Notes in Computer Science; Springer: Cham, Switzerland; Volume 13380, pp. 228–237. [CrossRef]
- Cerreta, M.; Muccio, E.; Poli, G.; Regalbuto, S.; Romano, F. City-Port Circular Model: Towards a Methodological Framework for Indicators Selection. In Computational Science and Its Applications—ICCSA 2020 Workshops; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12251, pp. 855–868. [Google Scholar] [CrossRef]
- Amico, S.; Cerreta, M.; Galante, P.; Serino, R. Un approccio di rigenerazione place-based per il territorio dei fari: Il “MA” degli edifici-lanterna. BDC. Boll. Del Cent. Calza Bini 2019, 19, 441–471. [Google Scholar] [CrossRef]
- Caracelli, V.J.; Greene, J.C. Data Analysis Strategies for Mixed-Method Evaluation Designs. Educ. Eval. Policy Anal. 1993, 15, 195–207. [Google Scholar] [CrossRef]
- Lang, D.J.; Wiek, A.; Bergmann, M.; Stauffacher, M.; Martens, P.; Moll, P.; Swilling, M.; Thomas, C.J. Transdisciplinary Research in Sustainability Science: Practice, Principles, and Challenges. Sustain. Sci. 2012, 7, 25–43. [Google Scholar] [CrossRef]
- Moser, S.C. Can Science on Transformation Transform Science? Lessons from Co-Design. Curr. Opin. Environ. Sustain. 2016, 20, 106–115. [Google Scholar] [CrossRef]
- Kişi, N. A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey. Sustainability 2019, 11, 964. [Google Scholar] [CrossRef]
- Weihrich, H. The TOWS Matrix—A Tool for Situational Analysis. Long Range Plann. 1982, 15, 54–66. [Google Scholar] [CrossRef]
- Kramar, U.; Dragan, D.; Topolšek, D. The Holistic Approach to Urban Mobility Planning with a Modified Focus Group, SWOT, and Fuzzy Analytical Hierarchical Process. Sustainability 2019, 11, 6599. [Google Scholar] [CrossRef]
- Buijs, A.; Hansen, R.; Van der Jagt, S.; Ambrose-Oji, B.; Elands, B.; Lorance Rall, E.; Mattijssen, T.; Pauleit, S.; Runhaar, H.; Stahl Olafsson, A.; et al. Mosaic Governance for Urban Green Infrastructure: Upscaling Active Citizenship from a Local Government Perspective. Urban For. Urban Green. 2019, 40, 53–62. [Google Scholar] [CrossRef]
- Pauleit, S.; Zölch, T.; Hansen, R.; Randrup, T.B.; Konijnendijk van den Bosch, C. Nature-Based Solutions and Climate Change—Four Shades of Green. In Theory and Practice of Urban Sustainability Transitions; Springer: Cham, Switzerland, 2017; pp. 29–49. ISBN 978-3-319-56091-5. [Google Scholar]
- Arcidiacono, A.; Ronchi, S.; Salata, S. Managing Multiple Ecosystem Services for Landscape Conservation: A Green Infrastructure in Lombardy Region. Procedia Eng. 2016, 161, 2297–2303. [Google Scholar] [CrossRef]
- Senes, G.; Fumagalli, N.; Ferrario, P.S.; Rovelli, R.; Sigon, R. Definition of a Land Quality Index to Preserve the Best Territories from Future Land Take. An Application to a Study Area in Lombardy (Italy). J. Agric. Eng. 2020, 51, 43–55. [Google Scholar] [CrossRef]
- Datola, G.; Oppio, A. NBS Design and Implementation in Urban Systems: Dimensions, Challenges and Issues to Construct a Comprehensive Evaluation Framework. In Computational Science and Its Applications—ICCSA 2023 Workshops; ICCSA 2023; Lecture Notes in Computer Science; Gervasi, O., et al., Eds.; Springer: Cham, Switzerland, 2023; Volume 14108, pp. 444–454. ISBN 9783031371165. [Google Scholar]
- Gómez Martín, E.; Máñez Costa, M.; Egerer, S.; Schneider, U.A. Assessing the Long-Term Effectiveness of Nature-Based Solutions under Different Climate Change Scenarios. Sci. Total Environ. 2021, 794, 148515. [Google Scholar] [CrossRef]
- Azadgar, A.; Luciani, G.; Nyka, L. Spatial Allocation of Nature-Based Solutions in the Form of Public Green Infrastructure in Relation to the Socio-Economic District Profile–a GIS-Based Comparative Study of Gdańsk and Rome. Land Use Policy 2025, 150, 107454. [Google Scholar] [CrossRef]
- Karrasch, L.; Grothmann, T.; Michel, T.A.; Wesselow, M.; Wolter, H.; Unger, A.; Wegner, A.; Giebels, D.; Siebenhüner, B. Integrating Knowledge within and between Knowledge Types in Transdisciplinary Sustainability Research: Seven Case Studies and an Indicator Framework. Environ. Sci. Policy 2022, 131, 14–25. [Google Scholar] [CrossRef]
- Ghafourian, M.; Stanchev, P.; Mousavi, A.; Katsou, E. Economic Assessment of Nature-Based Solutions as Enablers of Circularity in Water Systems. Sci. Total Environ. 2021, 792, 148267. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.P.; Guiomar, N. Nature-based Solutions: The Need to Increase the Knowledge on Their Potentialities and Limits. L. Degrad. Dev. 2018, 29, 1925–1939. [Google Scholar] [CrossRef]
- Di Pirro, E.; Roebeling, P.; Sallustio, L.; Marchetti, M.; Lasserre, B. Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas. Land 2023, 12, 603. [Google Scholar] [CrossRef]
- Martin, J.G.C.; Scolobig, A.; Linnerooth-Bayer, J.; Liu, W.; Balsiger, J. Catalyzing Innovation: Governance Enablers of Nature-Based Solutions. Sustainability 2021, 13, 1971. [Google Scholar] [CrossRef]
- Babí Almenar, J.; Rugani, B.; Geneletti, D.; Brewer, T. Integration of Ecosystem Services into a Conceptual Spatial Planning Framework Based on a Landscape Ecology Perspective. Landsc. Ecol. 2018, 33, 2047–2059. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Valkenburg, R.; den Ouden, E. Uptake and Implementation of Nature-Based Solutions: An Analysis of Barriers Using Interpretive Structural Modeling. J. Environ. Manag. 2020, 270, 110749. [Google Scholar] [CrossRef]
- Sarabi, S.E.; Han, Q.; Romme, A.G.L.; de Vries, B.; Wendling, L. Key Enablers of and Barriers to the Uptake and Implementation of Nature-Based Solutions in Urban Settings: A Review. Resources 2019, 8, 121. [Google Scholar] [CrossRef]
- Faivre, N.; Fritz, M.; Freitas, T.; de Boissezon, B.; Vandewoestijne, S. Nature-Based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environ. Res. 2017, 159, 509–518. [Google Scholar] [CrossRef]
- Ascione, G.S.; Cuomo, F.; Mariotti, N.; Corazza, L. Urban Living Labs, Circular Economy and Nature-Based Solutions: Ideation and Testing of a New Soil in the City of Turin Using a Multi-Stakeholder Perspective. Circ. Econ. Sustain. 2021, 1, 545–562. [Google Scholar] [CrossRef]
- Basnou, C.; Pino, J.; Davies, C.; Winkel, G.; De Vreese, R. Co-Design Processes to Address Nature-Based Solutions and Ecosystem Services Demands: The Long and Winding Road Towards Inclusive Urban Planning. Front. Sustain. Cities 2020, 2, 572556. [Google Scholar] [CrossRef]
- Mendonça, R.; Roebeling, P.; Fidélis, T.; Saraiva, M. Policy Instruments to Encourage the Adoption of Nature-Based Solutions in Urban Landscapes. Resources 2021, 10, 81. [Google Scholar] [CrossRef]
- Malekpour, S.; Tawfik, S.; Chesterfield, C. Designing Collaborative Governance for Nature-Based Solutions. Urban For. Urban Green. 2021, 62, 127177. [Google Scholar] [CrossRef]
- Sarabi, S.; Han, Q.; Romme, A.G.L.; de Vries, B.; Valkenburg, R.; Den Ouden, E.; Zalokar, S.; Wendling, L. Barriers to the Adoption of Urban Living Labs for Nbs Implementation: A Systemic Perspective. Sustainabililty 2021, 13, 13276. [Google Scholar] [CrossRef]
- Schröter, B.; Hack, J.; Hüesker, F.; Kuhlicke, C.; Albert, C. Beyond Demonstrators—Tackling Fundamental Problems in Amplifying Nature-Based Solutions for the Post-COVID-19 World. npj Urban Sustain. 2022, 2, 4. [Google Scholar] [CrossRef]
- Chelli, A.; Brander, L.; Geneletti, D. Cost-Benefit Analysis of Urban Nature-Based Solutions: A Systematic Review of Approaches and Scales with a Focus on Benefit Valuation. Ecosyst. Serv. 2025, 71, 101684. [Google Scholar] [CrossRef]
- Dell’Ovo, M.; Datola, G.; Maiullari, D.; Oppio, A.; Schretzenmayr, M. Green Gentrification: A Literature Review of Trends, Challenges, and Research Opportunities. In Proceedings of the Computational Science and Its Applications—ICCSA 2025 Workshops, Istanbul, Turkey, 30 June–3 July 2025; Gervasi, O., Murgante, B., Garau, C., Karaca, Y., Faginas Lago, M.N., Scorza, F., Braga, A.C., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 222–233. [Google Scholar]
- Dell’Ovo, M.; Ronchi, S.; Regaiolo, I.; De Toni, A.; Alba, R.; Caprio, E.; Cochis, F.; Chamberlain, D.E. Planning for Environmental Justice. A Multi-Methodological Approach. In Proceedings of the Computational Science and Its Applications—ICCSA 2025 Workshops; Gervasi, O., Murgante, B., Garau, C., Karaca, Y., Faginas Lago, M.N., Scorza, F., Braga, A.C., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 53–66. [Google Scholar]
- Barton, D.N.; Immerzeel, B.; Brander, L.; Grêt-Regamey, A.; Kato Huerta, J.; Kretsch, C.; Le Clech, S.; Rendón, P.; Seguin, J.; Arámbula Coyote, M.; et al. Increasing Uptake of Ecosystem Service Assessments: Best Practice Check-Lists for Practitioners in Europe. One Ecosyst. 2024, 9, 1–25. [Google Scholar] [CrossRef]
- Antenucci, E.; Di Pirro, E.; di Cristofaro, M.; Garfì, V.; Marchetti, M.; Lasserre, B. Beneficial or Impactful Management? Life Cycle Assessment and i-Tree Canopy to Evaluate the Net Environmental Benefits of Mediterranean Urban Forests. Urban For. Urban Green. 2025, 107, 128800. [Google Scholar] [CrossRef]
- Mattijssen, T.J.M.; van der Jagt, A.P.N.; Buijs, A.E.; Elands, B.H.M.; Erlwein, S.; Lafortezza, R. The Long-Term Prospects of Citizens Managing Urban Green Space: From Place Making to Place-Keeping? Urban For. Urban Green. 2017, 26, 78–84. [Google Scholar] [CrossRef]
- van der Jagt, A.P.N.; Kiss, B.; Hirose, S.; Takahashi, W. Nature-Based Solutions or Debacles? The Politics of Reflexive Governance for Sustainable and Just Cities. Front. Sustain. Cities 2021, 2, 583833. [Google Scholar] [CrossRef]
- van Lierop, M.; Dobbs, C.; Flores, C.; van der Jagt, A.; Skiba, A.; Locosselli, G.M.; Duarte, D.; Buijs, A.; Zingraff-Hamed, A.; Pauleit, S. Monitoring and Assessment in the Context of Governance of Nature-Based Solutions. Shared Challenges and Opportunities in CELAC and EU Cities. Nature-Based Solut. 2024, 6, 100170. [Google Scholar] [CrossRef]
- Andersson, E.; Borgström, S.; Mcphearson, T. Double Insurance in Dealing with Extremes: Ecological and Social Factors for Making Nature-Based Solutions Last. In Nature-Based Solutions to Climate Change Adaptation in Urban Areas; Springer Nature: Cham, Switzerland, 2017; pp. 51–64. ISBN 978-3-319-53750-4. [Google Scholar]
- Borgström, S.T.; Elmqvist, T.; Angelstam, P.; Alfsen-Norodom, C. Scale Mismatches in Management of Urban Landscapes. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef]
- Morano, P.; Guarini, M.R.; Tajani, F.; Di Liddo, F.; Anelli, D. Incidence of Different Types of Urban Green Spaces on Property Prices. A Case Study in the Flaminio District of Rome (Italy). In Computational Science and Its Applications—ICCSA 2019; Misra, S., Gervasi, O., Murgante, B., Stankova, E., Korkhov, V., Torre, C., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 23–34. ISBN 978-3-030-24305-0. [Google Scholar]
- Riccioli, F.; Fratini, R.; Boncinelli, F. The Impacts in Real Estate of Landscape Values: Evidence from Tuscany (Italy). Sustainability 2021, 13, 2236. [Google Scholar] [CrossRef]
- Sarnataro, M.; Barbati, M.; Greco, S. A Portfolio Approach for the Selection and the Timing of Urban Planning Projects. Socioecon. Plann. Sci. 2021, 75, 100908. [Google Scholar] [CrossRef]
- Lahtinen, T.J.; Hämäläinen, R.P.; Liesiö, J. Portfolio Decision Analysis Methods in Environmental Decision Making. Environ. Model. Softw. 2017, 94, 73–86. [Google Scholar] [CrossRef]
- Barbati, M.; Greco, S.; Kadziński, M.; Słowiński, R. Optimization of Multiple Satisfaction Levels in Portfolio Decision Analysis. Omega 2018, 78, 192–204. [Google Scholar] [CrossRef]
- Liesiö, J.; Salo, A.; Keisler, J.M.; Morton, A. Portfolio Decision Analysis: Recent Developments and Future Prospects. Eur. J. Oper. Res. 2021, 293, 811–825. [Google Scholar] [CrossRef]
- Kampelmann, S. Knock on Wood: Business Models for Urban Wood Could Overcome Financing and Governance Challenges Faced by Nature-Based Solutions. Urban For. Urban Green. 2021, 62, 127108. [Google Scholar] [CrossRef]
- Russo, A. Towards Nature-Positive Smart Cities: Bridging the Gap Between Technology and Ecology. Smart Cities 2025, 8, 26. [Google Scholar] [CrossRef]
- Caggiano, H.; Landau, L.F.; Campbell, L.K.; Johnson, M.L.; Svendsen, E.S. Civic Stewardship and Urban Climate Governance: Opportunities for Transboundary Planning. J. Plan. Educ. Res. 2024, 44, 1620–1633. [Google Scholar] [CrossRef]
- Naumann, S.; Burgos Cuevas, N.; Davies, C.; Bradley, S.; Mahmoud, I.H.; Arlati, A. Harnessing the Power of Collaboration for Nature-Based Solutions; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-04522-0. [Google Scholar]
- Martin, J.G.C.; Scolobig, A.; Linnerooth-Bayer, J.A.; Irshaid, J.; Aguilera Rodriguez, J.J.; Fresolone-Caparrós, A.; Oen, A. The Nature-Based Solution Implementation Gap: A Review of Nature-Based Solution Governance Barriers and Enablers. J. Environ. Manage. 2025, 388, 126007. [Google Scholar] [CrossRef]
- Mendes, R.; Fidélis, T.; Roebling, P.; Teles, F.; Farrelly, M. What Is Spatial Planning Saying? A Conceptual and Methodological Framework to Assess the Institutionalization of Nature Using Critical Discourse Analysis. Crit. Discourse Stud. 2024, 21, 274–292. [Google Scholar] [CrossRef]
- Scolobig, A.; Linnerooth-Bayer, J.; Pelling, M.; Martin, J.G.C.; Deubelli, T.M.; Liu, W.; Oen, A. Transformative Adaptation through Nature-Based Solutions: A Comparative Case Study Analysis in China, Italy, and Germany. Reg. Environ. Change 2023, 23, 69. [Google Scholar] [CrossRef] [PubMed]
- Eakin, H.; Keele, S.; Lueck, V. Uncomfortable Knowledge: Mechanisms of Urban Development in Adaptation Governance. World Dev. 2022, 159, 106056. [Google Scholar] [CrossRef]
- Chami, R.; Cosimano, T.; Fullenkamp, C.; Nieburg, D. Toward a Nature-Based Economy. Front. Clim. 2022, 4, 855803. [Google Scholar] [CrossRef]
- Sairinen, R.; Barrow, C.; Karjalainen, T.P. Environmental Conflict Mediation and Social Impact Assessment: Approaches for Enhanced Environmental Governance? Environ. Impact Assess. Rev. 2010, 30, 289–292. [Google Scholar] [CrossRef]
- ABDULHUSSEIN, A.S.; ABBAS, A.A. Environmental Governance as a Mediating and Moderating Variable Between Environmental Auditing and Sustainable Performance. Found. Manag. 2025, 17, 7–24. [Google Scholar] [CrossRef]
- Soto, J.R.; Escobedo, F.J.; Khachatryan, H.; Adams, D.C. Consumer Demand for Urban Forest Ecosystem Services and Disservices: Examining Trade-Offs Using Choice Experiments and Best-Worst Scaling. Ecosyst. Serv. 2018, 29, 31–39. [Google Scholar] [CrossRef]
- Croeser, T.; Garrard, G.; Sharma, R.; Ossola, A.; Bekessy, S. Choosing the Right Nature-Based Solutions to Meet Diverse Urban Challenges. Urban For. Urban Green. 2021, 65, 127337. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Bodnaruk, E.W.; Kroll, C.N.; Yang, Y.; Hirabayashi, S.; Nowak, D.J.; Endreny, T.A. Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs. Landsc. Urban Plan. 2016, 157, 457–467. [Google Scholar] [CrossRef]
- Buizer, M.; Van Herzele, A. Combining Deliberative Governance Theory and Discourse Analysis to Understand the Deliberative Incompleteness of Centrally Formulated Plans. For. Policy Econ. 2012, 16, 93–101. [Google Scholar] [CrossRef]
- Charoenkit, S.; Piyathamrongchai, K. A Review of Urban Green Spaces Multifunctionality Assessment: A Way Forward for a Standardized Assessment and Comparability. Ecol. Indic. 2019, 107, 105592. [Google Scholar] [CrossRef]
- Li, L.; Carter, J. Exploring the Relationship between Urban Green Infrastructure Connectivity, Size and Multifunctionality: A Systematic Review. Landsc. Ecol. 2025, 40, 61. [Google Scholar] [CrossRef]
- Meerow, S. The Politics of Multifunctional Green Infrastructure Planning in New York City. Cities 2020, 100, 102621. [Google Scholar] [CrossRef]
- Newell, R.; Lister, N.-M.; Brocki, M.; Cerbu, A.; Dale, A.; Careri, S. Dimensions of Integration for Landscape Connectivity Planning: A Framework for Understanding Challenges and Opportunities. Ecol. Soc. 2025, 30, art37. [Google Scholar] [CrossRef]
- Datola, G.; Ghisoni, A.; Dell’Ovo, M.; Oppio, A. The Feasibility of Nature-Based Solution (NBS) Interventions: Estimating the Cost Using the Work Breakdown Structure (WBS). Valori Valutazioni 2025, 37, 183–208. [Google Scholar] [CrossRef]
Thematic Table | Name and Surname | Typology | Field |
---|---|---|---|
A | Giulia Datola | Academic and table coordinator | Real estate appraisal and project evaluation |
Francesco Sica | Academic | Real estate appraisal and project evaluation | |
Francesca Torrieri | Academic | Real estate appraisal and project evaluation | |
Silvia Pisciotta | Politician | Negotiated planning | |
Marianna Merisi | Architect | Landscape Director in Park Associati | |
Alberto Fedalto | Academic | Urban planning | |
B | Silvia Ronchi | Academic and table coordinator | Urban planning |
Maria Chiara Pastore | Academic | Urban planning | |
Daniela Maiullari | Academic | Urban planning | |
Valentina Gagliulo | Expert | Landscape | |
Diego Baronchelli | Expert | Architecture | |
Gianpiero Calvi | Expert | Natural science | |
C | Elena Di Pirro | Academic and table coordinator | Urban ecology |
Sandy Attia | Architect | Architecture | |
Maddalena Buffoli | Academic | Urban Health, Hygiene | |
Simona Collarini | Architect and Planner | Urban Regeneration | |
Andrea Fantin | Expert | Green Roofs product manager | |
Andrea Benedini | Academic | Urban planning | |
Stefano Salata | Academic | Urban planning |
Emerging themes | Main barriers (Weaknesses and Threats) | (WT1) Issues in estimating costs and benefits of NBSs in monetary terms; (WT2) Lack of data and context-based information; (WT3) Limited knowledge of NBS meaning and features; (WT4) Long-term strategies, difficulty in addressing long-term effects in the ex-ante phase. |
Main advantages (Strengths and Opportunities) | (SO1) Evaluation as a support tool; (SO2) Transparency and integration of different values and disciplines; (SO3) Multi-dimensionality and multi-scalarity; (SO4) Budget vs. performance: effective economic resources allocation. |
ID | Roadmaps |
---|---|
A1 | Reformulating market values for the OMI zones |
A2 | Pricing list of NBS intervention |
A3 | Integrated evaluation framework to support the evaluation according to the budget and performance |
Emerging themes | Main barriers (Weaknesses and Threats) | (WT1) Absence of clear criteria for stakeholder selection. |
(WT2) Knowledge and awareness gaps among participants. | ||
(WT3) Risk of disengagement from experienced participants. | ||
(WT4) Terminological ambiguity. | ||
(WT5) Temporal mismatches between political and ecological timelines. | ||
Main advantages (Strengths and Opportunities) | (SO1) Stakeholder engagement in post-intervention phases. | |
(SO2) Promoting local stewardship. | ||
(SO3) Building shared understanding through preparatory sessions. |
ID | Roadmaps |
---|---|
B1 | Inclusive stewardship and post-intervention engagement |
B2 | Shared knowledge on environmental issues |
Emerging themes | Main barriers (Weaknesses and Threats) | (WT1) Establishing clear responsibilities and priorities among stakeholders; (WT2) Scarce communication and sharing of the effectiveness and performance of projects; (WT3) Limited integration with existing projects and with social and environmental networks; (WT4) Mismatch between innovation and regulatory frameworks; (WT5) Uncertainty in environmental, political, and civic contexts, along with the proliferation of legislative requirements. |
Main advantages (Strengths and Opportunities) | (SO1) Optimization of spatial resources, often limited in urban and peri-urban contexts; (SO2) Multi-functional projects are easily perceived and esthetically appreciated by a wide array of stakeholders; (SO3) The multidisciplinary investigation and involvement foster a transversal approach to complex challenges, supported by vertical, multi-layer, and multi-scale methodologies; (SO4) Networking opportunities; (SO5) Enhanced potential for innovation—particularly through mechanisms such as Public–Private Partnerships (PPPs). |
ID | Roadmaps |
---|---|
C1 | Governance mediator among stakeholders |
C2 | Valorization and prioritization of intervention areas within a network perspective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Ovo, M.; Datola, G.; Di Pirro, E.; Ronchi, S.; Arcidiacono, A.; Attia, S.; Baronchelli, D.; Benedini, A.; Buffoli, M.; Calvi, G.; et al. A Participatory SWOT-Based Approach to Nature-Based Solutions Within Urban Fragile Territories: Operational Barriers and Strategic Roadmaps. Land 2025, 14, 1847. https://doi.org/10.3390/land14091847
Dell’Ovo M, Datola G, Di Pirro E, Ronchi S, Arcidiacono A, Attia S, Baronchelli D, Benedini A, Buffoli M, Calvi G, et al. A Participatory SWOT-Based Approach to Nature-Based Solutions Within Urban Fragile Territories: Operational Barriers and Strategic Roadmaps. Land. 2025; 14(9):1847. https://doi.org/10.3390/land14091847
Chicago/Turabian StyleDell’Ovo, Marta, Giulia Datola, Elena Di Pirro, Silvia Ronchi, Andrea Arcidiacono, Sandy Attia, Diego Baronchelli, Andrea Benedini, Maddalena Buffoli, Gianpiero Calvi, and et al. 2025. "A Participatory SWOT-Based Approach to Nature-Based Solutions Within Urban Fragile Territories: Operational Barriers and Strategic Roadmaps" Land 14, no. 9: 1847. https://doi.org/10.3390/land14091847
APA StyleDell’Ovo, M., Datola, G., Di Pirro, E., Ronchi, S., Arcidiacono, A., Attia, S., Baronchelli, D., Benedini, A., Buffoli, M., Calvi, G., Castaldo, G., Caviglia, A., Cerati, D., Collarini, S., Fantin, A., Fedalto, A., Galiulo, V., Lucchitta, B., Mahmoud, I. H., ... Oppio, A. (2025). A Participatory SWOT-Based Approach to Nature-Based Solutions Within Urban Fragile Territories: Operational Barriers and Strategic Roadmaps. Land, 14(9), 1847. https://doi.org/10.3390/land14091847