Assessing Survey Design for Long-Term Population Trend Detection in Piping Plovers
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Species: Piping Plovers
2.3. Data Collection
2.4. Grid Scales
2.5. Modeling Frameworks
2.6. Autologistic Terms
2.7. Space–Time Moran’s I
2.8. Goodness-of-Fit
2.9. Power Analysis
3. Results
3.1. Space–Time Moran’s I
3.2. Model Estimates
3.3. Goodness-of-Fit
3.4. Power Analysis
4. Discussion
4.1. Variation in Power Across Island Sizes and Survey Frequencies
4.2. Effects of Spatial Resolution on Occupancy and Detection Estimates
4.3. Influence of Spatial Autocorrelation on Model Fit
4.4. Model Precision and the Role of Bayesian Frameworks
4.5. Comparison Between Frequentist and Bayesian Model Performance
4.6. Broader Context and Relevance to Conservation Monitoring
4.7. Recommendations for Future Research and Monitoring Design
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Island | Scale | Percent Temporal Autocorrelation | # Grid Cells | Percent Spatial Autocorrelation | Space–Time Autocorrelation (p-Value) |
---|---|---|---|---|---|
(A) Full Grid | |||||
East Raccoon | 50 | 0 | 435 | 37.5 | 0 |
East Raccoon | 100 | 0 | 110 | 25 | 0.004 |
East Raccoon | 150 | 0 | 51 | 12.5 | 0.014 |
East Raccoon | 200 | 0 | 28 | 12.5 | 0.042 |
Trinity | 50 | 0 | 1549 | 29 | 0.00 |
Trinity | 100 | 0 | 394 | 17 | 0.00 |
Trinity | 150 | 0 | 177 | 13 | 0.00 |
Trinity | 200 | 2 | 103 | 25 | 0.00 |
West Raccoon | 50 | 0 | 178 | 0 | 0.00 |
West Raccoon | 100 | 0 | 44 | 0 | 0.062 |
West Raccoon | 150 | 0 | 20 | 0 | 0.356 |
West Raccoon | 200 | 0 | 11 | 0 | 0.479 |
Whiskey | 50 | 107.088 | 1690 | 5.714 | 0.00 |
Whiskey | 100 | 72.066 | 426 | 9.091 | 0.00 |
Whiskey | 150 | 59.474 | 190 | 9.091 | 0.00 |
Whiskey | 200 | 44.762 | 105 | 9.091 | 0.00 |
(B) Plover Subset | |||||
East Raccoon | 50 | 0 | 60 | 0 | 0.872 |
East Raccoon | 100 | 0 | 40 | 0 | 0.461 |
East Raccoon | 150 | 0 | 30 | 0 | 0.404 |
East Raccoon | 200 | 0 | 21 | 0 | 0.437 |
Trinity | 50 | 0.61 | 163 | 0.00 | 0.01 |
Trinity | 100 | 0.00 | 104 | 4.17 | 0.00 |
Trinity | 150 | 0.00 | 81 | 4.17 | 0.00 |
Trinity | 200 | 3.51 | 57 | 4.17 | 0.00 |
West Raccoon | 50 | 1.538 | 65 | 0 | 0.00 |
West Raccoon | 100 | 3.226 | 31 | 6.667 | 0.00 |
West Raccoon | 150 | 12.5 | 16 | 0 | 0.00 |
West Raccoon | 200 | 0 | 11 | 0 | 0.00 |
Whiskey | 50 | 40.82 | 343 | 7.69 | 0.00 |
Whiskey | 100 | 33.89 | 180 | 6.15 | 0.00 |
Whiskey | 150 | 36.89 | 122 | 18.46 | 0.00 |
Whiskey | 200 | 25.97 | 77 | 16.92 | 0.00 |
Unmarked Estimates | Dynamic Occupancy | Dynamic Autologistic | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scale | Island | MLEs | (2.50–97.50%) | Mean | (2.50–97.50%) | Mean | (2.50–97.50%) | ||||
(A) Full Grid | |||||||||||
50 | Whiskey | Psi | 0.053 | 0.038 | 0.073 | 0.072 | 0.04 | 0.118 | 0.068 | 0.042 | 0.107 |
Col | 0.459 | 0.369 | 0.551 | 0.412 | 0.134 | 0.617 | 0.657 | 0.347 | 0.875 | ||
Ext | 0.041 | 0.034 | 0.050 | 0.031 | 0.004 | 0.058 | 0.842 | 0.561 | 0.969 | ||
P | 0.046 | 0.036 | 0.059 | 0.04 | 0.021 | 0.066 | 0.036 | 0.009 | 0.163 | ||
100 | Whiskey | Psi | 0.123 | 0.088 | 0.169 | 0.152 | 0.093 | 0.218 | 0.150 | 0.101 | 0.226 |
Col | 0.312 | 0.229 | 0.409 | 0.346 | 0.131 | 0.558 | 0.663 | 0.188 | 0.942 | ||
Ext | 0.077 | 0.061 | 0.097 | 0.055 | 0.008 | 0.105 | 0.884 | 0.554 | 0.986 | ||
P | 0.075 | 0.060 | 0.094 | 0.073 | 0.045 | 0.113 | 0.045 | 0.012 | 0.123 | ||
150 | Whiskey | Psi | 0.188 | 0.133 | 0.259 | 0.229 | 0.155 | 0.321 | 0.237 | 0.149 | 0.338 |
Col | 0.273 | 0.192 | 0.372 | 0.269 | 0.114 | 0.434 | 0.565 | 0.231 | 0.879 | ||
Ext | 0.104 | 0.079 | 0.136 | 0.069 | 0.006 | 0.141 | 0.840 | 0.550 | 0.978 | ||
P | 0.112 | 0.091 | 0.138 | 0.106 | 0.072 | 0.152 | 0.044 | 0.004 | 0.107 | ||
200 | Whiskey | Psi | 0.300 | 0.212 | 0.405 | 0.345 | 0.239 | 0.468 | 0.410 | 0.276 | 0.544 |
Col | 0.248 | 0.164 | 0.355 | 0.202 | 0.054 | 0.376 | 0.696 | 0.236 | 0.971 | ||
Ext | 0.137 | 0.097 | 0.191 | 0.139 | 0.025 | 0.275 | 0.892 | 0.645 | 0.985 | ||
P | 0.136 | 0.111 | 0.167 | 0.126 | 0.079 | 0.176 | 0.075 | 0.003 | 0.215 | ||
50 | Trinity | Psi | 0.109 | 0.066 | 0.175 | 0.131 | 0.058 | 0.293 | 0.175 | 0.079 | 0.385 |
Col | 0.423 | 0.238 | 0.634 | 0.698 | 0.448 | 0.875 | 0.296 | 0.007 | 0.967 | ||
Ext | 0.050 | 0.032 | 0.078 | 0.085 | 0.015 | 0.162 | 0.682 | 0.205 | 0.991 | ||
P | 0.045 | 0.028 | 0.071 | 0.059 | 0.018 | 0.118 | 0.019 | 0.001 | 0.093 | ||
100 | Trinity | Psi | 0.215 | 0.147 | 0.302 | 0.258 | 0.161 | 0.385 | 0.310 | 0.204 | 0.408 |
Col | 0.260 | 0.133 | 0.445 | 0.265 | 0.024 | 0.526 | 0.557 | 0.014 | 0.979 | ||
Ext | 0.050 | 0.026 | 0.096 | 0.048 | 0.002 | 0.128 | 0.463 | 0.014 | 0.950 | ||
P | 0.092 | 0.064 | 0.133 | 0.103 | 0.06 | 0.159 | 0.042 | 0.000 | 0.137 | ||
150 | Trinity | Psi | 0.338 | 0.230 | 0.465 | 0.405 | 0.223 | 0.589 | 0.519 | 0.391 | 0.645 |
Col | 0.313 | 0.181 | 0.484 | 0.459 | 0.215 | 0.672 | 0.629 | 0.048 | 0.988 | ||
Ext | 0.113 | 0.066 | 0.186 | 0.125 | 0.008 | 0.29 | 0.553 | 0.033 | 0.971 | ||
P | 0.127 | 0.089 | 0.178 | 0.143 | 0.085 | 0.238 | 0.030 | 0.000 | 0.116 | ||
200 | Trinity | Psi | 0.446 | 0.313 | 0.588 | 0.405 | 0.223 | 0.589 | 0.610 | 0.474 | 0.767 |
Col | 0.237 | 0.127 | 0.399 | 0.459 | 0.215 | 0.672 | 0.693 | 0.148 | 0.993 | ||
Ext | 0.098 | 0.043 | 0.207 | 0.125 | 0.008 | 0.29 | 0.499 | 0.037 | 0.957 | ||
P | 0.168 | 0.121 | 0.230 | 0.143 | 0.085 | 0.238 | 0.038 | 0.001 | 0.134 | ||
50 | West Raccoon | Psi | 0.683 | 0 | 1 | 0.539 | 0.04 | 0.992 | 0.452 | 0.029 | 0.954 |
Col | 0.011 | 0 | 1 | 0.557 | 0.035 | 0.97 | 0.548 | 0.000 | 1.000 | ||
Ext | 0.000 | 0 | 1 | 0.474 | 0.03 | 0.964 | 0.453 | 0.000 | 1.000 | ||
P | 0.000 | 0 | 1 | 0 | 0 | 0.001 | 0.569 | 0.000 | 1.000 | ||
100 | West Raccoon | Psi | 0.989 | 0 | 1 | 0.465 | 0.018 | 0.953 | 0.488 | 0.021 | 0.990 |
Col | 0.000 | 0 | 1 | 0.529 | 0.038 | 0.981 | 0.520 | 0.000 | 1.000 | ||
Ext | 0.006 | 0 | 1 | 0.437 | 0.016 | 0.957 | 0.447 | 0.000 | 1.000 | ||
P | 0.002 | 0 | 0.092 | 0 | 0 | 0.004 | 0.469 | 0.000 | 1.000 | ||
150 | West Raccoon | Psi | 0.006 | 0 | 1 | 0.508 | 0.021 | 0.973 | 0.543 | 0.027 | 0.983 |
Col | 0.007 | 0 | 1 | 0.539 | 0.029 | 0.986 | 0.666 | 0.000 | 1.000 | ||
Ext | 0.149 | 0 | 1 | 0.459 | 0.036 | 0.963 | 0.575 | 0.000 | 1.000 | ||
P | 0.007 | 0 | 1 | 0.001 | 0 | 0.005 | 0.571 | 0.000 | 1.000 | ||
200 | West Raccoon | Psi | 0.001 | 0 | 1 | 0.5 | 0.014 | 0.974 | 0.537 | 0.049 | 0.983 |
Col | 0.001 | 0 | 1 | 0.552 | 0.024 | 0.978 | 0.634 | 0.000 | 1.000 | ||
Ext | 0.227 | 0.006 | 0.931 | 0.433 | 0.023 | 0.947 | 0.484 | 0.000 | 1.000 | ||
P | 0.025 | 0.001 | 0.780 | 0.004 | 0 | 0.019 | 0.469 | 0.000 | 1.000 | ||
50 | East Raccoon | Psi | 0.446 | 0.293 | 0.073 | 0.547 | 0.107 | 0.978 | 0.355 | 0.070 | 0.968 |
Col | 0.011 | 0.211 | 0.000 | 0.475 | 0.018 | 0.901 | 0.257 | 0.000 | 0.874 | ||
Ext | 0.071 | 0.200 | 0.000 | 0.48 | 0.024 | 0.965 | 0.276 | 0.000 | 0.951 | ||
P | 0.031 | 0.018 | 0.009 | 0.031 | 0.008 | 0.097 | 0.232 | 0.000 | 1.000 | ||
100 | East Raccoon | Psi | 0.999 | 0.100 | 0.000 | 0.641 | 0.224 | 0.981 | 0.598 | 0.228 | 0.940 |
Col | 0.308 | 0.150 | 0.530 | 0.337 | 0.019 | 0.799 | 0.199 | 0.000 | 0.750 | ||
Ext | 0.000 | 0.000 | 1.000 | 0.522 | 0.044 | 0.971 | 0.214 | 0.000 | 0.767 | ||
P | 0.100 | 0.046 | 0.204 | 0.084 | 0.033 | 0.218 | 0.083 | 0.000 | 0.791 | ||
150 | East Raccoon | Psi | 0.995 | 0.145 | 0.000 | 0.542 | 0.163 | 0.972 | 0.640 | 0.217 | 0.984 |
Col | 0.174 | 0.116 | 0.041 | 0.349 | 0.022 | 0.827 | 0.140 | 0.000 | 0.800 | ||
Ext | 0.002 | 0.090 | 0.000 | 0.657 | 0.085 | 0.983 | 0.103 | 0.000 | 0.650 | ||
P | 0.148 | 0.054 | 0.070 | 0.203 | 0.06 | 0.463 | 0.532 | 0.000 | 1.000 | ||
200 | East Raccoon | Psi | 0.393 | 0.133 | 0.731 | 0.501 | 0.185 | 0.958 | 0.510 | 0.167 | 0.966 |
Col | 0.574 | 0.196 | 0.881 | 0.537 | 0.077 | 0.937 | 0.437 | 0.000 | 0.967 | ||
Ext | 0.922 | 0.000 | 1.000 | 0.736 | 0.188 | 0.987 | 0.250 | 0.000 | 0.760 | ||
P | 0.283 | 0.113 | 0.552 | 0.31 | 0.105 | 0.637 | 0.802 | 0.000 | 1.000 | ||
(B) Plover Subset | |||||||||||
50 | Whiskey | Psi | 0.246 | 0.176 | 0.332 | 0.364 | 0.200 | 0.642 | 0.329 | 0.182 | 0.651 |
Col | 0.508 | 0.402 | 0.614 | 0.460 | 0.157 | 0.683 | 0.244 | 0.002 | 0.725 | ||
Ext | 0.292 | 0.235 | 0.357 | 0.213 | 0.040 | 0.388 | 0.411 | 0.040 | 0.931 | ||
P | 0.051 | 0.040 | 0.065 | 0.041 | 0.019 | 0.071 | 0.380 | 0.016 | 0.853 | ||
100 | Whiskey | Psi | 0.278 | 0.200 | 0.373 | 0.357 | 0.237 | 0.505 | 0.382 | 0.243 | 0.571 |
Col | 0.375 | 0.282 | 0.477 | 0.353 | 0.126 | 0.570 | 0.443 | 0.107 | 0.788 | ||
Ext | 0.252 | 0.202 | 0.309 | 0.169 | 0.015 | 0.307 | 0.359 | 0.120 | 0.646 | ||
P | 0.083 | 0.067 | 0.104 | 0.077 | 0.047 | 0.120 | 0.181 | 0.017 | 0.348 | ||
150 | Whiskey | Psi | 0.291 | 0.207 | 0.391 | 0.359 | 0.247 | 0.494 | 0.364 | 0.252 | 0.498 |
Col | 0.300 | 0.215 | 0.403 | 0.267 | 0.127 | 0.439 | 0.205 | 0.045 | 0.465 | ||
Ext | 0.193 | 0.148 | 0.248 | 0.130 | 0.018 | 0.255 | 0.197 | 0.036 | 0.446 | ||
P | 0.121 | 0.098 | 0.149 | 0.109 | 0.072 | 0.159 | 0.127 | 0.016 | 0.262 | ||
200 | Whiskey | Psi | 0.405 | 0.289 | 0.532 | 0.473 | 0.326 | 0.610 | 0.512 | 0.353 | 0.682 |
Col | 0.285 | 0.195 | 0.396 | 0.213 | 0.074 | 0.378 | 0.091 | 0.014 | 0.255 | ||
Ext | 0.230 | 0.166 | 0.310 | 0.224 | 0.035 | 0.402 | 0.148 | 0.033 | 0.338 | ||
P | 0.148 | 0.120 | 0.182 | 0.128 | 0.087 | 0.189 | 0.175 | 0.004 | 0.445 | ||
50 | Trinity | Psi | 0.769 | 0.413 | 0.940 | 0.609 | 0.283 | 0.985 | 0.808 | 0.501 | 0.994 |
Col | 0.309 | 0.030 | 0.867 | 0.439 | 0.020 | 0.820 | 0.202 | 0.000 | 0.801 | ||
Ext | 1.000 | 0.000 | 1.000 | 0.795 | 0.109 | 0.999 | 0.250 | 0.000 | 0.868 | ||
P | 0.060 | 0.036 | 0.097 | 0.114 | 0.049 | 0.224 | 0.917 | 0.091 | 1.000 | ||
100 | Trinity | Psi | 0.780 | 0.407 | 0.948 | 0.829 | 0.598 | 0.989 | 0.826 | 0.569 | 0.990 |
Col | 0.357 | 0.180 | 0.582 | 0.147 | 0.005 | 0.453 | 0.154 | 0.001 | 0.660 | ||
Ext | 0.668 | 0.320 | 0.896 | 0.422 | 0.035 | 0.947 | 0.130 | 0.002 | 0.523 | ||
P | 0.100 | 0.068 | 0.146 | 0.117 | 0.076 | 0.171 | 0.756 | 0.124 | 1.000 | ||
150 | Trinity | Psi | 0.733 | 0.429 | 0.909 | 0.788 | 0.522 | 0.979 | 0.832 | 0.557 | 0.991 |
Col | 0.335 | 0.181 | 0.535 | 0.317 | 0.041 | 0.579 | 0.231 | 0.003 | 0.583 | ||
Ext | 0.562 | 0.317 | 0.779 | 0.628 | 0.079 | 0.982 | 0.367 | 0.004 | 0.841 | ||
P | 0.128 | 0.089 | 0.182 | 0.155 | 0.094 | 0.236 | 0.664 | 0.027 | 1.000 | ||
200 | Trinity | Psi | 0.806 | 0.453 | 0.954 | 0.835 | 0.615 | 0.993 | 0.863 | 0.658 | 0.992 |
Col | 0.277 | 0.151 | 0.452 | 0.397 | 0.162 | 0.613 | 0.473 | 0.082 | 0.938 | ||
Ext | 0.421 | 0.211 | 0.663 | 0.684 | 0.090 | 0.986 | 0.191 | 0.006 | 0.630 | ||
P | 0.172 | 0.123 | 0.238 | 0.183 | 0.117 | 0.257 | 0.471 | 0.020 | 0.985 | ||
50 | West Raccoon | Psi | 0.711 | 0.352 | 0.917 | 0.686 | 0.463 | 0.965 | 0.741 | 0.480 | 0.968 |
Col | 0.521 | 0.263 | 0.769 | 0.392 | 0.043 | 0.720 | 0.244 | 0.000 | 0.854 | ||
Ext | 0.466 | 0.214 | 0.737 | 0.538 | 0.082 | 0.950 | 0.230 | 0.000 | 0.813 | ||
P | 0.154 | 0.090 | 0.255 | 0.157 | 0.078 | 0.259 | 0.773 | 0.009 | 1.000 | ||
100 | West Raccoon | Psi | 0.639 | 0.409 | 0.819 | 0.665 | 0.441 | 0.866 | 0.692 | 0.468 | 0.922 |
Col | 0.525 | 0.339 | 0.705 | 0.340 | 0.030 | 0.672 | 0.277 | 0.011 | 0.666 | ||
Ext | 0.386 | 0.217 | 0.589 | 0.481 | 0.059 | 0.907 | 0.556 | 0.080 | 0.899 | ||
P | 0.319 | 0.209 | 0.462 | 0.289 | 0.152 | 0.440 | 0.715 | 0.088 | 1.000 | ||
150 | West Raccoon | Psi | 0.675 | 0.386 | 0.873 | 0.656 | 0.407 | 0.905 | 0.652 | 0.414 | 0.901 |
Col | 0.377 | 0.202 | 0.590 | 0.289 | 0.023 | 0.585 | 0.230 | 0.006 | 0.600 | ||
Ext | 0.356 | 0.154 | 0.627 | 0.591 | 0.140 | 0.949 | 0.602 | 0.072 | 0.971 | ||
P | 0.410 | 0.268 | 0.583 | 0.352 | 0.178 | 0.523 | 0.490 | 0.006 | 0.979 | ||
200 | West Raccoon | Psi | 0.658 | 0.341 | 0.878 | 0.630 | 0.348 | 0.866 | 0.635 | 0.370 | 0.905 |
Col | 0.426 | 0.214 | 0.669 | 0.249 | 0.013 | 0.607 | 0.169 | 0.000 | 0.560 | ||
Ext | 0.387 | 0.151 | 0.690 | 0.611 | 0.080 | 0.966 | 0.567 | 0.000 | 0.946 | ||
P | 0.448 | 0.278 | 0.653 | 0.534 | 0.323 | 0.754 | 0.632 | 0.012 | 1.000 | ||
50 | East Raccoon | Psi | 0.364 | 0.189 | 0.584 | 0.711 | 0.332 | 0.994 | 0.796 | 0.383 | 0.995 |
Col | 0.697 | 0.332 | 0.914 | 0.275 | 0.015 | 0.743 | 0.090 | 0.000 | 0.649 | ||
Ext | 1.000 | 0.000 | 1.000 | 0.702 | 0.094 | 0.994 | 0.056 | 0.000 | 0.485 | ||
P | 0.197 | 0.114 | 0.319 | 0.197 | 0.083 | 0.416 | 0.810 | 0.000 | 1.000 | ||
100 | East Raccoon | Psi | 0.999 | 0.000 | 1.000 | 0.602 | 0.243 | 0.973 | 0.637 | 0.272 | 0.986 |
Col | 0.000 | 0.000 | 1.000 | 0.315 | 0.012 | 0.776 | 0.141 | 0.000 | 0.743 | ||
Ext | 0.968 | 0.000 | 1.000 | 0.764 | 0.223 | 0.995 | 0.087 | 0.000 | 0.664 | ||
P | 0.150 | 0.088 | 0.245 | 0.287 | 0.102 | 0.587 | 0.864 | 0.000 | 1.000 | ||
150 | East Raccoon | Psi | 0.514 | 0.179 | 0.837 | 0.523 | 0.218 | 0.975 | 0.536 | 0.209 | 0.952 |
Col | 0.351 | 0.065 | 0.808 | 0.527 | 0.040 | 0.933 | 0.398 | 0.000 | 0.932 | ||
Ext | 1.000 | 0.000 | 1.000 | 0.787 | 0.290 | 0.993 | 0.189 | 0.000 | 0.770 | ||
P | 0.262 | 0.132 | 0.453 | 0.374 | 0.136 | 0.686 | 0.908 | 0.165 | 1.000 | ||
200 | East Raccoon | Psi | 0.424 | 0.182 | 0.709 | 0.644 | 0.241 | 0.982 | 0.736 | 0.360 | 0.990 |
Col | 0.557 | 0.258 | 0.819 | 0.400 | 0.014 | 0.868 | 0.242 | 0.000 | 1.000 | ||
Ext | 0.999 | 0.000 | 1.000 | 0.659 | 0.063 | 0.992 | 0.243 | 0.000 | 0.969 | ||
P | 0.358 | 0.192 | 0.568 | 0.151 | 0.063 | 0.343 | 0.789 | 0.000 | 1.000 |
Unmarked Dynamic | Bayesian Dynamic | Bayesian Dynamic Autologistic | |||||||
---|---|---|---|---|---|---|---|---|---|
Scale | Island | p-Value | ĉ | Chisq | fT | Open | Closed | Open | Closed |
(A) Full Grid | |||||||||
50 | Whiskey | 0.105 | 1.232 | 118,215 | 730 | 1.043 | 1.464 | 0.999 | 1.493 |
100 | Whiskey | 0.000 | 530 | 29,313 | 641 | 1.036 | 1.681 | 1.205 | 1.684 |
150 | Whiskey | 0.000 | 1500 | 12,818 | 575 | 0.816 | 2.067 | 1.319 | 2.069 |
200 | Whiskey | 0.000 | 235 | 7001 | 512 | 0.918 | 1.032 | 0.79 | 1.039 |
50 | West Raccoon | 0.273 | 1.367 | 178 | 2 | 1.502 | 905 | 1.129 | 2456 |
100 | West Raccoon | 0.073 | 3.586 | 303 | 4 | 1.093 | 193,805 | 19.736 | 104,556 |
150 | West Raccoon | 0.613 | 1.393 | 19 | 2 | 1.372 | 141 | 5.856 | 340 |
200 | West Raccoon | 0.137 | 1.897 | 51 | 3 | 0.998 | 8143 | 1.12 | 48,129 |
50 | Trinity | 0.093 | 1.560 | 37,346 | 332 | 0.911 | 1.008 | 0.95 | 1.053 |
100 | Trinity | 0.072 | 1.861 | 9328 | 293 | 0.813 | 1.134 | 0.997 | 1.23 |
150 | Trinity | 0.022 | 2.385 | 4094 | 260 | 0.746 | 1.253 | 1.01 | 1.294 |
200 | Trinity | 0.013 | 2.600 | 2303 | 235 | 1.038 | 1.098 | 1.127 | 1.107 |
50 | East Raccoon | 0.045 | 2.197 | 6931 | 97 | 56.523 | 1.103 | 232.057 | 1.085 |
100 | East Raccoon | 0.062 | 1.944 | 3428 | 93 | 0.391 | 1.048 | 0.458 | 1.042 |
150 | East Raccoon | 0.029 | 2.171 | 885 | 74 | 0.504 | 1.038 | 0.509 | 1.173 |
200 | East Raccoon | 0.417 | 1.055 | 373 | 59 | 0.536 | 1.124 | 0.719 | 1.224 |
(B) Plover-Only Subset | |||||||||
50 | Whiskey | 0.072 | 2.19 | 21,818 | 655 | 0.905 | 1.16 | 0.878 | 1.101 |
100 | Whiskey | 0.000 | 282 | 11,230 | 578 | 1.062 | 1.448 | 1.098 | 1.504 |
150 | Whiskey | 0.000 | 1750 | 7512 | 529 | 1.088 | 1.706 | 1.167 | 1.695 |
200 | Whiskey | 0.000 | 273 | 4677 | 470 | 0.902 | 2.019 | 0.94 | 2.072 |
50 | West Raccoon | 0.093 | 1.425 | 915 | 119 | 0.773 | 1.136 | 0.843 | 1.19 |
100 | West Raccoon | 0.700 | 0.833 | 404 | 89 | 0.878 | 1.273 | 0.839 | 1.312 |
150 | West Raccoon | 0.588 | 0.892 | 184 | 56 | 0.8 | 1.333 | 0.796 | 1.335 |
200 | West Raccoon | 0.334 | 1.045 | 121 | 39 | 0.653 | 1.265 | 0.657 | 1.426 |
50 | Trinity | 0.237 | 1.004 | 3754 | 279 | 0.888 | 0.902 | 0.892 | 0.994 |
100 | Trinity | 0.093 | 1.651 | 2336 | 248 | 0.907 | 0.934 | 0.939 | 0.967 |
150 | Trinity | 0.043 | 2.252 | 1786 | 228 | 0.913 | 1.132 | 0.952 | 1.171 |
200 | Trinity | 0.025 | 2.392 | 1216 | 206 | 0.873 | 1.202 | 0.874 | 1.228 |
50 | East Raccoon | 0.03 | 2.09 | 421 | 69.31 | 1294 | 0.912 | 170 | 0.997 |
100 | East Raccoon | 0.04 | 1.98 | 272 | 58.41 | 0.653 | 0.897 | 0.751 | 1.048 |
150 | East Raccoon | 0.04 | 2.01 | 196 | 49.83 | 0.508 | 0.985 | 0.641 | 1.058 |
200 | East Raccoon | 0.52 | 0.92 | 130 | 38.11 | 0.697 | 1.029 | 0.518 | 1.159 |
References
- Baumgardt, J.A.; Morrison, M.L.; Brennan, L.A.; Pierce, B.L.; Campbell, T.A. Development of Multispecies, Long-Term Monitoring Programs for Resource Management. Rangel. Ecol. Manag. 2019, 72, 168–181. [Google Scholar] [CrossRef]
- Martin, J.; Kitchens, W.M.; Hines, J.E. Importance of Well-Designed Monitoring Programs for the Conservation of Endangered Species: Case Study of the Snail Kite. Conserv. Biol. 2007, 21, 472–481. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.R.; Jonzén, N. Monitoring Temporal Trends in Spatially Structured Populations: How Should Sampling Effort Be Allocated between Space and Time? Ecography 2011, 34, 1040–1048. [Google Scholar] [CrossRef]
- Reynolds, J.H.; Thompson, W.L.; Russell, B. Planning for Success: Identifying Effective and Efficient Survey Designs for Monitoring. Biol. Conserv. 2011, 144, 1278–1284. [Google Scholar] [CrossRef]
- Steidl, R.J.; Hayes, J.P.; Schauber, E. Statistical Power Analysis in Wildlife Research. J. Wildl. Manag. 1997, 61, 270–279. [Google Scholar] [CrossRef]
- Guillera-Arroita, G.; Lahoz-Monfort, J.J. Designing Studies to Detect Differences in Species Occupancy: Power Analysis under Imperfect Detection: Power Analysis for Occupancy Studies. Methods Ecol. Evol. 2012, 3, 860–869. [Google Scholar] [CrossRef]
- Steenweg, R. Large-Scale Camera Trapping and Large-Carnivore Monitoring, Occupancy-Abundance Relationships, and Food-Webs. Ph.D. Thesis, University of Montana, Missoula, MT, USA, 2016. [Google Scholar] [CrossRef]
- Fortin, M.; Dale, M. Spatial Analysis: A Guide for Ecologists; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Pollock, K.H.; Nichols, J.D.; Simons, T.R.; Farnsworth, G.L.; Bailey, L.L.; Sauer, J.R. Large Scale Wildlife Monitoring Studies: Statistical Methods for Design and Analysis. Environmetrics 2002, 13, 105–119. [Google Scholar] [CrossRef]
- Pollock, J.F. Detecting Population Declines over Large Areas with Presence-Absence, Time-to-Encounter, and Count Survey Methods. Conserv. Biol. 2006, 20, 882–892. [Google Scholar] [CrossRef]
- Maxwell, D.; Jennings, S. Power of Monitoring Programmes to Detect Decline and Recovery of Rare and Vulnerable Fish. J. Appl. Ecol. 2005, 42, 25–37. [Google Scholar] [CrossRef]
- Field, S.A.; Tyre, A.J.; Jonzen, N.; Rhodes, J.R.; Possingham, H.P. Minimizing the Cost of Environmental Management Decisions by Optimizing Statistical Thresholds. Ecol. Lett. 2004, 7, 669–675. [Google Scholar] [CrossRef]
- Marsh, D.M.; Trenham, P.C. Current Trends in Plant and Animal Population Monitoring. Conserv. Biol. 2008, 22, 647–655. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Lachman, G.B.; Droege, S.; Andrew Royle, J.; Langtimm, C.A. Estimating Site Occupancy Rates When Detection Probabilities Are Less than One. Ecology 2002, 83, 2248–2255. [Google Scholar] [CrossRef]
- Royle, J.A.; Kéry, M.; Gautier, R.; Schmid, H. Hierarchical Spatial Models of Abundance and Occurrence from Imperfect Survey Data. Ecol. Monogr. 2007, 77, 465–481. [Google Scholar] [CrossRef]
- Steenweg, R.; Hebblewhite, M.; Whittington, J.; Lukacs, P.; McKelvey, K. Sampling Scales Define Occupancy and Underlying Occupancy-Abundance Relationships in Animals. Ecology 2018, 99, 172–183. [Google Scholar] [CrossRef] [PubMed]
- McGarigal, K.; Wan, H.Y.; Zeller, K.A.; Timm, B.C.; Cushman, S.A. Multi-Scale Habitat Selection Modeling: A Review and Outlook. Landsc. Ecol. 2016, 31, 1161–1175. [Google Scholar] [CrossRef]
- Mackenzie, D.I.; Royle, J.A. Designing Occupancy Studies: General Advice and Allocating Survey Effort: Designing Occupancy Studies. J. Appl. Ecol. 2005, 42, 1105–1114. [Google Scholar] [CrossRef]
- Steenweg, R.; Whittington, J.; Hebblewhite, M.; Forshner, A.; Johnston, B.; Petersen, D.; Shepherd, B.; Lukacs, P.M. Camera-Based Occupancy Monitoring at Large Scales: Power to Detect Trends in Grizzly Bears across the Canadian Rockies. Biol. Conserv. 2016, 201, 192–200. [Google Scholar] [CrossRef]
- Kéry, M.; Royle, J.A. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Volume 2: Dynamic and Advanced Models; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2. [Google Scholar]
- Rota, C.T.; Fletcher, R.J., Jr.; Dorazio, R.M.; Betts, M.G. Occupancy Estimation and the Closure Assumption. J. Appl. Ecol. 2009, 46, 1173–1181. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Nichols, J.D.; Hines, J.E.; Knutson, M.G.; Franklin, A.B. Estimating Site Occupancy, Colonization, and Local Extinction When a Species Is Detected Imperfectly. Ecology 2003, 84, 2200–2207. [Google Scholar] [CrossRef]
- Royle, J.A.; Kery, M. A Bayesian State-Space Formulation of Dynamic Occupancy Models. Ecology 2007, 88, 1813–1823. [Google Scholar] [CrossRef]
- Chelgren, N.D.; Adams, M.J.; Bailey, L.L.; Bury, R.B. Using Multilevel Spatial Models to Understand Salamander Site Occupancy Patterns after Wildfire. Ecology 2011, 92, 408–421. [Google Scholar] [CrossRef]
- Guélat, J.; Kéry, M. Effects of Spatial Autocorrelation and Imperfect Detection on Species Distribution Models. Methods Ecol. Evol. 2018, 9, 1614–1625. [Google Scholar] [CrossRef]
- Poley, L.G.; Pond, B.A.; Schaefer, J.A.; Brown, G.S.; Ray, J.C.; Johnson, D.S. Occupancy Patterns of Large Mammals in the Far North of Ontario under Imperfect Detection and Spatial Autocorrelation. J. Biogeogr. 2014, 41, 122–132. [Google Scholar] [CrossRef]
- Bled, F.; Royle, J.A.; Cam, E. Assessing Hypotheses about Nesting Site Occupancy Dynamics. Ecology 2011, 92, 938–951. [Google Scholar] [CrossRef] [PubMed]
- Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial Autocorrelation and Autoregressive Models in Ecology. Ecol. Monogr. 2002, 72, 445–463. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to Account for Spatial Autocorrelation in the Analysis of Species Distributional Data: A Review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Fletcher, R.; Fortin, M.J. Spatial Ecology and Conservation Modeling: Applications with R; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Besag, J. Spatial Interaction and the Statistical Analysis of Lattice Systems. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 192–225. [Google Scholar] [CrossRef]
- Besag, J.E. Nearest-Neighbour Systems and the Auto-Logistic Model for Binary Data. J. R. Stat. Soc. Ser. B Methodol. 1972, 34, 75–83. [Google Scholar] [CrossRef]
- Hefley, T.J.; Broms, K.M.; Brost, B.M.; Buderman, F.E.; Kay, S.L.; Scharf, H.R.; Tipton, J.R.; Williams, P.J.; Hooten, M.B. The Basis Function Approach for Modeling Autocorrelation in Ecological Data. Ecology 2017, 98, 632–646. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Leecaster, M.; Bowden, D. An Improved Model for Spatially Correlated Binary Responses. J. Agric. Biol. Environ. Stat. 2000, 5, 102–114. [Google Scholar] [CrossRef]
- Wintle, B.A.; Bardos, D.C. Modeling Species-Habitat Relationships with Spatially Autocorrelated Observation Data. Ecol. Appl. 2006, 16, 1945–1958. [Google Scholar] [CrossRef]
- Bardos, D.C.; Guillera-Arroita, G.; Wintle, B.A. Valid Auto-models for Spatially Autocorrelated Occupancy and Abundance Data. Methods Ecol. Evol. 2015, 6, 1137–1149. [Google Scholar] [CrossRef]
- Ver Hoef, J.M.; Peterson, E.E.; Hooten, M.B.; Hanks, E.M.; Fortin, M.-J. Spatial Autoregressive Models for Statistical Inference from Ecological Data. Ecol. Monogr. 2018, 88, 36–59. [Google Scholar] [CrossRef]
- United States Fish and Wildlife Service. Piping Plover (Charadrius melodus) 5-Year Review: Summary and Evaluation. Fed. Regist. 2020, 79. Available online: https://ecos.fws.gov/docs/five_year_review/doc6378.pdf (accessed on 8 September 2025).
- Gratto-Trevor, C.L.; Abbott, S. Conservation of Piping Plover (Charadrius melodus) in North America: Science, Successes, and Challenges. Can. J. Zool. 2011, 89, 401–418. [Google Scholar] [CrossRef]
- Wikle, C.K.; Zammit-Mangion, A.; Cressie, N. Spatio-Temporal Statistics with R, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; ISBN 978-1-351-76972-3. [Google Scholar]
- Gibson, D.; Catlin, D.H.; Hunt, K.L.; Fraser, J.D.; Karpanty, S.M.; Friedrich, M.J.; Bimbi, M.K.; Cohen, J.B.; Maddock, S.B. Evaluating the Impact of Man-Made Disasters on Imperiled Species: Piping Plovers and the Deepwater Horizon Oil Spill. Biol. Conserv. 2017, 212, 48–62. [Google Scholar] [CrossRef]
- Zenzal, T.J.; Anderson, A.N.; LeBlanc, D.; Dobbs, R.C.; Brock, G.; Waddle, J.H.; Piping Plover Home Ranges Do Not Appear to be Impacted by Restoration of Barrier Islands and Headlands. BioRxiv 2025. Available online: https://www.biorxiv.org/content/10.1101/2025.03.03.638931v1 (accessed on 8 September 2025).
- Zenzal, T., Jr.; Contina, A.; Vander Zanden, H.; Kuwahara, L.; Allen, D.; Covino, K. Asynchronous Movement Patterns between Breeding and Stopover Locations in a Long-Distance Migratory Songbird. Avian Conserv. Ecol. 2024, 19, art3. [Google Scholar] [CrossRef]
- Waddle, H.; Barrow, W.; Jeske, C.; Schulz, J.; Dobbs, R.; LeBlanc, D.; Anderson, A.; Geary, B.; Zenzal, T., Jr.; Enwright, N.; et al. Chapter 3: Site Occupancy of Focal Shorebird Species at Whiskey Island and Caminada Headland, Louisiana 2012–2020; Louisiana Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2023. [Google Scholar]
- Zenzal, T.J.; Anderson, A.N.; Geary, B.J.; Schulz, J.; Dobbs, R.; Barrow, W.C.; Waddle, H. Immediate Impacts of Tropical Storms on the Avian Breeding Community at Whiskey Island, Louisiana from 2015–2020. U.S. Geol. Surv. 2023. [Google Scholar] [CrossRef]
- United States Fish and Wildlife Service. Endangered and Threatened Wildlife and Plants: Final Determinations of Critical Habitat for Wintering Piping Plovers; Final Rule; U.S. Fish and Wildlife Service: Washington, DC, USA, 1985. [Google Scholar]
- United States Fish and Wildlife Service. Comprehensive Conservation Strategy for the Piping Plover (Charadrius melodus) in Its Coastal Migration and Wintering Range in the Continental United States; U.S. Fish and Wildlife Service: Arlington, VA, USA, 2012. [Google Scholar]
- Maslo, B.; Leu, K.; Pover, T.; Weston, M.A.; Schlacher, T.A. Managing Birds of Conservation Concern on Sandy Shores: How Much Room for Future Conservation Actions is There? Ecol. Evol. 2018, 8, 10976–10988. [Google Scholar] [CrossRef]
- Haig, S.M.; Ferland, C.L. A Complete Species Census and Evidence for Regional Declines in Piping Plovers. J. Wildl. Manag. 2005, 69, 160–173. [Google Scholar] [CrossRef]
- Cohen, J.B.; Karpanty, S.M.; Catlin, D.H.; Fraser, J.D.; Fischer, R.A. Winter Ecology of Piping Plovers at Oregon Inlet, North Carolina. Waterbirds 2008, 31, 472–479. [Google Scholar] [CrossRef]
- Gibson, D.; Chaplin, M.K.; Hunt, K.L.; Friedrich, M.J.; Weithman, C.E.; Addison, L.M.; Cavalieri, V.; Coleman, S.; Cuthbert, F.J.; Fraser, J.D.; et al. Impacts of Anthropogenic Disturbance on Body Condition, Survival, and Site Fidelity of Nonbreeding Piping Plovers. Condor 2018, 120, 566–580. [Google Scholar] [CrossRef]
- Bohnett, E.; Schulz, J.; Dobbs, R.; Hoctor, T.; Hulse, D.; Ahmad, B.; Rashid, W.; Waddle, H. Shorebird Monitoring Using Spatially Explicit Occupancy and Abundance. Land 2023, 12, 863. [Google Scholar] [CrossRef]
- Zenzal, T.J.; Anderson, A.N.; Geary, B.; Schulz, J.L.; Dobbs, R.C.; Barrow, W.C.; Waddle, J.H. Early Season Tropical Storms Impact Birds Breeding on a Barrier Island. U.S. Geological Survey: Reston, VA, USA. unpublished (in press)
- Zipkin, E.F.; Andrew Royle, J.; Dawson, D.K.; Bates, S. Multi-Species Occurrence Models to Evaluate the Effects of Conservation and Management Actions. Biol. Conserv. 2010, 143, 479–484. [Google Scholar] [CrossRef]
- Royle, J.A.; Dorazio, R.M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Meta-populations and Communities; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Royle, J.A.; Kéry, M. Applied Hierarchical Modeling in Ecology: Analysis of Distribution, Abundance and Species Richness in R and BUGS. Volume 1: Prelude and Static Models; Elsevier Science & Technology: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Chandler, R.; Kellner, K.; Fiske, I.; Miller, D.; Royle, J.A.; Hostetler, J.; Hutchinson, R.; Smith, A.; Kéry, M.; Meredith, M.; et al. Unmarked: Models for Data from Unmarked Animals; CRAN: Vienna, Austria, 2020. [Google Scholar]
- Kellner, K. Package “jagsUI”; CRAN: Vienna, Austria, 2019. [Google Scholar]
- Bled, F.; Nichols, J.D.; Altwegg, R. Dynamic Occupancy Models for Analyzing Species’ Range Dynamics across Large Geographic Scales. Ecol. Evol. 2013, 3, 4896–4909. [Google Scholar] [CrossRef]
- Bled, F.; Royle, J.A.; Cam, E. Hierarchical Modeling of an Invasive Spread: The Eurasian Collared-Dove Streptopelia Decaocto in the United States. Ecol. Appl. 2011, 21, 290–302. [Google Scholar] [CrossRef]
- Louvrier, J.; Duchamp, C.; Lauret, V.; Marboutin, E.; Cubaynes, S.; Choquet, R.; Miquel, C.; Gimenez, O. Mapping and Explaining Wolf Recolonization in France Using Dynamic Occupancy Models and Opportunistic Data. Ecography 2018, 41, 647–660. [Google Scholar] [CrossRef]
- Molinari-Jobin, A.; Kéry, M.; Marboutin, E.; Marucco, F.; Zimmermann, F.; Molinari, P.; Frick, H.; Fuxjäger, C.; Wölfl, S.; Bled, F.; et al. Mapping Range Dynamics from Opportunistic Data: Spatiotemporal Modelling of the Lynx Distribution in the Alps over 21 Years. Anim. Conserv. 2018, 21, 168–180. [Google Scholar] [CrossRef]
- Augustin, N.H.; Mugglestone, M.A.; Buckland, S.T. An Autologistic Model for the Spatial Distribution of Wildlife. J. Appl. Ecol. 1996, 33, 339. [Google Scholar] [CrossRef]
- Wood, S.N. Just Another Gibbs Additive Modeler: Interfacing JAGS and Mgcv. J. Stat. Soft. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- MacKenzie, D.I.; Bailey, L.L. Assessing the Fit of Site-Occupancy Models. J. Agric. Biol. Environ. Stat. 2004, 9, 300–318. [Google Scholar] [CrossRef]
- Royle, J.A.; Nichols, J.D. Estimating Abundance from Repeated Presence-Absence Data or Point Counts. Ecology 2003, 84, 777–790. [Google Scholar] [CrossRef]
- Rankin, R.W.; Nicholson, K.E.; Allen, S.J.; Krützen, M.; Bejder, L.; Pollock, K.H. A Full-Capture Hierarchical Bayesian Model of Pollock’s Closed Robust Design and Application to Dolphins. Front. Mar. Sci. 2016, 3, 25. [Google Scholar] [CrossRef]
- Zhao, Q.; Royle, J.A.; Boomer, G.S. Spatially Explicit Dynamic N-Mixture Models. Popul. Ecol. 2017, 59, 293–300. [Google Scholar] [CrossRef]
- Murray, N.J.; Marra, P.P.; Fuller, R.A.; Clemens, R.S.; Dhanjal-Adams, K.; Gosbell, K.B.; Hassell, C.J.; Iwamura, T.; Melville, D.; Minton, C.D.T.; et al. The Large-Scale Drivers of Population Declines in a Long-Distance Migratory Shorebird. Ecography 2018, 41, 867–876. [Google Scholar] [CrossRef]
- Wilson, H.B.; Kendall, B.E.; Fuller, R.A.; Milton, D.A.; Possingham, H.P. Analyzing Variability and the Rate of Decline of Migratory Shorebirds in Moreton Bay, Australia: Rapid Population Declines in Shorebirds. Conserv. Biol. 2011, 25, 758–766. [Google Scholar] [CrossRef]
- Baker, D.J.; Clarke, R.H.; McGeoch, M.A. The Power to Detect Regional Declines in Common Bird Populations Using Continental Monitoring Data. Ecol. Appl. 2019, 29, e01918. [Google Scholar] [CrossRef]
Year | Trinity | West Raccoon | Whiskey | East Raccoon |
---|---|---|---|---|
2012 | 11 | 12 | 12 | NA |
2013 | 10 | 10 | 21 | 2 |
2014 | 15 | 13 | 21 | NA |
2015 | 8 | 15 | 32 | 2 |
2016 | 2 | 4 | 34 | 3 |
2017 | 4 | 1 | 30 | 4 |
2018 | NA | NA | 28 | NA |
2019 | NA | NA | 2 | NA |
Island | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Total |
---|---|---|---|---|---|---|---|---|---|
East Raccoon | - | 13 | - | 13 | 42 | 78 | - | - | 146 |
Trinity | 31 | 101 | 87 | 42 | 5 | 19 | - | - | 285 |
West Raccoon | 169 | 130 | 44 | 75 | - | - | - | - | 418 |
Whiskey | 70 | 59 | 103 | 179 | 163 | 187 | 170 | 9 | 940 |
East Raccoon—All Grids | Whiskey—All Grid | ||||||||
Number of sites | 2 | 5 | 10 | 15 | Number of sites | 10 | 15 | 20 | 30 |
30 | 0.168 | 0.244 | 0.289 | 0.303 | 100 | 0.011 | 0.091 | 0.013 | 0.009 |
50 | 0.213 | 0.295 | 0.366 | 0.395 | 190 | 0.002 | 0.003 | 0.01 | 0.013 |
110 | 0.317 | 0.477 | 0.573 | 0.582 | 420 | 0.055 | 0.077 | 0.124 | 0.169 |
430 | 0.59 | 0.684 | 0.746 | 0.756 | 1600 | 0.005 | 0.025 | 0.064 | 0.204 |
East Raccoon—Plover Only | Whiskey—Plover Only | ||||||||
Number of sites | 2 | 5 | 10 | 15 | Number of sites | 10 | 15 | 20 | 30 |
20 | 0.095 | 0.118 | 0.164 | 0.325 | 77 | 0.052 | 0.093 | 0.011 | 0.032 |
30 | 0.126 | 0.164 | 0.208 | 0.211 | 120 | 0.06 | 0.127 | 0.107 | 0.118 |
40 | 0.147 | 0.188 | 0.271 | 0.293 | 180 | 0.004 | 0.007 | 0.013 | 0.013 |
60 | 0.169 | 0.261 | 0.347 | 0.393 | 340 | 0.053 | 0.076 | 0.104 | 0.196 |
West Raccoon—All Grids | Trinity—All Grids | ||||||||
Note | Number of sites | 5 | 10 | 15 | 20 | ||||
Models did not fit the data enough to run a power analysis | 100 | 0.395 | 0.139 | 0.267 | 0.129 | ||||
180 | 0.116 | 0.128 | 0.112 | 0.103 | |||||
390 | 0.256 | 0.123 | 0.093 | 0.093 | |||||
1550 | 0.556 | 0.061 | 0.076 | 0.039 | |||||
West Raccoon—Plover Only | Trinity—Plover Only | ||||||||
Number of sites | 5 | 10 | 15 | 20 | Number of sites | 5 | 10 | 15 | 20 |
10 | 0.121 | 0.109 | 0.127 | 0.148 | 50 | 0.161 | 0.055 | 0.107 | 0.058 |
15 | 0.127 | 0.132 | 0.182 | 0.206 | 80 | 0.15 | 0.22 | 0.125 | 0.09 |
30 | 0.139 | 0.213 | 0.272 | 0.323 | 100 | 0.365 | 0.09 | 0.097 | 0.089 |
60 | 0.195 | 0.309 | 0.432 | 0.455 | 160 | 0.091 | 0.088 | 0.063 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohnett, E.; Schulz, J.; Dobbs, R.; Hoctor, T.; Ahmad, B.; Rashid, W.; Waddle, J.H. Assessing Survey Design for Long-Term Population Trend Detection in Piping Plovers. Land 2025, 14, 1846. https://doi.org/10.3390/land14091846
Bohnett E, Schulz J, Dobbs R, Hoctor T, Ahmad B, Rashid W, Waddle JH. Assessing Survey Design for Long-Term Population Trend Detection in Piping Plovers. Land. 2025; 14(9):1846. https://doi.org/10.3390/land14091846
Chicago/Turabian StyleBohnett, Eve, Jessica Schulz, Robert Dobbs, Thomas Hoctor, Bilal Ahmad, Wajid Rashid, and J. Hardin Waddle. 2025. "Assessing Survey Design for Long-Term Population Trend Detection in Piping Plovers" Land 14, no. 9: 1846. https://doi.org/10.3390/land14091846
APA StyleBohnett, E., Schulz, J., Dobbs, R., Hoctor, T., Ahmad, B., Rashid, W., & Waddle, J. H. (2025). Assessing Survey Design for Long-Term Population Trend Detection in Piping Plovers. Land, 14(9), 1846. https://doi.org/10.3390/land14091846