Urban Thermal Regulation Through Cold Island Network Evolution: Patterns, Drivers, and Scenario-Based Planning Insights from Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
Data Sources
2.2. Research Methods
2.2.1. Workflow
2.2.2. Land Surface Temperature (LST) and Relative LST (RLST) Retrieval Method
2.2.3. Cold Island Network Construction and Key Node Identification
- (1)
- Identification of CICS with MSPA
- (2)
- Construction of the Ecological Resistance Surface
- (3)
- Ecological Corridor and Node Identification
2.2.4. Land Surface Temperature Simulation and Scenario Design
- (1)
- Plus Model Construction and Driving Factor Selection
- (2)
- Scenario Design and Transition Rule Adjustment
3. Results
3.1. Spatiotemporal Evolution Characteristics of LST and RLST
3.2. Cold-Source Extraction and Evolution of Cold-Corridor Networks
3.3. Simulation of Land-Surface-Temperature Patterns Under Different Development Scenarios
4. Discussion
4.1. Drivers and Mechanisms of the Urban Thermal Pattern
4.2. Planning Implications and Policy Responses
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Huang, B.; Gao, S.; Wang, J.; Yang, C.; Li, R. Impacts of the Evolving Urban Development on Intra Urban Surface Thermal Environment: Evidence from 323 Chinese Cities. Sci. Total Environ. 2021, 771, 144810. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Guo, Y.; Zhang, P.; Hong, S.; Ma, Z.; Hong, W.; Wang, X. As-sessing urban population exposure risk to extreme heat: Patterns, trends, and implications for climate resilience in China (2000–2020). Sustain. Cities Soc. 2024, 103, 105260. [Google Scholar] [CrossRef]
- Yang, F.; Yang, D.; Zhang, Y.; Guo, R.; Li, J.; Wang, H. Evaluating the multi seasonal impacts of urban blue green space combination models on cooling and carbon saving capacities. Build. Environ. 2024, 266, 112045. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. High Spatial and Temporal Resolution Anthropogenic Heat Discharge Estimation in Los An-geles County, California. J. Environ. Manag. 2018, 206, 1274–1286. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K.W. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Liao, W.; Guldmann, J.-M.; Hu, L.; Cao, Q.; Gan, D.; Li, X. Linking Urban Park Cool Island Effects to the Landscape Patterns inside and outside the Park: A Simultaneous Equation Modeling Approach. Landsc. Urban Plan. 2023, 232, 104681. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban Heat Islands and Their Effects on Thermal Comfort in the US: New York and New Jersey. Ecol. Indic. 2023, 154, 110765. [Google Scholar] [CrossRef]
- Tabatabaei, S.S.; Fayaz, R. The Effect of Façade Materials and Coatings on Urban Heat Island Mitigation and Out-door Thermal Comfort in Hot Semi Arid Climate. Build. Environ. 2023, 243, 110701. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.K.; Kundu, A. Impervious Surface Growth and Its Inter Relationship with Vegetation Cover and Land Surface Temperature in Peri Urban Areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Liu, S.; Zhang, L.; Zhu, C. Surface Urban Heat Island in China’s 32 Major Cities: Spatial Patterns and Drivers. Remote Sens. Environ. 2014, 152, 51–61. [Google Scholar] [CrossRef]
- Ayanlade, A. Seasonality in the Daytime and Night Time Intensity of Land Surface Temperature in a Tropical City Area. Sci. Total Environ. 2016, 557, 415–424. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, H.; Zhang, S.; Jin, Z.; Zhang, Y.; Wang, Y.; Shi, Y.; Jiang, J.; Chen, X.; Liu, M. Long Term Trends in Sur-face Thermal Environment and Its Potential Drivers along the Urban Development Gradients in Rapidly Urbanizing Regions of China. Sustain. Cities Soc. 2024, 105, 105324. [Google Scholar] [CrossRef]
- Monteiro, F.F.; Gonçalves, W.A.; Andrade, L.M.B.; Villavicencio, L.M.M.; dos Santos Silva, C.M. Assessment of Urban Heat Islands in Brazil Based on MODIS Remote Sensing Data. Urban Clim. 2021, 35, 100726. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Corstanje, R.; Meersmans, J. Promoting Sustainable Landscape Pattern for Landscape Sustainability. Landsc. Ecol. 2021, 36, 1839–1844. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, Q.; Ouyang, W. How to Quantify the Relationship between Spatial Distribution of Urban Water-bodies and Land Surface Temperature? Sci. Total Environ. 2019, 671, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xin, J.; Zhang, Y.; Xiao, X.; Xia, J. Contributions of Sea–Land Breeze and Local Climate Zones to Daytime and Nighttime Heat Island Intensity. Urban Sustain. 2022, 2, 12. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Zhou, Y.; Liu, D.; Wang, H. The Dominant Factors and Influence of Urban Characteristics on Land Surface Temperature Using Random Forest Algorithm. Sustain. Cities Soc. 2022, 79, 103722. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Relationships among Local-Scale Urban Morphology, Urban Ventilation, Urban Heat Island and Outdoor Thermal Comfort under Sea Breeze Influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, G.; Gao, H.; Yang, Y. Urban Ventilation Planning and Its Associated Benefits Based on Numerical Experiments: A Case Study in Beijing, China. Build. Environ. 2022, 222, 109383. [Google Scholar] [CrossRef]
- Li, X.; Lin, K.; Shu, Y.; Lin, X. Comparison of the Influences of Different Ventilation Corridor Forms on the Thermal Environment in Wuhan City in Summer. Sci. Rep. 2023, 13, 13416. [Google Scholar] [CrossRef]
- Mirzaei, P.A. CFD Modeling of Micro and Urban Climates: Problems to Be Solved in the New Decade. Sustain. Cities Soc. 2021, 69, 102839. [Google Scholar] [CrossRef]
- Chang, S.; Jiang, Q.; Zhao, Y. Integrating CFD and GIS into the Development of Urban Ventilation Corridors: A Case Study in Changchun City, China. Sustainability 2018, 10, 1814. [Google Scholar] [CrossRef]
- Fang, Y.; Zhao, L. Assessing the Environmental Benefits of Urban Ventilation Corridors: A Case Study in Hefei, China. Build. Environ. 2022, 212, 108810. [Google Scholar] [CrossRef]
- Gao, J.; Qu, L.; Wu, W. Spatial-temporal variation of surface temperature and cold island networkconstruction in the Yangtze River delta urban agglomeration: Perspectivesfrom current and future scenarios. Sustain. Cities Soc. 2025, 126, 106396. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using Circuit Theory to Model Connectivity in Ecology, Evolution, and Conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- LaPoint, S.; Gallery, P.; Wikelski, M.; Kays, R. Animal Behavior, Cost-Based Corridor Models, and Real Corri-dors. Landsc. Ecol. 2013, 28, 1615–1630. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking Ecosystem Services and Circuit Theory to Identify Ecological Security Patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Pelletier, D.; Clark, M.; Anderson, M.G.; Rayfield, B.; Wulder, M.A.; Cardille, J.A. Applying Circuit Theory for Cor-ridor Expansion and Management at Regional Scales: Tiling, Pinch Points, and Omnidirectional Connectivity. PLoS ONE 2014, 9, e84135. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Gu, K. A Review of Urban Ventilation Corridors: Characteristics and Progress. Acta Ecol. Sin. 2024, 13, 5444–5458. [Google Scholar]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking Ecological Degradation Risk to Identify Ecological Security Pat-terns in a Rapidly Urbanizing Landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Sichuan Tianfu New District Management Committee. Available online: https://www.cdtf.gov.cn/ (accessed on 10 January 2025).
- The Implementation Plan for Building a Higher-Level “Tianfu Granary” in Chengdu Area Issued to Enhance the Construction of the “One Belt, Ten Parks, and Hundred Zones” Grain and Oil Industrial Parks. Chengdu Agricultural and Rural Bureau. Available online: https://cdagri.chengdu.gov.cn/nyxx/c109513/2022-08/17/content_ff764556901c43b5966326e8bf18e72c.shtml (accessed on 21 December 2024).
- Ding, Y.; Lu, Q.F. Research on the Construction of Urban Ecological Security: The Development of New-type Urbanization in Tianfu New District, Chengdu City. J. Southwest Minzu Univ. 2014, 35, 156–159. [Google Scholar]
- Chengdu Municipal Bureau of Ecological Environment. Biodiversity Survey Report of Chengdu-Plant Diversity; Chengdu Municipal Bureau of Ecological Environment: Chengdu, China, 2023. [Google Scholar]
- Liu, F.; Liu, J.; Zhang, Y.; Hong, S.; Fu, W.; Wang, M.; Dong, J. Construction of a Cold Island Network for the Urban Heat Island Effect Mitigation. Sci. Total Environ. 2024, 915, 169950. [Google Scholar] [CrossRef]
- Li, Y.Y.; Wang, S.M.; Zhang, S.J.; Wei, M.; Chen, Y.S.; Huang, X.Y.; Zhou, R. The Creation of Multi-Level Urban Ecological Cooling Network to Alleviate the Urban Heat Island Effect. Sustain. Cities Soc. 2024, 114, 105786. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Lin, Z.; Li, S. National-scale connectivity analysis and construction of forest networks based on graph theory: A case study of China. Ecol. Eng. 2025, 216, 107639. [Google Scholar] [CrossRef]
- Yue, X.; Liu, W.; Wang, X.; Yang, J.; Lan, Y.; Zhu, Z.; Yao, X. Constructing an Urban Heat Network to Mitigate the Urban Heat Island Effect from a Connectivity Perspective. Sustain. Cities Soc. 2024, 114, 105774. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting Landscape Connectivity of Highly Urbanized Area: An Ecological Network Approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Yin, S.; Zhou, Y.; Zhang, C.; Wu, N. Impact of Regional Integration Policy on Urban Ecological Resilience: A Case Study of the Yangtze River Delta Region, China. J. Clean. Prod. 2024, 485, 144375. [Google Scholar] [CrossRef]
- Qiu, J. Optimizing the Spatial Pattern of the Cold Island to Mitigate the Urban Heat Island Effect. Ecol. Indic. 2023, 150, 110550. [Google Scholar] [CrossRef]
- Luo, J.; Zhu, L.; Fu, H. Construction of Wetland Ecological Network Based on MSPA-Conefor-MCR: A Case Study of Haikou City. Ecol. Indic. 2024, 166, 112329. [Google Scholar] [CrossRef]
- Jian, L.; Xia, X.; Liu, X.; Zhang, Y.; Wang, Y. Spatiotemporal Variations and Multi-Scenario Simulation of Urban Thermal Environments Based on Complex Networks and the PLUS Model: A Case Study in Chengdu Central Districts. Sustain. Cities Soc. 2024, 115, 105833. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.-H.; Kaloush, K.E.; Shacat, J. Perceptions of Urban Heat Island Mitigation and Implementation Strategies: Survey and Gap Analysis. Sustain. Cities Soc. 2021, 66, 102687. [Google Scholar] [CrossRef]
- Son, J.-M.; Eum, J.-H.; Kim, S. Wind Corridor Planning and Management Strategies Using Cold Air Characteristics: The Application in Korean Cities. Sustain. Cities Soc. 2022, 77, 103512. [Google Scholar] [CrossRef]
- Santos, M.; Cagnolo, L.; Roslin, T.; Marrero, H.J.; Vázquez, D.P. Landscape Connectivity Explains Interaction Network Patterns at Multiple Scales. Ecology 2019, 100, e02883. [Google Scholar] [CrossRef]
- Yu, Z.; Yao, Y.; Yang, G.; Wang, X.; Vejre, H. Spatiotemporal Patterns and Characteristics of Remotely Sensed Regional Heat Islands during the Rapid Urbanization (1995–2015) of Southern China. Sci. Total Environ. 2019, 674, 242–254. [Google Scholar] [CrossRef]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Yao, X.; Yu, K.; Zeng, X.; Lin, Y.; Ye, B.; Shen, X.; Liu, J. How Can Urban Parks Be Planned to Mitigate Urban Heat Island Effect in “Furnace Cities”? An Accumulation Perspective. J. Clean. Prod. 2022, 330, 129852. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.M.; Hu, Y. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing. Sci. Total Environ. 2018, 626, 1136–1147. [Google Scholar]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hou, H.; Wang, R.; Murayama, Y.; Wang, L.; Hu, T. Effects of Landscape Patterns on the Morphological Evolution of Surface Urban Heat Island in Hangzhou during 2000–2020. Sustain. Cities Soc. 2022, 79, 103717. [Google Scholar] [CrossRef]
- Marando, F.; Salvatori, E. Regulating Ecosystem Services and Green Infrastructure: Assessment of Urban Heat Island effect mitigation in the municipality of Rome, Italy. Ecol. Model. 2019, 392, 92–102. [Google Scholar] [CrossRef]
- Bokaie, M.; Zarkesh, M.K.; Arasteh, P.D.; Hosseini, A. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustain. Cities Soc. 2016, 23, 94–104. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar]
Data Name | Year(s) | Resolution | Resolution |
---|---|---|---|
Land Surface Temperature | 2000, 2009, 2014, 2019, 2024 | 30 m | USGS (Landsat 5 TM, Landsat 8/9 OLI-TIRS) |
NDVI | 2000, 2009, 2014, 2019, 2024 | 30 m | Calculated from Landsat (Band 4 and 5), via USGS |
DEM | 2020 | 30 m | Geospatial Data Cloud |
GDP | 2020 | 1 km | China GDP Spatial Dataset (IGSNRR, Chinese Academy of Sciences) |
Population Density | 2020 | 100 m | WorldPop |
Road Data | 2020 | — | Open Street Map |
Number | Type | Description |
---|---|---|
1 | Core | Large, stable patches with strong connectivity; key cold source units |
2 | Edge | Outer boundary of core patches; often affected by external conditions |
3 | Bridge | Links between core areas; important corridors for thermal flow |
4 | Loop | Closed shapes around cores; form local buffer structures |
5 | Branch | Narrow extensions from cores; weakly connected |
6 | Islet | Small, isolated patches with limited ecological function |
7 | Background | Non-source areas, often urban or developed land |
Factor | Effect Direction | Effect Direction | Explanation |
---|---|---|---|
Land Use | + | 0.586 | Reflects differences in ecological substrate types |
DEM | + | 0.166 | Indicates terrain variation and energy exchange potential |
Road Density | + | 0.073 | Represents urban disturbance intensity |
NDVI | − | 0.175 | Indicates vegetation coverage, negatively correlated with temperature |
CICS Level | 2000 (km2) | 2009 (km2) | 2014 (km2) | 2019 (km2) | 2024 (km2) |
---|---|---|---|---|---|
Level 1 | 61.88325022 | 56.17535333 | 97.29454859 | 65.71397268 | 55.73893 |
Level 2 | 41.18752547 | 107.5291908 | 117.0509869 | 131.0495554 | 133.3324 |
Level 3 | 266.3971395 | 77.71425497 | 381.8785064 | 48.54054849 | 381.6604 |
Total | 369.4679152 | 241.4187991 | 596.2240419 | 245.3040765 | 570.7318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Y.; Yang, Z.; Li, Y.-X. Urban Thermal Regulation Through Cold Island Network Evolution: Patterns, Drivers, and Scenario-Based Planning Insights from Southwest China. Land 2025, 14, 1828. https://doi.org/10.3390/land14091828
Qiao Y, Yang Z, Li Y-X. Urban Thermal Regulation Through Cold Island Network Evolution: Patterns, Drivers, and Scenario-Based Planning Insights from Southwest China. Land. 2025; 14(9):1828. https://doi.org/10.3390/land14091828
Chicago/Turabian StyleQiao, Yu, Zehui Yang, and Yi-Xuan Li. 2025. "Urban Thermal Regulation Through Cold Island Network Evolution: Patterns, Drivers, and Scenario-Based Planning Insights from Southwest China" Land 14, no. 9: 1828. https://doi.org/10.3390/land14091828
APA StyleQiao, Y., Yang, Z., & Li, Y.-X. (2025). Urban Thermal Regulation Through Cold Island Network Evolution: Patterns, Drivers, and Scenario-Based Planning Insights from Southwest China. Land, 14(9), 1828. https://doi.org/10.3390/land14091828