Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Assessing ESs Supply, Demand, and Their Relationship
2.3.1. Measuring ESs Supply and Demand
2.3.2. Sensitivity Test for Land-Cover-Based Approach
2.3.3. Mapping ESs Supply–Demand Relationship
2.4. Identifying Drivers of ESs Supply–Demand Relationship
2.4.1. Latent Social–Ecological Drivers Selection
2.4.2. Geodetector
2.4.3. GWR Model
3. Results
3.1. Characteristics of ESs Supply and Demand
3.1.1. ESs Supply
3.1.2. ESs Demand
3.2. ESs Supply–Demand Relationship
3.2.1. Temporal Variations in ESSD
3.2.2. Spatial Characteristics of ESSD
3.3. Drivers of ESs Supply–Demand Relationship
3.3.1. Detection of Key Influencing Factors via Geodetector
3.3.2. Spatial Driving Intensity Analysis via GWR
4. Discussion
4.1. Advantages and Uncertainties in Land-Cover-Based Approach
4.2. Key Factors Influencing ESs Supply–Demand Relationship
4.3. Policy Implications
- (1)
- Implementing strict spatial controls on construction land expansion. Our analysis unequivocally identifies COD as the factor exerting the strongest negative influence on ESs supply–demand balance across the entire LP. Construction expansion causes the loss of ecological lands while simultaneously driving increased ESs demand through associated population agglomeration and economic activity. Therefore, strictly controlling disorderly urban expansion, optimizing the spatial layout of construction land, and especially implementing strict development controls in ecologically sensitive areas and key areas for ESs supply, are crucial for maintaining regional ESs supply–demand balance.
- (2)
- Prioritizing continuous ecological restoration in high-demand or ecologically sensitive areas. The study demonstrates a consistent positive effect of FGD on improving ESs supply–demand relationships throughout the LP. However, there are also differences in the intensity of the positive effects of FGD, which indicates that its role in enhancing ESs supply and alleviating ESs supply–demand conflicts may be more critical in areas with fragile ecological foundations or where projects are intensively implemented. This further emphasizes the importance of continuous protection and restoration of forest–grass ecosystems in high-demand or ecologically sensitive areas.
- (3)
- Adopting spatially differentiated strategies for managing population and economic development pressures. Our analysis underscores the “dual effects” and potential threshold behaviors of socio-economic drivers. A uniform management approach is therefore inadequate. Policy interventions must be tailored based on local GWR results: (a) In spatial units where POP/GDP exert strong negative influences, strategies should focus on alleviating direct ecological burdens through stringent environmental regulations, resource efficiency promotion, pollution control, and potentially managing urban densification in sensitive fringes. (b) In spatial units where POP/GDP show positive influences, strategies should leverage available human and financial resources to actively channel efforts into ecological conservation, restoration projects, and fostering green economic development.
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, B.; Wang, S.; Rhodes, J.R.; Li, Y.; Zhao, W.; Li, C.; Zhou, S.; Wang, C. Global assessment of nature’s contributions to people. Sci. Bull. 2023, 68, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, W.; Batáry, P.; Baudry, J.; Beaumelle, L.; Bucher, R.; Cerevková, A.; de la Riva, E.G.; Felipe-Lucia, M.R.; Gallé, R.; Kesse-Guyot, E.; et al. From biodiversity to health: Quantifying the impact of diverse ecosystems on human well-being. People Nat. 2023, 5, 69–83. [Google Scholar] [CrossRef]
- De Knegt, B.; Lof, M.E.; Le Clec’h, S.; Alkemade, R. Growing mismatches of supply and demand of ecosystem services in the Netherlands. J. Environ. Manag. 2025, 373, 123442. [Google Scholar] [CrossRef]
- Ding, H.; Sun, R. Supply-demand analysis of ecosystem services based on socioeconomic and climate scenarios in North China. Ecol. Indic. 2023, 146, 109906. [Google Scholar] [CrossRef]
- Elliot, T.; Goldstein, B.; Gomez-Baggethun, E.; Proenca, V.; Rugani, B. Ecosystem service deficits of European cities. Sci. Total Eviron. 2022, 837, 155875. [Google Scholar] [CrossRef] [PubMed]
- Sitotaw, T.M.; Willemen, L.; Meshesha, D.T.; Weldemichael, M.; Nelson, A. Modelling the impact of ecosystem fragmentation on ecosystem services in the degraded Ethiopian highlands. Ecol. Inform. 2025, 87, 103100. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, X.; Wu, P.; Hu, P.; Gao, X. Quantification and spatially explicit driving forces of the incoordination between ecosystem service supply and social demand at a regional scale. Ecol. Indic. 2022, 137, 108764. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 2019. Available online: https://www.ipbes.net/system/tdf/spm_global_unedited_advance.pdf?file=1&type=node&id=35245 (accessed on 12 March 2025).
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, M.; Liu, K.; Chen, S.; Zhao, Z. Social-ecological system sustainability in China from the perspective of supply-demand balance for ecosystem services. J. Clean. Prod. 2025, 497, 145039. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Casado-Arzuaga, I.; Madariaga, I.; Onaindia, M. Perception, demand and user contribution to ecosystem services in the Bilbao Metropolitan Greenbelt. J. Environ. Manag. 2013, 129, 33–43. [Google Scholar] [CrossRef]
- Bennett, D.E.; Gosnell, H. Integrating multiple perspectives on payments for ecosystem services through a social-ecological systems framework. Ecol. Econ. 2015, 116, 172–181. [Google Scholar] [CrossRef]
- Qu, Q.; Zhang, K.; Niu, J.; Xiao, C.; Sun, Y. Spatial-Temporal Differentiation of Ecosystem Service Trade-Offs and Synergies in the Taihang Mountains, China. Land 2025, 14, 513. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.; Yuan, M.; Duan, W.; Xia, J.; Li, J.; Zhao, Y. Differential Response of Ecosystem Service to Restoration Methods and Restoration Time in Shallow Landslide-Prone Areas. Land Degrad. Dev. 2025, 36, 3051–3062. [Google Scholar] [CrossRef]
- Lu, Z.; Li, W.; Yue, R. Investigation of the long-term supply-demand relationships of ecosystem services at multiple scales under SSP-RCP scenarios to promote ecological sustainability in China’s largest city cluster. Sustain. Cities Soc. 2024, 104, 105295. [Google Scholar] [CrossRef]
- Yang, M.; Gao, X.; Zhao, X.; Wu, P. Scale effect and spatially explicit drivers of interactions between ecosystem services—A case study from the Loess Plateau. Sci. Total Environ. 2021, 785, 147389. [Google Scholar] [CrossRef]
- Cui, F.; Tang, H.; Zhang, Q.; Wang, B.; Dai, L. Integrating ecosystem services supply and demand into optimized management at different scales: A case study in Hulunbuir, China. Ecosyst. Serv. 2019, 39, 100984. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, D.; Fu, B.; Cao, M.; Chen, J. Research progress on the biodiversity and ecosystem service scenario simulations. Acta Ecol. Sin. 2020, 40, 5863–5873. (In Chinese) [Google Scholar] [CrossRef]
- Shi, R.; Huang, X.; Wang, L.; Xiang, Y.; Huang, C. Land Use Changes and Sustainable Development Goals Alignment Through Assessing Ecosystem Service Supply and Demand Balance. Land Degrad. Dev. 2025, 36, 2651–2665. [Google Scholar] [CrossRef]
- Kandziora, M.; Burkhard, B.; Müller, F. Mapping Provisioning Ecosystem Services at the Local Scale Using Data of Varying Spatial and Temporal Resolution. Ecosyst. Serv. 2013, 4, 47–59. [Google Scholar] [CrossRef]
- Kaiser, G.; Burkhard, B.; Römer, H.; Sangkaew, S.; Graterol, R.; Haitook, T.; Sterr, H.; Sakuna-Schwartz, D. Mapping Tsunami Impacts on Land Cover and Related Ecosystem Service Supply in Phang Nga, Thailand. Nat. Hazard. Earth Sys. 2013, 13, 3095–3111. [Google Scholar] [CrossRef]
- Vihervaara, P.; Kumpula, T.; Tanskanen, A.; Burkhard, B. Ecosystem Services: A Tool for Sustainable Management of Human Environment Systems: Case Study Finnish Forest Lapland. Ecol. Complex. 2010, 7, 410–420. [Google Scholar] [CrossRef]
- Burkhard, B.; Müller, A.; Müller, F.; Grescho, V.; Anh, Q.; Arida, G.; Bustamante, J.V.; Chien, H.V.; Heong, K.L.; Escalada, M.; et al. Land Cover Based Ecosystem Service Assessment of Irrigated Rice Cropping Systems with Different Production Intensities in Southeast Asia: An Explorative Study. Ecosyst. Serv. 2015, 14, 76–87. [Google Scholar] [CrossRef]
- Lyu, Y.; Sheng, L.; Wu, C. Improving land-cover-based expert matrices to quantify the dynamics of ecosystem service supply, demand, and budget: Optimization of weight distribution. Ecol. Indic. 2023, 154, 110515. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G. Spatial mismatch of ecosystem service demands and supplies in China, 2000–2020. Environ. Monit. Assess. 2022, 194, 295. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, F.; Yao, Y.; Ji, Q.; Cheng, X. Exploring the Response of Ecosystem Services to Socioecological Factors in the Yangtze River Economic Belt, China. Land 2024, 13, 728. [Google Scholar] [CrossRef]
- González-García, A.; Palomo, I.; González, J.A.; López, C.A.; Montes, C. Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy 2020, 94, 104493. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Investigating tradeoffs between supply, use and demand of ecosystem services and their effective drivers for sustainable environmental management. J. Environ. Manag. 2021, 289, 112534. [Google Scholar] [CrossRef]
- Wang, S.; Fu, B.; Wu, X.; Wang, Y. Dynamics and sustainability of social-ecological systems in the Loess Plateau. Resour. Sci. 2020, 42, 96–103. (In Chinese) [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Cao, Z.; Wang, Z.; Wu, X. Current conditions, issues, and suggestions for ecological protection and high-quality development in Loess Plateau. Bull. Chin. Acad. Sci. 2023, 38, 1110–1117. (In Chinese) [Google Scholar]
- Wang, X.; Peng, S.; Wu, J.; Zheng, K.; Wang, S.; Shangguan, Z.; Deng, L. Simulation of the Key Ecosystem Services Changes in China’s Loess Plateau under Various Shared Socioeconomic Pathways Scenarios. Ecosyst. Health Sustain. 2024, 10, 0200. [Google Scholar] [CrossRef]
- Yang, Q.; Qian, H.; Gao, Y.; Duan, Y.; Cao, Z.; Tian, P.; Li, K.; Yang, S.; Zhao, W.; Long, Q. Spatio-temporal evolution and driving mechanism of ecosystem services in typical hilly and gully areas of the loess Plateau: A case study in Yan’an Region, Shaanxi Province. Ecol. Indic. 2025, 177, 113773. [Google Scholar] [CrossRef]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Z.; Wen, M.; Huang, L.; Liu, H.; Wang, J.; Chen, W.; Zhuang, C. Identifying the spatial disparities and determinants of ecosystem service balance and their implications on land use optimization. Sci. Total Environ. 2021, 793, 148472. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and driving force analysis of ecosystem services supply, demand and balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Zhai, T.; Ma, Y.; Huang, L.; Lu, Y.; Li, L.; Chen, Y.; Chang, M.; Ma, Z. Research on the spatiotemporal evolution characteristics and driving mechanisms of supply-demand risks of ecosystem services in the yellow river basin integrating the hierarchy of needs theory. Ecol. Indic. 2025, 171, 113229. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. (In Chinese) [Google Scholar]
- Li, K.; Fan, H.; Ouyang, J.; Yao, P. Valuation of the 2020 gross ecosystem product of China and analysis of driving factors. J. Clean. Prod. 2025, 513, 145741. [Google Scholar] [CrossRef]
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; de Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, X.; Yang, Y.; Zheng, J.; Dai, Y.; Zhang, J. Identifying the spatial relationships and drivers of ecosystem service supply-demand—Demand matching: A case of Yiluo River Basin. Ecol. Indic. 2024, 163, 112122. [Google Scholar] [CrossRef]
- Wen, Y.; Li, M.; Chen, Z.; Li, W. Changes in ecosystem services supply-demand and key drivers in Jiangsu Province, China, from 2000 to 2020. Land Degrad. Dev. 2024, 35, 4666–4681. [Google Scholar] [CrossRef]
- Dabasinskas, G.; Sujetoviene, G. Spatial and Temporal Changes in Supply and Demand for Ecosystem Services in Response to Urbanization: A Case Study in Vilnius, Lithuania. Land 2024, 13, 4. [Google Scholar] [CrossRef]
- Deng, L.; Yang, J.; Yin, X.; Jia, K.; Sun, J.; Shu, S.; Huang, A. Supply and demand of ecosystem services and its multi-spatial scale response to urbanization in Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2024, 44, 9094–9107. (In Chinese) [Google Scholar]
- Zhu, Z.; Fu, W.; Liu, Q. Correlation between urbanization and ecosystem services in Xiamen, China. Environ. Dev. Sustain. 2021, 23, 101–121. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Mehring, M.; Ott, E.; Hummel, D. Ecosystem services supply and demand assessment: Why social-ecological dynamics matter. Ecosyst. Serv. 2018, 30, 124–125. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Liu, Y.; Zhao, M.; Hu, Y.; Wu, J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 2017, 607, 706–714. [Google Scholar] [CrossRef]
- Qu, C.; Xu, J.; Li, W.; Zhai, Y.; Wang, Y.; Liu, B.; Yan, S. Integrating circuit theory and network modeling to identify ecosystem carbon sequestration service flow networks. Ecol. Inform. 2025, 87, 103077. [Google Scholar] [CrossRef]
Data Type | Format | Spatiotemporal Resolution | Source | Application |
---|---|---|---|---|
Land use data | Raster | 1000 m; the years of 1990, 1995, 2000, 2005, 2010, 2015, 2020, 2023 | Resource and Environmental Science Data Center (http://www.resdc.cn/) | ESs calculation; Driver analysis |
FVC data | Raster | 250 m; the year of 2023 | National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) | Driver analysis |
DEM data | Raster | 30 m; the year of 2023 | Geospatial Data Cloud (http://www.gscloud.cn/) | Driver analysis |
Climate-related data | Raster | 1000 m; the year of 2023 | National Earth System Science Data Center (http://www.geodata.cn/) | Driver analysis |
Socio-economic data | Excel | County; the year of 2023 | China Statistical Database (https://www.shujuku.org/) | Driver analysis |
Variable Category | Variable | Description | Unit | |
---|---|---|---|---|
Dependent variable | ESSD | ESs supply–demand matching index | — | |
Independent variables | Topographic factors | SLO | Average slope | ° |
ELE | Average elevation | m | ||
Climate factors | TEM | Annual average temperature | °C | |
RAI | Annual average rainfall | mm | ||
EVA | Annual average evapotranspiration | mm | ||
Grain for Green Program | FVC | Foliage vegetation cover | % | |
FAD | Proportion of Farmland | % | ||
FGD | Proportion of Forestland and Grassland | % | ||
Socio-economic factors | POP | Population density | people/km2 | |
GDP | GDP density | 104 yuan/km2 | ||
COD | Proportion of Construction land | % |
Variable | SLO | ELE | TEM | RAI | EVA | |
---|---|---|---|---|---|---|
q value | 0.454 | 0.434 | 0.386 | 0.409 | 0.340 | |
p value | *** | *** | *** | *** | *** | |
Variable | FVC | FAD | FGD | POP | GDP | COD |
q value | 0.236 | 0.219 | 0.753 | 0.775 | 0.763 | 0.871 |
p value | *** | *** | *** | *** | *** | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Wang, M.; Cao, L.; Zhang, H.; Niu, H. Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China. Land 2025, 14, 1795. https://doi.org/10.3390/land14091795
Yang M, Wang M, Cao L, Zhang H, Niu H. Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China. Land. 2025; 14(9):1795. https://doi.org/10.3390/land14091795
Chicago/Turabian StyleYang, Menghao, Ming Wang, Lianhai Cao, Haipeng Zhang, and Huhu Niu. 2025. "Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China" Land 14, no. 9: 1795. https://doi.org/10.3390/land14091795
APA StyleYang, M., Wang, M., Cao, L., Zhang, H., & Niu, H. (2025). Land-Cover-Based Approach for Exploring Ecosystem Services Supply–Demand and Spatial Non-Stationary Responses to Determinants: Case Study of the Loess Plateau, China. Land, 14(9), 1795. https://doi.org/10.3390/land14091795