Assessing Coastal Vulnerability in Finland: A Geoinformation-Based Approach Using the CVI
Abstract
1. Introduction
2. Study Area
3. Methodology
3.1. CVI Variables
3.1.1. Geomorphology
3.1.2. Coastal Slope
3.1.3. Physical Variables
3.1.4. Shoreline Change
3.2. Preprocessing
3.3. CVI Calculation
4. Results
5. Discussion
6. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Casas-Prat, M.; Wang, X.L. Projections of Extreme Ocean Waves in the Arctic and Potential Implications for Coastal Inundation and Erosion. J. Geophys. Res. Oceans 2020, 125, e2019JC015745. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic Coastal Erosion and Its Sensitivity to Warming in the Twenty-First Century. Nat. Clim. Chang. 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Toumasi, P.; Petropoulos, G.P.; Detsikas, S.E.; Kalogeropoulos, K.; Tselos, N.G. Coastal Vulnerability Impact Assessment under Climate Change in the Arctic Coasts of Tromsø, Norway. Earth 2024, 5, 640–653. [Google Scholar] [CrossRef]
- Alessa, L.; Kliskey, A.; Busey, R.; Kofinas, G.; Hinzman, L.; Berman, M. Toward a Permafrost Vulnerability Index for Critical Infrastructure, Community Resilience and National Security. Geographies 2023, 3, 522–542. [Google Scholar] [CrossRef]
- United Nations. The 17 Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 27 June 2025).
- European Environment Agency. Finland’s National Climate Change Adaptation Plan; Ministry of Agriculture and Forestry: Helsinki, Finland, 2021. [Google Scholar]
- Fuldauer, L.I.; Watson, J.; Pant, R.; Hall, J.W. Climate Change Adaptation and the Sustainable Development Goals: Synergies and Trade-offs. Nat. Clim. Change 2022, 12, 678–685. [Google Scholar]
- Irrgang, A.M.; Bendixen, M.; Farquharson, L.M.; Ogorodov, S.A.; Lantuit, H.; Fritz, M. Drivers, Dynamics and Impacts of Changing Arctic Coasts. Nat. Rev. Earth Environ. 2022, 3, 39–55. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Toumasi, P.; Kalogeropoulos, K.; Tselos, N.G. Geoinformation Technology in Support of Arctic Coastal Properties Characterization: State of the Art, Challenges, and Future Outlook. Land 2024, 13, 776. [Google Scholar] [CrossRef]
- Kovaleva, O.; Sergeev, A.; Ryabchuk, D. Coastal Vulnerability Index as a Tool for Current State Assessment and Anthropogenic Activity Planning for the Eastern Gulf of Finland Coastal Zone (the Baltic Sea). Appl. Geogr. 2022, 143, 102710. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, L.; Doxaran, D.; Sun, Y.; Xu, J. Decadal Arctic Coastal Erosion Detection Using Sentinel-1 and Historic SAR Archives. Remote Sens. 2022, 14, 1210. [Google Scholar] [CrossRef]
- Rasmus, S.; Kivinen, S.; Jylhä, K.; Turunen, M.T. Climate Change and Reindeer Management in Finland: Co-Analysis of Practitioner Knowledge and Meteorological Data for Better Adaptation. Clim. Chang. 2021, 165, 1–18. [Google Scholar] [CrossRef]
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and Science, 4th ed.; Wiley: Chichester, UK, 2015. [Google Scholar]
- Gornitz, V.; White, T.; Cushman, R. Vulnerability of the U.S. to Future Sea Level Rise; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1991. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Future Sea-Level Rise: Preliminary Results for the U.S. Pacific Coast. In U.S. Geological Survey Open-File Report; U.S. Geological Survey: Woods Hole, MA, USA, 2000. Available online: http://pubs.usgs.gov/of/2000/of00-178/ (accessed on 27 June 2025).
- Gaki-Papanastassiou, K.; Karymbalis, E.; Poulos, S.E.; Seni, A.; Zouva, C. Coastal Vulnerability Assessment to Sea-Level Rise Based on Geomorphological and Oceanographical Parameters: The Case of Argolikos Gulf, Peloponnese, Greece. Hell. J. Geosci. 2010, 45, 109–122. [Google Scholar]
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef]
- Furlan, E.; Camuffo, M.; Dalla Fontana, G. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing Vulnerability to Inundation Scenarios in the Italian Coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef] [PubMed]
- Nikifor, O. The Role of Remote Sensing Data for Coastal Zone Monitioring and Management (Case Study for the East Part of Gulf of Finland). In Proceedings of the International Conference “Managinag risks to coastal regions and communities in a changinag world” (EMECS’11—SeaCoasts XXVI), St. Petersburg, Russia, 22–27 August 2017. [Google Scholar] [CrossRef]
- Pellikka, H.; Johansson, M.M.; Nordman, M.; Ruosteenoja, K. Probabilistic Projections and Past Trends of Sea Level Rise in Finland. Nat. Hazards Earth Syst. Sci. 2023, 23, 1613–1630. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2022: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2022; Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 20 May 2025).
- Weisse, R.; Dailidienė, I.; Hünicke, B.; Kahma, K.; Madsen, K.; Omstedt, A.; Parnell, K.; Schöne, T.; Soomere, T.; Zhang, W.; et al. Sea Level Dynamics and Coastal Erosion in the Baltic Sea Region. Earth Syst. Dyn. 2021, 12, 871–898. [Google Scholar] [CrossRef]
- European Marine Observation and Data Network (EMODnet). EMODnet GeoViewer. Available online: https://emodnet.ec.europa.eu/geoviewer/#!/ (accessed on 5 May 2025).
- Arctic Council. Finland in the Arctic Council. Available online: https://arctic-council.org/about/states/finland/ (accessed on 10 June 2025).
- Peltonen, P.; Ojala, A.E.K. Post-Glacial Rebound and Sea-Level Change in Finland: Implications for Future Coastal Development. Geol. Surv. Finl., Spec. Pap. 2019, 61, 85–98. [Google Scholar]
- HELCOM. State of the Baltic Sea—Second HELCOM Holistic Assessment 2011–2016. Balt. Sea Environ. Proc. 2018, 155, 155. [Google Scholar]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.L.; Fang, J. A Global Analysis of Subsidence, Relative Sea-Level Change and Coastal Flood Exposure. Nat. Clim. Chang. 2021, 11, 338–342. [Google Scholar] [CrossRef]
- BACC II Author Team. Second Assessment of Climate Change for the Baltic Sea Basin; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Prishchepenko, D.V.; Ryabchuk, D.V.; Zhamoida, V.A.; Sergeev, A.Y.; Leontev, F.A.; Grigoriev, A.G.; Neevin, I.A.; Budanov, L.M.; Kovaleva, O.A. Main Trends and Results of 300-Years Anthropogenic Impact on the Geological Environment and Ecosystem of the Eastern Gulf of Finland. Cont. Shelf Res. 2023, 265, 105058. [Google Scholar] [CrossRef]
- Vestøl, O.; Steffen, H.; Kierulf, H.P. Consistent Map of the Recent Postglacial Rebound of Fennoscandia. Terra Nova 2023, 35, 391–400. [Google Scholar]
- Luoma, S.; Majaniemi, J.; Pullinen, A.; Mursu, J.; Virtasalo, J. Geological and Groundwater Flow Model of a Submarine Groundwater Discharge Site at Hanko (Finland), Northern Baltic Sea. Hydrogeol. J. 2021, 29, 1279–1297. [Google Scholar] [CrossRef]
- Palmu, J.-P.; Ojala, A.E.K.; Virtasalo, J.; Putkinen, N.; Kohonen, J.; Sarala, P. Classification system of superficial (Quaternary) geological units in Finland. Geol. Surv. Finl. Bull. 2021, 412, 115–169. [Google Scholar] [CrossRef]
- Ekman, M. A Consistent Map of the Postglacial Uplift of Fennoscandia. Terra Nova 1996, 8, 158–165. [Google Scholar] [CrossRef]
- Johansson, M.M.; Pellikka, H.; Kahma, K.K.; Ruosteenoja, K. Global Sea Level Rise Scenarios Adapted to the Finnish Coast. J. Mar. Syst. 2014, 129, 35–46. [Google Scholar] [CrossRef]
- HELCOM. Climate Change in the Baltic Sea Area: HELCOM Thematic Assessment in 2013. Balt. Sea Environ. Proc. 2013, 137, 66. [Google Scholar]
- Sokolov, A.; Chubarenko, B. Baltic Sea Wave Climate in 1979–2018: Numerical Modelling Results. Ocean Eng. 2024, 297, 117088. [Google Scholar] [CrossRef]
- Medvedev, I.P.; Rabinovich, A.B.; Kulikov, E.A. Tidal Oscillations in the Baltic Sea. Oceanology 2013, 53, 526–538. [Google Scholar] [CrossRef]
- Komi, A.; Petropoulos, A.; Evelpidou, N.; Poulos, S.; Kapsimalis, V. Coastal Vulnerability Assessment for Future Sea Level Rise and a Comparative Study of Two Pocket Beaches in Seasonal Scale, Ios Island, Cyclades, Greece. J. Mar. Sci. Eng. 2022, 10, 1673. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Frega, F.; Francone, A.; Tomasicchio, G.R. Improvement of a Coastal Vulnerability Index and Its Application along the Calabria Coastline, Italy. Sci. Rep. 2022, 12, 21959. [Google Scholar] [CrossRef]
- Tarigan, T.A.; Ahmad, A.L.; Suciana; Fauzi, M.A.R.; Fatkhurrozi, M. Assessment of Coastal Vulnerability Index (CVI) and Its Application along the Sragi Coast, South Lampung, Indonesia. Int. J. Geomate 2024, 26, 134–141. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef] [PubMed]
- Manno, G.; Azzara, G.; Lo Re, C.; Martinello, C.; Basile, M.; Rotigliano, E.; Ciraolo, G. An Approach for the Validation of a Coastal Erosion Vulnerability Index: An Application in Sicily. J. Mar. Sci. Eng. 2022, 11, 23. [Google Scholar] [CrossRef]
- National Land Survey of Finland. Karttapaikka. Available online: https://asiointi.maanmittauslaitos.fi/karttapaikka/?lang=en (accessed on 25 January 2025).
- Ružić, I.; Vulin, A.; Benac, Č.; Juras, J. Assessment of the Coastal Vulnerability Index in an Area of Complex Geological Conditions on the Krk Island, Northeast Adriatic Sea. Geosciences 2019, 9, 219. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy Coastlines under Threat of Erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal Adaptation to Climate Change and Sea-Level Rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space Geodesy Constrains Ice Age Terminal Deglaciation: The Global ICE-6G_C (VM5a) Model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef]
- Charuka, B.; Angnuureng, D.B.; Brempong, E.K.; Agblorti, S.K.M.; Antwi Agyakwa, K.T. Assessment of the Integrated Coastal Vulnerability Index of Ghana toward Future Coastal Infrastructure Investment Plans. Ocean. Coast. Manag. 2023, 244, 106804. [Google Scholar] [CrossRef]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Spatial Vulnerability Assessment for Climate Change Impacts on Coastal Communities: Combining Physical and Socio-Economic Dimensions. Clim. Chang. 2021, 168, 42. [Google Scholar] [CrossRef]
CVI Variables | Source | Reference Period |
---|---|---|
Mean Wave Height (m) | [37] | 1979–2018 |
Relative Sea-Level Change (mm/y) | [21] | IPCC 2100 |
Tidal Range (m) | [38] | 1992–2008 |
Coastal Slope | National Land Survey of Finland DEM https://asiointi.maanmittauslaitos.fi/karttapaikka/?lang=en (accessed on 25 January 2025) | - |
Geomorphology | EMODnet (geology/coastal type) https://emodnet.ec.europa.eu/geoviewer/#!/ (accessed on 5 May 2025) | - |
Shoreline Erosion/Accretion (m/y) | EMODnet (geology/coastal migration/satellite data) https://emodnet.ec.europa.eu/geoviewer/#!/ (accessed on 5 May 2025) | 2007–2017 |
CVI | Very Low | Low | Moderate | High | Very High |
---|---|---|---|---|---|
Variables | 1 | 2 | 3 | 4 | 5 |
Geomorphology | Rocky, cliffed coasts; fjords, fjards; artificial constructions | Medium cliffs, indented coasts | Low cliffs, glacial drift, alluvial plains, beach rocks, dunes (mixed material) | Cobble beaches, estuaries, lagoons | Barrier beaches, sand beaches, salt marshes, mud flats, deltas, mangroves, coral reefs |
Coastal Slope (%) | >20 | 7–20 | 4–7 | 2.5–4 | <2.5 |
RSL (mm/y) | <1.8 | 1.8–2.5 | 2.5–3.0 | 3.0–3.2 | >3.2 |
Tidal Range (m) | >6.0 | 4.1–6.0 | 2.0–4.0 | 1.0–1.9 | <1.0 |
Mean Wave Height (m) | <0.55 | 0.55–0.85 | 0.85–1.05 | 1.05–1.25 | >1.25 |
Shoreline Erosion/Accretion (m/yr) | >2.0 | 1.0–2.0 | −1.0–1.0 | −1.1–2.0 | <−2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lymperopoulou, K.; Petropoulos, G.P.; Karkani, A.; Evelpidou, N.; Detsikas, S.E. Assessing Coastal Vulnerability in Finland: A Geoinformation-Based Approach Using the CVI. Land 2025, 14, 1741. https://doi.org/10.3390/land14091741
Lymperopoulou K, Petropoulos GP, Karkani A, Evelpidou N, Detsikas SE. Assessing Coastal Vulnerability in Finland: A Geoinformation-Based Approach Using the CVI. Land. 2025; 14(9):1741. https://doi.org/10.3390/land14091741
Chicago/Turabian StyleLymperopoulou, Konstantina, George P. Petropoulos, Anna Karkani, Niki Evelpidou, and Spyridon E. Detsikas. 2025. "Assessing Coastal Vulnerability in Finland: A Geoinformation-Based Approach Using the CVI" Land 14, no. 9: 1741. https://doi.org/10.3390/land14091741
APA StyleLymperopoulou, K., Petropoulos, G. P., Karkani, A., Evelpidou, N., & Detsikas, S. E. (2025). Assessing Coastal Vulnerability in Finland: A Geoinformation-Based Approach Using the CVI. Land, 14(9), 1741. https://doi.org/10.3390/land14091741