Evaluation of the Remediation of Cultivated Land for Non-Grain Conversion Based on the “Resource Cost-Negative Effect-Remediation Potential” Framework: A Case Study of the Bohai Rim (BR) Region, China
Abstract
1. Introduction
2. Materials
2.1. Study Area
2.2. Data Collection and Processing
2.2.1. Data Collection
2.2.2. Data Processing
3. Methodology
3.1. Evaluation Index System
3.2. Evaluation Model
3.3. Cluster Analysis
4. Results
4.1. Spatiotemporal Evolution Characteristics of Non-Grain Conversion of MGL in the BR Region
4.2. Spatiotemporal Evolution Characteristics of the Negative Effects of Non-Grain Conversion of MGL in the BR Region
4.3. Spatiotemporal Evolution Characteristics of the Remediation Potential of Non-Grain Land Converted from MGL in the BR Region
4.4. Zoning of Non-Grain Land Converted from MGL in the BR Region for Remediation
4.4.1. Priority Levels for Spatial Remediation
4.4.2. Priority Levels for Dimensional Remediation
5. Discussion
5.1. Causes of Non-Grain Conversion of MGL in the BR Region
5.2. Implications of Comprehensive Remediation of Non-Grain Land Areas Converted from MGL in the BR Region
5.3. Limitations and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BR | Bohai Rim |
BER | Bohai Economic Rim |
MGL | Main Grain Land |
CLCD | China Land Cover Dataset |
NDVI | Normalized Difference Vegetation Index |
NPP | Net Primary Production of Vegetation |
POPD | Population Density |
DEM | Digital Elevation Model |
GDP | Gross Domestic Product |
RC | Resource Cost |
NE | Negative Effect |
RP | Remediation Potential |
CR | Carbon retention |
PD | Patch density |
AI | Aggregation index |
SCS | Soil carbon storage |
GPBE | General public budget expenditure |
PFR | Pesticide and fertilizer dosages per unit area |
PR | PM2.5 emissions per unit area |
FA | Per capita food availability |
UR | Unemployment rate |
RD | Road density |
FSI | Fiscal stress index |
ESI | Ecological stress index |
SSI | Social stress index |
ENDI | economic development index |
ELDI | Ecological development index |
SDI | Social development index |
References
- Sun, Y.; Chang, Y.; Liu, J.; Ge, X.; Liu, G.J.; Chen, F. Spatial Differentiation of Non-Grain Production on Cultivated Land and Its Driving Factors in Coastal China. Sustainability 2021, 13, 13064. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B.; Huang, A.; Xiong, B.; Song, C. Characteristics and Driving Forces of Non-Grain Production of Cultivated Land from the Perspective of Food Security. Sustainability 2021, 13, 14047. [Google Scholar] [CrossRef]
- Tong, C.; Hall, C.A.; Wang, H. Land Use Change in Rice, Wheat and Maize Production in China (1961–1998). Agric. Ecosyst. Environ. 2003, 95, 523–536. [Google Scholar] [CrossRef]
- Li, D.; Wu, X. Understanding the Structural Imbalance in Non-Grain Land Utilization: Insights from China’s Arable Land Policy. Appl. Geogr. 2025, 181, 103673. [Google Scholar] [CrossRef]
- Liang, X.; Jin, X.; Liu, J.; Yin, Y.; Gu, Z.; Zhang, J.; Zhou, Y. Formation Mechanism and Sustainable Productivity Impacts of Non-grain Croplands: Evidence from Sichuan Province, China. Land Degrad. Dev. 2023, 34, 1120–1132. [Google Scholar] [CrossRef]
- Godwin, R.J.; Wheeler, P.N.; O’Dogherty, M.J.; Watt, C.D.; Richards, T. Cumulative Mass Determination for Yield Maps of Non-Grain Crops. Comput. Electron. Agric. 1999, 23, 85–101. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Wang, K.; Guan, T.; Gan, M. Identifying the Driving Forces of Non-Grain Production Expansion in Rural China and Its Implications for Policies on Cultivated Land Protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, Q.; Zhang, H. The Impact of the Fragmentation of the Cultivated Land on “non-Grain” Usage. Arch. Agron. Soil Sci. 2025, 71, 1–22. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, M.; Sun, X. Evolutionary Characteristics and Influencing Factors of Non-Grain of Cultivated Land in Main Grain-Producing Areas—A Case Study of Lianyungang City, China. PLoS ONE 2025, 20, e0325259. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, D.; Yin, M. Spatiotemporal Patterns and Driving Factors of Non-Grain Cultivated Land in China’s Three Main Functional Grain Areas. Sustainability 2023, 15, 13720. [Google Scholar] [CrossRef]
- Wang, Y.; Song, D.; Liu, C.; Li, S.; Yuan, M.; Gong, J.; Yang, J. Spatial Correlation of Non-Agriculturalization and Non-Grain Utilization Transformation of Cultivated Land in China and Its Implications. Land 2025, 14, 1031. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Song, Y. Spatio-Temporal Evolution and Driving Factors of “Non-Grain Production” in Hubei Province Based on a Non-Grain Index. Sustainability 2023, 15, 9042. [Google Scholar] [CrossRef]
- Su, Y.; Li, C.; Wang, K.; Deng, J.; Shahtahmassebi, A.R.; Zhang, L.; Ao, W.; Guan, T.; Pan, Y.; Gan, M. Quantifying the Spatiotemporal Dynamics and Multi-Aspect Performance of Non-Grain Production during 2000–2015 at a Fine Scale. Ecol. Indic. 2019, 101, 410–419. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, J.; Luo, X.; Yan, X.; Zheng, X.; Mao, Y.; Fu, X.; Yao, X.; Jiang, S. Exploring the Impacts of Land Use/Cover Change on Ecosystem Services in Multiple Scenarios—The Case of Sichuan-Chongqing Region, China 2023. arXiv 2023, arXiv:2401.01363. [Google Scholar]
- Zhang, M.; Sun, P.; Sun, Z. Spatiotemporally Mapping Non-Grain Production of Winter Wheat Using a Developed Auto-Generating Sample Algorithm on Google Earth Engine. Remote Sens. 2024, 16, 659. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Wang, X.; Chang, X.; Zhu, Z. The Impact of Non-Grain Conversion of Cultivated Land on the Relationship between Agricultural Carbon Supply and Demand. Appl. Geogr. 2024, 162, 103166. [Google Scholar] [CrossRef]
- Ren, G.; Song, G.; Wang, Q.; Sui, H. Impact of “Non-Grain” in Cultivated Land on Agricultural Development Resilience: A Case Study from the Major Grain-Producing Area of Northeast China. Appl. Sci. 2023, 13, 3814. [Google Scholar] [CrossRef]
- Song, J.; Duan, L. The Bohai Sea. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 377–394. [Google Scholar]
- Gavioli, A.; de Souza, E.G.; Bazzi, C.L.; Schenatto, K.; Betzek, N.M. Identification of Management Zones in Precision Agriculture: An Evaluation of Alternative Cluster Analysis Methods. Biosyst. Eng. 2019, 181, 86–102. [Google Scholar] [CrossRef]
- Sheng, E.L. A Historical Review on the Role of the Bohai Coastal Region in China’s History: Qingdao, Dalian, and Economic Rim. In From Colonial Seaports to Modern Coastal Cities; Springer Nature: Singapore, 2024; pp. 59–85. ISBN 978-981-99-9076-4. [Google Scholar]
- Announcement on China’s 2024 Grain Production Data—National Bureau of Statistics of China. Available online: https://www.stats.gov.cn/sj/zxfb/202412/t20241213_1957744.html (accessed on 11 July 2025).
- Zhang, L.; Guan, Q.; Li, H.; Chen, J.; Meng, T.; Zhou, X. Assessment of Coastal Carbon Storage and Analysis of Its Driving Factors: A Case Study of Jiaozhou Bay, China. Land 2024, 13, 1208. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Liu, S.; Wang, L.; Zhang, J. The Dataset of Main Grain Land Changes in China over 1985–2020. Sci. Data 2024, 11, 1430. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y. Divergent Shifts in Peak Photosynthesis Timing of Temperate and Alpine Grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- National Major Road Dataset 2000—Population and Transportation—Human Geography Data—Data Catalog-College of Urban and Environmental Sciences, Peking University [v1.0.0]. Available online: https://geodata.pku.edu.cn/index.php?c=content&a=show&id=1399 (accessed on 11 July 2025).
- Mankiw, N.G. Principles of Economics; Cengage Learning: Boston, MA, USA, 2021. [Google Scholar]
- Huang, F.; Huang, B.; Huang, J.; Li, S. Measuring Land Change in Coastal Zone around a Rapidly Urbanized Bay. Int. J. Environ. Res. Public. Health 2018, 15, 1059. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat Fragmentation and Its Lasting Impact on Earth’s Ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, J.; Abrego, N.; Ovaskainen, O. Habitat Fragmentation and Species Diversity in Competitive Communities-Rybicki-2020-Ecology Letters-Wiley Online Library. Ecol. Lett. 2020, 23, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Montoya, D.; Haegeman, B.; Gaba, S.; Mazancourt, C.D.; Loreau, M. Habitat fragmentation and food security in crop pollination systems. arXiv 2023, arXiv:2401.01363. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Yang, R.-M.; Minasny, B.; Ma, Y.-X.; Field, D.; McBratney, A.; Wu, C.-F. A Preliminary Soil Security Assessment of Agricultural Land in Middle-Eastern China. Soil Use Manag. 2018, 34, 584–596. [Google Scholar] [CrossRef]
- Singh, K.; Sanderson, T.; Field, D.; Fidelis, C.; Yinil, D. Soil Security for Developing and Sustaining Cocoa Production in Papua New Guinea. Geoderma Reg. 2019, 17, e00212. [Google Scholar] [CrossRef]
- Pozza, L.E.; Field, D.J. The Science of Soil Security and Food Security. Soil Secur. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Zhang, L.; Waletzko, E.; Bernal, B. Validation of the Ecosystem Services of Created Wetlands: Two Decades of Plant Succession, Nutrient Retention, and Carbon Sequestration in Experimental Riverine Marshes. Ecol. Eng. 2014, 72, 11–24. [Google Scholar] [CrossRef]
- Varian, H.R. Intermediate Microeconomics: A Modern Approach; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Farrell, M.J. The Measurement of Productive Efficiency. J. R. Stat. Soc. Ser. A Stat. Soc. 1957, 120, 253–281. [Google Scholar] [CrossRef]
- Cui, X.; Huang, S.; Liu, C.; Zhou, T.; Shan, L.; Zhang, F.; Chen, M.; Li, F.; de Vries, W.T. Applying SBM-GPA Model to Explore Urban Land Use Efficiency Considering Ecological Development in China. Land 2021, 10, 912. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Su, Y.; Zhou, X.; Li, Z.; Chen, C. Assessment and Decomposition of Regional Land Use Efficiency of the Service Sector in China. Land 2022, 11, 1911. [Google Scholar] [CrossRef]
- Jiang, H.; Yin, J.; Qiu, Y.; Zhang, B.; Ding, Y.; Xia, R. Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces. Land 2022, 11, 1129. [Google Scholar] [CrossRef]
- Tang, F.; Wang, L.; Guo, Y.; Fu, M.; Huang, N.; Duan, W.; Luo, M.; Zhang, J.; Li, W.; Song, W. Relationship between Urbanisation and Habitat Quality in the Grand Canal, China. Land Use Policy 2022, 117, 106119. [Google Scholar] [CrossRef]
- Bezdan, A.; Bezdan, J.; Marković, M.; Mirčetić, D.; Baumgertel, A.; Salvai, A.; Blagojević, B. An Objective Methodology for Waterlogging Risk Assessment Based on the Entropy Weighting Method and Machine Learning. Catena 2025, 249, 108618. [Google Scholar] [CrossRef]
- Banadkouki, M.R.Z. Selection of Strategies to Improve Energy Efficiency in Industry: A Hybrid Approach Using Entropy Weight Method and Fuzzy TOPSIS. Energy 2023, 279, 128070. [Google Scholar] [CrossRef]
- Madhulatha, T.S. An Overview on Clustering Methods 2012. arXiv 2012, arXiv:1205.1117. [Google Scholar]
- Cheng, X.; Tao, Y.; Huang, C.; Yi, J.; Yi, D.; Wang, F.; Tao, Q.; Xi, H.; Ou, W. Unraveling the Causal Mechanisms for Non-Grain Production of Cultivated Land: An Analysis Framework Applied in Liyang, China. Land 2022, 11, 1888. [Google Scholar] [CrossRef]
- Li, Q.; Chen, W.; Shi, H.; Zhang, S. Assessing the Environmental Impact of Agricultural Production Structure Transformation—Evidence from the Non-Grain Production of Cropland in China. Environ. Impact Assess. Rev. 2024, 106, 107489. [Google Scholar] [CrossRef]
- Liu, X.; Xu, L.; Zhang, X. Driving Factors of Farmers’ Non-Grain Production of Cropland in the Hilly and Mountainous Areas. J. Clean. Prod. 2024, 461, 142658. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; et al. The Changing Patterns of Cropland Conversion to Built-up Land in China from 1987 to 2010. J. Geogr. Sci. 2018, 28, 1595–1610. [Google Scholar] [CrossRef]
- Zhi, J.; Cao, X.; Liu, W.; Sun, Y.; Xu, D.; Da, C.; Jin, L.; Wang, J.; Zheng, Z.; Lai, S. Remote Sensing Monitoring and Spatial Pattern Analysis of Non-Grain Production of Cultivated Land in Anhui Province, China. Land 2023, 12, 1497. [Google Scholar] [CrossRef]
- Su, H.; Liu, F.; Zhang, H.; Ma, X.; Sun, A. Progress and Prospects of Non-Grain Production of Cultivated Land in China. Sustainability 2024, 16, 3517. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; She, D.; Chen, W.; Wu, J.; Wang, Y.; Chen, M.; Li, Y.; Qureshi, A.S.; Singh, A.; et al. Monitoring, Reclamation and Management of Salt-Affected Lands. Water 2025, 17, 813. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, T.; Arkema, K.K.; Han, B.; Lu, F.; Ruckelshaus, M.; Ouyang, Z. Coastal Vulnerability to Climate Change in China’s Bohai Economic Rim. Environ. Int. 2021, 147, 106359. [Google Scholar] [CrossRef]
- Xie, X.; Ji, R.; Xu, Z.; Shao, Q.; Pu, L.; Jia, Z.; Wu, T.; Xu, F.; Hu, J.; Miu, Y.; et al. Effect of Salt-Tolerant Rice (Oryza sativa L.) Cultivation on Soil Bacterial Community and Ecological Function Groups in Coastal Saline Land. Appl. Soil Ecol. 2024, 201, 105511. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Huai, Y.; Hassan, M.U.; Cui, Z.; Ning, P. Enhancing Crop Productivity and Resilience by Promoting Soil Organic Carbon and Moisture in Wheat and Maize Rotation. Agric. Ecosyst. Environ. 2024, 368, 109021. [Google Scholar] [CrossRef]
- Xie, Z.; Lin, X.; Jiang, C.; Dang, Y.; Kong, X.; Lin, C. Establishment of an Inter-Provincial Compensation System for Farmland Protection in China: A Framework from Zoning-Integrative Transferable Development Rights. Land Use Policy 2025, 150, 107456. [Google Scholar] [CrossRef]
- Zhai, Y.; Bai, Y.; Wu, Z.; Hong, J.; Shen, X.; Xie, F.; Li, X. Grain Self-Sufficiency versus Environmental Stress: An Integration of System Dynamics and Life Cycle Assessment. Renew. Sustain. Energy Rev. 2022, 159, 112153. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.; Du, H.; Liang, W.; Liu, Y. Horizontal Ecological Compensation Zoning and Standard in China’s Major Grain-Producing Areas Based on Virtual Cultivated Land Flow. Front. Environ. Sci. 2025, 13, 1578780. [Google Scholar] [CrossRef]
- CAP at a Glance—European Commission. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-glance_en (accessed on 17 August 2025).
- Peng, Z.; Pu, H.; Huang, X.; Zheng, R.; Xu, L. Study on Public Willingness and Incentive Mechanism of Ecological Compensation for Inter-Basin Water Transfer in China in the Carbon Neutral Perspective. Ecol. Indic. 2022, 143, 109397. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Akintuyi, O.B. Vertical Farming in Urban Environments: A Review of Architectural Integration and Food Security. Open Access Res. J. Biol. Pharm. 2024, 10, 114–126. [Google Scholar] [CrossRef]
- Wang, L.; Xu, J.; Liu, Y.; Zhang, S. Spatial Characteristics of the Non-Grain Production Rate of Cropland and Its Driving Factors in Major Grain-Producing Area: Evidence from Shandong Province, China. Land 2023, 13, 22. [Google Scholar] [CrossRef]
Data | Type | Scale | Year | Data Source |
---|---|---|---|---|
Landsat | Raster | 30 m | 1990, 2000, 2010, 2020 | https://earthengine.google.com/ (accessed on 25 January 2025) |
CLCD | Raster | 30 m | 1990, 2000, 2010, 2020 | https://zenodo.org/records/5210928 (accessed on 25 January 2025) |
MGL | Raster | 30 m | 1990, 2000, 2010, 2020 | https://doi.org/10.6084/m9.figshare.26212643.v3 (accessed on 25 January 2025) |
NPP | Raster | 30 m | 2000, 2010, 2020 | https://lpdaac.usgs.gov/products/mod17a3hgfv061/ (accessed on 26 January 2025) |
NDVI | Raster | 30 m | 2000, 2010, 2020 | http://www.nesdc.org.cn/ (accessed on 26 January 2025) |
POPD | Raster | 30 m | 2000, 2010, 2020 | https://hub.worldpop.org/ (accessed on 26 January 2025) |
DEM | Raster | 30 m | - | https://www.gscloud.cn/ (accessed on 26 January 2025) |
Road | Vector | - | 2000, 2010, 2020 | https://opendata.pku.edu.cn/. (accessed on 17 February 2025, data at 2000 and 2010), https://lbs.amap.com/ (accessed on 17 February 2025, data at 2020) |
Other socioeconomic data | Statistical data | - | 2000, 2010, 2020 | Statistical Yearbook |
Code | Class |
---|---|
1 | MGL |
2 | Non-MGL |
3 | Woodland |
4 | Seedling land |
5 | Grassland |
6 | Aquaculture ponds |
7 | Barren |
8 | Built-up land |
9 | Other water bodies and wetlands |
Dimension | Primary Indexes | Secondary Indexes | Formulas | Representations |
---|---|---|---|---|
RC | Dynamic degree | / | Rate and trend of change in the quantity of MGL over time. | |
Connectivity | PD | Degree of balance between aggregation and fragmentation of MGL landscape. | ||
AI | ||||
CR | SCS | Carbon storage capacity of MGL soil under the influence of topography. | ||
Slope | ||||
NE | FSI | General public budget expenditure (GPBE) | Fiscal stress caused by non-grain conversion. | |
ESI | Pesticide and fertilizer dosages per unit area (PFR) | Potential pollution and damage to the ecosystem caused by non-grain conversion. | ||
PM2.5 emissions per unit area (PR) | ||||
SSI | Per capita food availability (FA) | Stress caused by non-grain conversion on food security and regional social stability. | ||
Unemployment rate (UR) | ||||
RP | ENDI | GDP per capita | Level of regional economic development. | |
ELDI | NPP | Level of ecosystem vitality. | ||
SDI | POPD | Service level of social infrastructure. | ||
Road density (RD) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Guan, Q.; Chen, J.; Meng, T.; Zhou, X.; Li, H. Evaluation of the Remediation of Cultivated Land for Non-Grain Conversion Based on the “Resource Cost-Negative Effect-Remediation Potential” Framework: A Case Study of the Bohai Rim (BR) Region, China. Land 2025, 14, 1727. https://doi.org/10.3390/land14091727
Lin J, Guan Q, Chen J, Meng T, Zhou X, Li H. Evaluation of the Remediation of Cultivated Land for Non-Grain Conversion Based on the “Resource Cost-Negative Effect-Remediation Potential” Framework: A Case Study of the Bohai Rim (BR) Region, China. Land. 2025; 14(9):1727. https://doi.org/10.3390/land14091727
Chicago/Turabian StyleLin, Jiaping, Qingchun Guan, Junwen Chen, Tianya Meng, Xu Zhou, and Hui Li. 2025. "Evaluation of the Remediation of Cultivated Land for Non-Grain Conversion Based on the “Resource Cost-Negative Effect-Remediation Potential” Framework: A Case Study of the Bohai Rim (BR) Region, China" Land 14, no. 9: 1727. https://doi.org/10.3390/land14091727
APA StyleLin, J., Guan, Q., Chen, J., Meng, T., Zhou, X., & Li, H. (2025). Evaluation of the Remediation of Cultivated Land for Non-Grain Conversion Based on the “Resource Cost-Negative Effect-Remediation Potential” Framework: A Case Study of the Bohai Rim (BR) Region, China. Land, 14(9), 1727. https://doi.org/10.3390/land14091727