Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data
2.2.1. Land Use Classification
2.2.2. Driving Factors
2.3. Methods
2.3.1. Linear Programming (LP) Model
- Ecosystem service value (ESV)
- 2.
- Coefficient of economic benefit
- 3.
- Scenario setting and constraints
- (1)
- Historical land use patterns in Guangzhou, which provided realistic baselines for forest, farmland, and water distribution;
- (2)
- Territorial spatial planning documents and national policies, such as the “red line” for cultivated land protection and ecological security requirements, which set mandatory lower bounds;
- (3)
- Development trend analysis, ensuring that GDP and ESV growth targets align with average or projected growth rates rather than unattainable ideals.
- 4.
- Objective function solving
- Objective function (maximize economic benefits)
- Subject to ecological constraint (ensure ESV exceeds threshold)
- Land use constraints
2.3.2. CLUE-S Model
2.3.3. Landscape-Scale Graph Metrics Selection
2.3.4. Model Validation
3. Results
3.1. Model Validation Results
3.2. Spatial Optimization Pattern of Land Use Under Different Scenarios
3.3. Comparison of Eco-Economic Value Under Different Scenarios
3.4. Landscape Pattern Analysis Under Different Scenarios
3.4.1. Landscape Pattern Dynamics at the Patch Level
3.4.2. Landscape Pattern Dynamics at the Landscape Level
4. Discussion
4.1. Policy Implications of Scenario-Based Land Use Optimization
4.2. Landscape Pattern Dynamics and Spatial Mechanisms of Change
4.3. Practical Recommendations for Sustainable Land Use Planning
4.4. Implications and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lilburne, L.; Eger, A.; Mudge, P.; Ausseil, A.-G.; Stevenson, B.; Herzig, A.; Beare, M. The Land Resource Circle: Supporting land-use decision making with an ecosystem-service-based framework of soil functions. Geoderma 2020, 363, 114134. [Google Scholar] [CrossRef]
- Luo, D.; Xu, Y.; Shao, X.; Wang, J. Advances and prospects of spatial optimal allocation of land use. Prog. Geogr. 2009, 28, 791–797. (In Chinese) [Google Scholar]
- Gong, Q.; Zhang, H.; Ye, Y.; Yuan, S. Planning strategy of land and space ecological restoration under the framework of man-land system coupling: Take the Guangdong-Hong Kong-Macao Greater Bay Area as an example. Geogr. Res. 2020, 39, 2176–2188. (In Chinese) [Google Scholar]
- Li, Q.; Wu, J.; Su, Y.; Zhang, C.; Wu, X.; Wen, X.; Huang, G.; Deng, Y.; Lafortezza, R.; Chen, X. Estimating ecological sustainability in the Guangdong-Hong Kong-Macao Greater Bay Area, China: Retrospective analysis and prospective trajectories. J. Environ. Manag. 2022, 303, 114167. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Chen, S.; Gao, L.; Hu, J. Spatiotemporal evolution and impact mechanism of ecological vulnerability in the Guangdong–Hong Kong–Macao Greater Bay Area. Ecol. Indic. 2023, 157, 111214. [Google Scholar] [CrossRef]
- Hailu, T.; Assefa, E.; Zeleke, T. Urban expansion induced land use changes and its effect on ecosystem services in Addis Ababa, Ethiopia. Front. Environ. Sci. 2024, 12, 1454556. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, F.; Lyne, V.; Wang, X.; Su, F.; Cao, Q.; He, B. Monitoring of ecological security patterns based on long-term land use changes in Langsa Bay, Indonesia. Int. J. Digit. Earth 2025, 18, 2495740. [Google Scholar] [CrossRef]
- Liang, J.; Zhong, M.; Zeng, G.; Chen, G.; Hua, S.; Li, X.; Yuan, Y.; Wu, H.; Gao, X. Risk management for optimal land use planning integrating ecosystem services values: A case study in Changsha, Middle China. Sci. Total Environ. 2017, 579, 1675–1682. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kang, J.; Wang, Y. Distinguishing the relative contributions of landscape composition and configuration change on ecosystem health from a geospatial perspective. Sci. Total Environ. 2023, 894, 165002. [Google Scholar] [CrossRef]
- Uehara, T.; Mineo, K. Regional sustainability assessment framework for integrated coastal zone management: Satoumi, ecosystem services approach, and inclusive wealth. Ecol. Indic. 2017, 73, 716–725. [Google Scholar] [CrossRef]
- Wu, J.G. Linking landscape, land system and design approaches to achieve sustainability. J. Land Use Sci. 2019, 14, 173–189. [Google Scholar] [CrossRef]
- Mehari, A.; Genovese, P.V. A Land Use Planning Literature Review: Literature Path, Planning Contexts, Optimization Methods, and Bibliometric Methods. Land 2023, 12, 1982. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley and Sons Ltd.: New York, NY, USA, 1986. [Google Scholar]
- Dokmeci, V.F. Optimization of central places in an industrial economy. Ann. Reg. Sci. 1975, 9, 51–55. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Veldkamp, A.; Fresco, L.O. Exploring land use scenarios, an alternative approach based on actual land use. Agric. Syst. 1997, 55, 1–17. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, L.; Chen, Z.; Zhang, J.; Verburg, P.H. Land-use change simulation and assessment of driving factors in the loess hilly region—A case study as Pengyang County. Environ. Monit. Assess. 2010, 164, 133–142. [Google Scholar] [CrossRef]
- Nasiakou, S.; Vrahnakis, M.; Chouvardas, D.; Mamanis, G.; Kleftoyanni, V. Land Use Changes for Investments in Silvoarable Agriculture Projected by the CLUE-S Spatio-Temporal Model. Land 2022, 11, 598. [Google Scholar] [CrossRef]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Simulating Future Land Use and Cover of a Mediterranean Mountainous Area: The Effect of Socioeconomic Demands and Climatic Changes. Land 2023, 12, 253. [Google Scholar] [CrossRef]
- Luo, G.; Yin, C.; Chen, X.; Xu, W.; Lu, L. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecol. Complex. 2010, 7, 198–207. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Bernués, A.; Baltenweck, I.; Vervoort, J.; van de Steeg, J.; Makokha, S.; van Wijk, M.T.; Karanja, S.; Rufino, M.C.; et al. Exploring future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Glob. Environ. Change 2014, 24, 165–182. [Google Scholar] [CrossRef]
- Wu, M.; Ren, X.; Che, Y.; Yang, K. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China. Environ. Manag. 2015, 56, 402–419. [Google Scholar] [CrossRef] [PubMed]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Improving the predictive performance of CLUE-S by extending demand to land transitions: The trans-CLUE-S model. Ecol. Modell. 2023, 478, 110307. [Google Scholar] [CrossRef]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Changes of ecosystem service values in response to land use/land cover dynamics in Munessa–Shashemene landscape of the Ethiopian highlands. Sci. Total Environ. 2016, 547, 137–147. [Google Scholar] [CrossRef]
- Wang, W.; Guo, H.; Chuai, X.; Dai, C.; Lai, L.; Zhang, M. The impact of land use change on the temporospatial variations of ecosystems services value in China and an optimized land use solution. Environ. Sci. Policy. 2014, 44, 62–72. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.H.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef]
- Ma, S.; Wen, Z. Optimization of land use structure to balance economic benefits and ecosystem services under uncertainties: A case study in Wuhan, China. J. Clean. Prod. 2021, 311, 127537. [Google Scholar] [CrossRef]
- Kulsoontronrat, J.; Ongsomwang, S. Suitable Land-Use and Land-Cover Allocation Scenarios to Minimize Sediment and Nutrient Loads into Kwan Phayao, Upper Ing Watershed, Thailand. Appl. Sci. 2021, 11, 10430. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science (II): Core questions and key approaches. Landsc. Ecol. 2021, 36, 2453–2485. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Lu, X.; Han, J. Trade-offs and driving forces of land use functions in ecologically fragile areas of northern Hebei Province: Spatiotemporal analysis. Land Use Policy 2021, 104, 105387. [Google Scholar] [CrossRef]
- Zhang, M.; Kafy, A.A.; Xiao, P.; Han, S.; Zou, S.; Saha, M.; Zhang, C.; Tan, S. Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China. Urban Clim. 2023, 47, 101347. [Google Scholar] [CrossRef]
- Brown, C.; Holman, I.; Rounsevell, M. How modelling paradigms affect simulated future land use change. Earth Syst. Dynam. 2021, 12, 211–231. [Google Scholar] [CrossRef]
- GB/T 21010-2017; Current Land Use Classification. National Technical Committee for Standardization of Land and Resources: Beijing, China, 2017.
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhen, L.; Lu, C.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar]
- Wu, P.; Yang, M.; Liu, W. Spatial-temporal changes in ecosystem service values based on land use changes in Dongguan city during 2007–2015. Bull. Soil Water Conserv. 2020, 40, 250–255. (In Chinese) [Google Scholar]
- Zhang, L.; Zhang, S.; Huang, Y.; Cao, M.; Huang, Y.; Zhang, H. Exploring an Ecologically Sustainable Scheme for Landscape Restoration of Abandoned Mine Land: Scenario-Based Simulation Integrated Linear Programming and CLUE-S Model. Int. J. Environ. Res. Public Health 2016, 13, 354. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, W.; Wang, J.; Luo, X.; Chen, P.; Gong, Q. Scenario simulation of ecosystem service value change in Dongguan section of Shima River based on CLUE-S model. Bull. Soil Water Conserv. 2021, 41, 152–160. (In Chinese) [Google Scholar]
- Hu, Z.; Yang, X.; Yang, J.; Yuan, J.; Zhang, Z. Linking landscape pattern, ecosystem service value, and human well-being in Xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [Google Scholar] [CrossRef]
- Peptenatu, D.; Andronache, I.; Ahammer, H.; Radulovic, M.; Costanza, J.K.; Jelinek, H.F.; Di Ieva, A.; Koyama, K.; Grecu, A.; Gruia, A.K.; et al. A new fractal index to classify forest fragmentation and disorder. Landsc. Ecol. 2023, 38, 1373–1393. [Google Scholar] [CrossRef]
- Shahpari, S.; Allison, J.; Harrison, M.T.; Stanley, R. An integrated economic, environmental and social approach to agricultural land-use planning. Land 2021, 10, 364. [Google Scholar] [CrossRef]
- Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating ecological constraints into urban growth boundaries: A case study of ecologically fragile areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Tang, H.; Yang, P. An urban hierarchy-based approach integrating ecosystem services into multiscale sustainable land use planning: The case of China. Resour. Conserv. Recycl. 2022, 178, 106097. [Google Scholar] [CrossRef]
- Fahrig, L.; Watling, J.I.; Arnillas, C.A.; Arroyo-Rodríguez, V.; Jörger-Hickfang, T.; Müller, J.; Pereira, H.M.; Riva, F.; Rösch, V.; Seibold, S.; et al. Resolving the SLOSS dilemma for biodiversity conservation: A research agenda. Biol. Rev. 2022, 97, 99–114. [Google Scholar] [CrossRef]
- Szangolies, L.; Rohwäder, M.; Jeltch, F. Single large AND several small habitat patches: A community perspective on their importance for biodiversity. Basic Appl. Ecol. 2022, 65, 16–27. [Google Scholar] [CrossRef]
- Leitão, A.B.; Ahern, J. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landsc. Urban Plann. 2002, 59, 65–93. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.; Zhou, Y.; Wang, S.; Guo, W.; Liu, Y.; Wang, J.; Xu, Q.; Zhou, X.; Yi, K.; et al. Spatial and Temporal Evolution of Ecosystem Service Values and Topography-Driven Effects Based on Land Use Change: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Sustainability 2023, 15, 9691. [Google Scholar] [CrossRef]
Category | Variable | Description | Unit | Data Source |
---|---|---|---|---|
Socio-economic | GDP | Gross domestic product per capita | CNY | Statistical Yearbook of Guangzhou |
Population density | Population per unit area | persons/km2 | Statistical Yearbook of Guangzhou | |
Active cropland | Percentage of cultivated land area | % | Statistical Yearbook of Guangzhou | |
Terrain | Elevation | Altitude above sea level | m | DEM, Geospatial Data Cloud |
Slope | Degree of inclination | % | DEM, Geospatial Data Cloud | |
Undulation | Local terrain variation | m | DEM, Geospatial Data Cloud | |
Space length | Distance from roads | Euclidean distance to nearest road | km | OpenStreetMap/BigMap |
Distance from inland rivers | Euclidean distance to nearest river | km | OpenStreetMap/BigMap | |
Distance from lakes | Euclidean distance to nearest lake | km | OpenStreetMap/BigMap | |
Soil | Soil organic matter | Organic matter content in soil | % | Harmonized World Soil Database |
Soil texture | Classification of soils | Categorical | Harmonized World Soil Database | |
Vegetation | NDVI | Normalized Difference Vegetation Index | Dimensionless | MODIS Vegetation Index Products |
Coefficient | Agricultural Land | Forest Land | Grassland | Water Bodies | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Ecological benefit coefficient (CNY/ha) | 4458.98 | 26,306.86 | 5811.58 | 143,982.75 | 0.00 | 229.25 |
Economic benefit coefficient (CNY/ha) | 81,947.90 | 3749.31 | 314,761.16 | 160,534.65 | 10,229,151.41 | 0.00 |
Optimization Objective | Scenarios | Eco-Economic Benefits Constraint | Land Use Area Constraint |
---|---|---|---|
Economic objective | EPS | ESV increased by 3% | Forest land not less than 43%, water bodies not less than 7%, and grassland and unutilized land not less than current levels |
CPS | ESV not less than current levels, GDP increased by 15% | Water bodies, forest land, and grassland not less than current levels | |
EDS | ESV not less than current levels, GDP increased by 20% | Water bodies, forest land, and grassland not less than current levels | |
BDS | ESV not less than current levels | Forest land not less than 43%, water bodies not less than 7%, and grassland and unutilized land not less than current levels | |
Ecological objective | EPS | GDP increased by 5% | Forest land not less than 43%, water bodies not less than 7%, and grassland and unutilized land not less than current levels |
CPS | GDP increased by 8% | Water bodies, forest land, and grassland not less than current levels | |
EDS | GDP increased by 10% | Water bodies, forest land, and grassland not less than current levels | |
BDS | GDP increased by 8% | Forest land not less than 43%, water bodies not less than 7%, and grassland and unutilized land not less than current levels |
Optimization Objective | Scenario | Agricultural Land | Forest Land | Grassland | Water Bodies | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|---|
In 2020 | 2022.69 | 3022.73 | 93.13 | 473.65 | 1458.05 | 2.11 | |
Ecological objective | EPS | 1665.19 | 3232.45 | 82.03 | 554.41 | 1536.47 | 1.82 |
CPS | 1762.50 | 3121.40 | 82.17 | 507.42 | 1596.91 | 1.85 | |
EDS | 1700.39 | 3137.71 | 82.34 | 507.30 | 1642.68 | 1.88 | |
BDS | 1689.14 | 3184.62 | 82.01 | 515.30 | 1599.41 | 1.79 | |
Economic objective | EPS | 1661.25 | 3105.50 | 82.09 | 504.85 | 1716.78 | 1.90 |
CPS | 1758.6 | 3032.69 | 82.45 | 480.69 | 1715.76 | 1.83 | |
EDS | 1680.12 | 3039.59 | 82.59 | 481.84 | 1786.11 | 1.77 | |
BDS | 1670.69 | 3078.51 | 82.08 | 484.29 | 1754.82 | 1.78 |
Optimization Objective | Scenario | ESV | Variation | Economic Benefit | Variation |
---|---|---|---|---|---|
2020 | 157.28 | - | 16,504.71 | - | |
Ecological objective | EPS | 172.76 | 9.85% | 17,510.81 | 6.10% |
CPS | 163.51 | 3.96% | 17,999.38 | 9.06% | |
EDS | 163.65 | 4.05% | 18,462.24 | 11.86% | |
BDS | 165.98 | 5.53% | 18,042.15 | 9.32% | |
Economic objective | EPS | 162.27 | 3.18% | 19,209.66 | 16.39% |
CPS | 157.31 | 0.02% | 19,136.46 | 15.95% | |
EDS | 157.45 | 0.03% | 19,853.08 | 20.29% | |
BDS | 158.64 | 0.87% | 19,539.38 | 18.39% |
Optimization Objective | Type | Scenario | Agricultural Land | Forest Land | Grassland | Water Bodies | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|---|---|
Ecological Objective | PLAND | 2020 | 28.2592 | 42.3614 | 1.3322 | 7.5555 | 20.4626 | 0.0291 |
EPS | 23.3686 | 45.6512 | 1.3106 | 7.9967 | 21.6433 | 0.0296 | ||
CPS | 24.7463 | 44.0567 | 1.3134 | 7.3310 | 22.5230 | 0.0296 | ||
EDS | 23.8604 | 44.292 | 1.3151 | 7.3355 | 23.1674 | 0.0296 | ||
BDS | 23.7084 | 44.9699 | 1.3084 | 7.4411 | 22.5425 | 0.0296 | ||
LPI | 2020 | 7.9880 | 25.0578 | 0.1018 | 2.3124 | 10.9410 | 0.0067 | |
EPS | 6.7621 | 29.6277 | 0.0246 | 2.2367 | 18.9203 | 0.0022 | ||
CPS | 7.2003 | 26.0384 | 0.0257 | 1.8499 | 19.4915 | 0.0028 | ||
EDS | 7.1013 | 26.1195 | 0.0263 | 1.8606 | 19.9515 | 0.0034 | ||
BDS | 6.8370 | 29.3711 | 0.0246 | 1.8751 | 19.5580 | 0.0017 | ||
AI | 2020 | 73.9246 | 86.7168 | 56.4966 | 63.6228 | 79.5281 | 47.1910 | |
EPS | 79.3162 | 90.7642 | 24.6244 | 72.9137 | 86.5539 | 12.0879 | ||
CPS | 79.9474 | 90.9876 | 24.3102 | 71.4006 | 86.7574 | 16.4835 | ||
EDS | 79.7481 | 90.9766 | 23.8715 | 72.4981 | 87.0309 | 15.3846 | ||
BDS | 79.4938 | 90.8709 | 24.1876 | 72.6029 | 86.8799 | 9.8901 | ||
Economic Objective | PLAND | EPS | 23.3680 | 45.6495 | 1.3173 | 7.9950 | 21.6405 | 0.0296 |
CPS | 24.7496 | 44.0567 | 1.3106 | 7.3294 | 22.5241 | 0.0296 | ||
EDS | 23.8738 | 44.2948 | 1.3145 | 7.3283 | 24.7647 | 0.0296 | ||
BDS | 23.4535 | 43.4156 | 1.3168 | 7.0197 | 23.1590 | 0.0296 | ||
LPI | EPS | 6.8845 | 26.7566 | 0.0240 | 2.0126 | 18.7907 | 0.0022 | |
CPS | 7.2763 | 26.1849 | 0.0252 | 1.8036 | 19.6704 | 0.0022 | ||
EDS | 7.2064 | 26.2586 | 0.0246 | 1.8606 | 20.1147 | 0.0022 | ||
BDS | 7.1790 | 25.8339 | 0.0257 | 1.8404 | 20.8603 | 0.0039 | ||
AI | EPS | 79.5525 | 90.4198 | 22.4653 | 74.1170 | 87.0402 | 14.2857 | |
CPS | 80.0692 | 90.6801 | 23.4487 | 72.4863 | 86.904 | 6.5934 | ||
EDS | 79.9419 | 90.6467 | 23.117 | 73.1784 | 87.1971 | 7.6923 | ||
BDS | 79.9313 | 91.0861 | 23.9705 | 72.7134 | 87.3887 | 13.1868 |
Optimization Objective | Scenario | LSI | SHDI | SHEI | CONNECT |
---|---|---|---|---|---|
2020 | 45.5721 | 1.3007 | 0.7259 | 0.1059 | |
Ecological objective | EPS | 34.2216 | 1.2902 | 0.7201 | 0.1048 |
CPS | 33.9923 | 1.2933 | 0.7218 | 0.1071 | |
EDS | 33.669 | 1.2924 | 0.7213 | 0.1086 | |
BDS | 33.8877 | 1.2889 | 0.7194 | 0.1065 | |
Economic objective | EPS | 34.0798 | 1.2904 | 0.7202 | 0.1055 |
CPS | 34.003 | 1.2932 | 0.7218 | 0.1100 | |
EDS | 33.7175 | 1.2923 | 0.7212 | 0.1118 | |
BDS | 33.1738 | 1.2939 | 0.7221 | 0.1140 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Gong, Q.; Liu, B.; Yu, S.; Yan, L.; Chen, Y.; Wu, J. Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions. Land 2025, 14, 1690. https://doi.org/10.3390/land14081690
Zhang M, Gong Q, Liu B, Yu S, Yan L, Chen Y, Wu J. Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions. Land. 2025; 14(8):1690. https://doi.org/10.3390/land14081690
Chicago/Turabian StyleZhang, Mufeng, Qinghua Gong, Bowen Liu, Shengli Yu, Linyuan Yan, Yanqiao Chen, and Jianping Wu. 2025. "Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions" Land 14, no. 8: 1690. https://doi.org/10.3390/land14081690
APA StyleZhang, M., Gong, Q., Liu, B., Yu, S., Yan, L., Chen, Y., & Wu, J. (2025). Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions. Land, 14(8), 1690. https://doi.org/10.3390/land14081690