Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Acquisition and Analysis
2.2.1. Satellite Data
2.2.2. Temperature and Precipitation
2.2.3. Drought Monitoring and Analysis
2.2.4. Vegetation Cover Analysis
2.2.5. NDVI Classification
2.2.6. Accuracy Assessment
2.2.7. Time-Series Forecasting
3. Results
3.1. Climate Variability
3.2. Rainfall and Temperature Forecast
3.3. Drought Analysis (SPEI-Based Assessment)
3.4. Vegetation Cover Changes
3.4.1. Accuracy Assessment Results
3.4.2. Vegetation Dynamic Statistics and Maps
3.4.3. IDPs and Vegetation Cover Change
3.4.4. Vegetation Transition
4. Discussion
4.1. Vegetation Dynamics and Climate Variability
4.2. The Impact of IDPs’ Presence on the Environment
4.3. Policy Implications
Water Resources and Precipitation Variability Management
4.4. Study Limitations and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deafalla, T.H.H.; Csaplovics, E. Tree Species Classification of the Conflict Regions of Sudan Using RapidEye Satellite Imagery. In The Climate-Conflict-Displacement Nexus from a Human Security Perspective; Springer: Berlin/Heidelberg, Germany, 2022; pp. 293–320. [Google Scholar] [CrossRef]
- Sunga, L.S. Does Climate Change Kill People in Darfur? J. Hum. Rights Environ. 2011, 2, 64–85. [Google Scholar] [CrossRef]
- Hakim, S. The Role of Climate Change in the Darfur Crisis. In The Economic, Social and Political Elements of Climate Change; Climate Change Management; Springer: Berlin/Heidelberg, Germany, 2011; pp. 815–823. [Google Scholar] [CrossRef]
- Waal, A.D.E. Darfur and the Failure of the Responsibility to Protect. Int. Aff. 2007, 6, 1039–1054. [Google Scholar] [CrossRef]
- OCHA Sudan. OCHA: The Sudan Humanitarian Fund. Available online: https://www.unocha.org/sudan (accessed on 17 November 2024).
- OCHA. Sudan Humanitarian Update (29 July 2024) [EN/AR]|OCHA. Available online: https://www.unocha.org/publications/report/sudan/sudan-humanitarian-update-29-july-2024 (accessed on 17 November 2024).
- Hagenlocher, M.; Lang, S.; Tiede, D. Integrated Assessment of the Environmental Impact of an IDP Camp in Sudan Based on Very High Resolution Multi-Temporal Satellite Imagery. Remote Sens. Environ. 2012, 126, 27–38. [Google Scholar] [CrossRef]
- Jensen, D. Evaluating the Impact of UNEP’s Post-Conflict Environmental Assessments. In Assessing and Restoring Natural Resources in Post-Conflict Peacebuilding; Taylor & Francis: London, UK, 2013; pp. 31–76. [Google Scholar] [CrossRef]
- Abuawad, M.; Di Raimo, A. Building Better Lives for Refugees: A Call for Sustainable Urban Camps (Comparative Study on Al Azraq and Kutupalong Refugee Camps). In Advances in Science, Technology and Innovation; Springer: Berlin/Heidelberg, Germany, 2025; pp. 59–75. [Google Scholar] [CrossRef]
- Lingcheng, L.; She, D.; Zheng, H.; Lin, P.; Yang, Z.-L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Mishra, A.; Hydrology, V.S. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- McKee, T.; Doesken, N.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 17–22. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguería, S.; Lorenzo-Lacruz, J.; Sanchez-Lorenzo, A.; García-Ruiz, J.M.; Azorin-Molina, C.; Morán-Tejeda, E.; Revuelto, J.; Trigo, R.; et al. Evidence of Increasing Drought Severity Caused by Temperature Rise in Southern Europe. Environ. Res. Lett. 2014, 9, 044001. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, Y.; Xu, R.; Liu, J. Drought Severity Change in China during 1961–2012 Indicated by SPI and SPEI. Nat. Hazards 2015, 75, 2437–2451. [Google Scholar] [CrossRef]
- ADB (Asian Development Bank). The Economics of Climate Change in Southeast Asia: A Regional Review; ADB: Jakarta, Indonesia, 2009; Available online: http://www.Adb.Org/Publications/Economics-Climate-Change-Southeast-Asia-Regional-Review (accessed on 15 March 2025).
- Zhang, B.; Zhang, L.; Guo, H.; Leinenkugel, P.; Zhou, Y.; Li, L.; Shen, Q. Drought Impact on Vegetation Productivity in the Lower Mekong Basin. Int. J. Remote Sens. 2014, 35, 2835–2856. [Google Scholar] [CrossRef]
- Xiangyi, L.; Piao, S.; Huntingford, C.; Peñuelas, J.; Yang, H.; Xu, H.; Chen, A.; Friedlingstein, P.; Keenan, T.F.; Sitch, S.; et al. Global Variations in Critical Drought Thresholds That Impact Vegetation. Natl. Sci. Rev. 2023, 10, nwad049. [Google Scholar] [CrossRef]
- Yang, Y.; Dai, E.; Yin, J.; Jia, L.; Zhang, P.; Sun, J. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Cao, S.; He, Y.; Zhang, L.; Chen, Y.; Yang, W.; Indicators, S.Y.-E. Spatiotemporal Characteristics of Drought and Its Impact on Vegetation in the Vegetation Region of Northwest China; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global Warming and Changes in Drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Singh Bisht, D.; Sridhar, V.; Mishra, A.; Chatterjee, C.; Raghuwanshi, N.S. Drought Characterization over India under Projected Climate Scenario. Int. J. Climatol. 2019, 39, 1889–1911. [Google Scholar] [CrossRef]
- Akasha, M. Darfur: A Tragedy of Climate Change; Anchor Academic Publishing: Hamburg, Germany, 2013. [Google Scholar]
- Onyango, D.O. Climate Change and Conflict: A Case Study of Darfur Conflict. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2013. [Google Scholar]
- Rajab, E. Institutions, Utilisation and Conservation of Indigenous Woody Plants in Pader Internally Displaced Persons’(Idp) Camps, Northern Uganda. Ph.D. Dissertation, Makerere University, Kampala, Uganda, 2014. [Google Scholar]
- Beldados, A.; Manzo, A.; Murphy, C.; Stevens, C.J.; Fuller, D.Q. Evidence of Sorghum Cultivation and Possible Pearl Millet in the Second Millennium BC at Kassala, Eastern Sudan. In Plants and People in the African Past: Progress in African Archaeobotany; Springer: Berlin/Heidelberg, Germany, 2018; pp. 503–528. [Google Scholar] [CrossRef]
- OCHA Taking Root: The Cash Crop Trade in Darfur—Sudan|ReliefWeb. Available online: https://reliefweb.int/report/sudan/taking-root-cash-crop-trade-darfur (accessed on 16 November 2024).
- UNEP Taking Root: The Cash Crop Trade in Darfur|UNEP—UN Environment Programme. Available online: https://www.unep.org/resources/report/taking-root-cash-crop-trade-darfur (accessed on 16 November 2024).
- Hegazy, A.K.; Hosni, H.A.; Kabiel, H.F.; Badawi, E.S.M.; Emam, M.H.; Lovett-Doust, L. Population Ecology of Some Keystone Tree Species in the Jebel Marra Region of Darfur. Rend. Lincei 2018, 29, 659–673. [Google Scholar] [CrossRef]
- Hegazy, A.K.; Kabiel, H.F.; Hosni, H.A.; Badawi, E.S.M.; Lovett-Doust, L. Spatial and Temporal Variation in Plant Community Phenology in the Jebel Marra Region of Darfur. Folia Geobot 2018, 53, 389–403. [Google Scholar] [CrossRef]
- Kranz, O.; Sachs, A.; Lang, S. Assessment of Environmental Changes Induced by Internally Displaced Person (IDP) Camps in the Darfur Region, Sudan, Based on Multitemporal MODIS Data. Int. J. Remote Sens. 2015, 36, 190–210. [Google Scholar] [CrossRef]
- Spröhnle, K.; Kranz, O.; Schoepfer, E.; Moeller, M.; Voigt, S. Click for Updates Geocarto International Earth Observation-Based Multi-Scale Impact Assessment of Internally Displaced Person (IDP) Camps on Wood Resources in Zalingei, Darfur. Geocarto Int. 2015, 31, 575–595. [Google Scholar] [CrossRef]
- Olaf, K.; Gunter, Z.; Dirk, T.; Stephen, C.; Denis, B.; Thomas, K.; Stefan, L.; Mathidlde, C. Monitoring Refugee IDP Camps to Support International Relief Action. 2016. Available online: https://www.researchgate.net/profile/Dirk-Tiede/publication/225006357_Monitoring_RefugeeIDP_camps_to_Support_International_Relief_Action/links/0fcfd508a813270ed8000000/Monitoring-Refugee-IDP-camps-to-Support-International-Relief-Action.pdf (accessed on 5 July 2025).
- Jakata, C. Mapping and Monitoring the Impacts of Climate Variabilities on Rangelands in North Darfur, Sudan. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2021. [Google Scholar]
- Ahmed, A.; Czimber, K. Spatiotemporal Dynamics of Vegetation Cover and Drought Conditions in West Darfur, Sudan: Implications of Climate Variability and Future Projections. Geo 2025, 12, e70016. [Google Scholar] [CrossRef]
- DTM Sudan Displacement Tracking Matrix|DTM Sudan DTM Sudan Situation Assessment Report Internally Displaced Persons Casualties and Losses. 2021. Available online: https://reliefweb.int/report/sudan/iom-sudan-displacement-tracking-matrix-dtm-sudan-mobility-update-18-publication-date-jun-05-2025 (accessed on 6 July 2025).
- OCHA Sudan Sortony (North Darfur) Flash Update. 2021. Available online: https://reliefweb.int/report/sudan/sudan-sortony-north-darfur-flash-update-no-01-4-august-2021-enar (accessed on 6 July 2025).
- MSF Sudan: Conditions in Sortoni Camp, North Darfur Leave 61,000 Residents Who Fled Jebel Mara in Danger|MSF. Available online: https://www.msf.org/sudan-conditions-sortoni-camp-north-darfur-leave-61000-residents-who-fled-jebel-mara-danger (accessed on 13 November 2024).
- Alamin, N.K.N.; Idris, A.A.A.; Khugali, G.E.A.; Kalcon, G.O.A.; Khaleel, M.S.S.; Alamin, K.N. Science in Times of War: Reflections from Sudan. ASFI Res. J. 2024, 1, 14296. [Google Scholar] [CrossRef]
- Saeed, E.; Mohamed, E. Environmental Change, Conflicts and Internal Displacement as Destabilizing Factors to Food Security in Sudan: Econometric Analysis. J. Intern. Displac. 2020, 10, 2–24. [Google Scholar]
- Recuero, L.; Litago, J.; Pinzón, J.E.; Huesca, M.; Moyano, M.C.; Palacios-Orueta, A. Mapping Periodic Patterns of Global Vegetation Based on Spectral Analysis of NDVI Time Series. Remote Sens. 2019, 11, 2497. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation Dynamics from NDVI Time Series Analysis Using the Wavelet Transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Y.; Chen, C. Analysis of the Spatiotemporal Characteristics and Influencing Factors of the NDVI Based on the GEE Cloud Platform and Landsat Images. Remote Sens. 2023, 15, 4980. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Rienecker, M.; Suarez, M.; Todling, R.; Bacmeister, J. The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0; NASA: Washington, DC, USA, 2008. [Google Scholar]
- Westberg, D.J.; Stackhouse, P.W., Jr.; Hoell, J.M.; Chandler, W.S. An Analysis of NASA’s MERRA Meteorological Data to Supplement Observational Data for Calculation of Climatic Design Conditions. ASHRAE Trans. 2013, 119, 210. [Google Scholar]
- Tittensor, D.P.; Walpole, M.; Hill, S.L.L.; Boyce, D.G.; Britten, G.L.; Burgess, N.D.; Butchart, H.M.; Leadley, P.W.; Regan, E.C.; Alkemade, R.; et al. A Mid-Term Analysis of Progress Toward International Biodiversity Targets. Science 2014, 346, 241–244. [Google Scholar] [CrossRef]
- Mirdarsoltany, A.; Dariane, A.B.; Borhan, M.I. Comprehensive GIS-Driven Evaluation of Drought Severity and Duration: Comparative Assessment of Parametric and Non-Parametric SPI Methodologies. Theor. Appl. Climatol. 2025, 156, 225. [Google Scholar] [CrossRef]
- Calim Costa, M.; Marengo, J.A.; Alves, L.M.; Cunha, A.P. Multiscale Analysis of Drought, Heatwaves, and Compound Events in the Brazilian Pantanal in 2019–2021. Theor. Appl. Climatol. 2024, 155, 661–677. [Google Scholar] [CrossRef]
- Mohiuddin, G.; Mund, J.P. Spatiotemporal Analysis of Land Surface Temperature in Response to Land Use and Land Cover Changes: A Remote Sensing Approach. Remote Sens. 2024, 16, 1286. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Kanchan, R. Analytical Study on the Relationship among Land Surface Temperature, Land Use/Land Cover and Spectral Indices Using Geospatial Techniques. Discov. Environ. 2024, 2, 1. [Google Scholar] [CrossRef]
- Aka, K.S.R.; Akpavi, S.; Dibi, N.H.; Kabo-Bah, A.T.; Gyilbag, A.; Boamah, E. Toward Understanding Land Use Land Cover Changes and Their Effects on Land Surface Temperature in Yam Production Area, Côte d’Ivoire, Gontougo Region, Using Remote Sensing and Machine Learning Tools (Google Earth Engine). Front. Remote Sens. 2023, 4, 1221757. [Google Scholar] [CrossRef]
- Nogovitcyn, A.; Shakhmatov, R.; Morozumi, T.; Tei, S.; Miyamoto, Y.; Shin, N.; Maximov, T.C.; Sugimoto, A. Historical Variation in the Normalized Difference Vegetation Index Compared with Soil Moisture in a Taiga Forest Ecosystem in Northeastern Siberia. Biogeosciences 2023, 20, 3185–3201. [Google Scholar] [CrossRef]
- Al-Doski, J.; Mansor, S.B.; Shafri, H.Z.M. NDVI Differencing and Post-Classification to Detect Vegetation Changes in Halabja City, Iraq. IOSR J. Appl. Geol. Geophys. 2013, 1, 1–10. [Google Scholar] [CrossRef]
- Lixia, W.; Yu, D.; Liu, Z.; Yang, Y.; Zhang, J.; Han, J.; Mao, Z. Study on NDVI Changes in Weihe Watershed Based on CA–Markov Model. Geol. J. 2018, 53, 435–441. [Google Scholar] [CrossRef]
- Hossain, M.D.; Chen, D. ISPRS Journal of Photogrammetry and Remote Sensing Segmentation for Object-Based Image Analysis (OBIA): A Review of Algorithms and Challenges from Remote Sensing Perspective. ISPRS J. Photogramm. Remote Sens. 2019, 150, 115–134. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Li, C.; Ma, Z.; Wang, L.; Yu, W.; Tan, D.; Gao, B.; Feng, Q.; Guo, H.; Zhao, Y. Improving the Accuracy of Land Cover Mapping by Distributing Training Samples. Remote Sens. 2021, 13, 4594. [Google Scholar] [CrossRef]
- Zhao, W.; Lyu, R.; Zhang, J.; Pang, J.; Zhang, J. A Fast Hybrid Approach for Continuous Land Cover Change Monitoring and Semantic Segmentation Using Satellite Time Series. Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104222. [Google Scholar] [CrossRef]
- Lameck, A.S.; Rotich, B.; Ahmed, A.; Kipkulei, H.K.; Akos, P.; Boros, E. Influence of Environmental Variables and Anthropogenic Activities on Soda-Saline Lakes Chemistry in Northern Tanzania: A Remote Sensing and GIS Approach. Heliyon 2025, 11, e41691. [Google Scholar] [CrossRef]
- Wafdan, L. Accuracy Assessment of Land Use/Land Cover Classification Data from Sentinel-2 & ASTER Imagery Interpretation Using Unsupervised Classification Algorithm. Proceeding Int. Conf. Sci. Eng. 2021, 4, 229–234. [Google Scholar]
- Murat, M.; Malinowska, I.; Gos, M.; Krzyszczak, J. Forecasting Daily Meteorological Time Series Using ARIMA and Regression Models. Int. Agrophys. 2018, 32, 253–264. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Harvey, A.C. Forecasting, Structural Time Series Models and the Kalman Filter; Cambridge University Press: Cambridge, UK, 1994; p. 554. [Google Scholar]
- Hyndman, R.; Koehler, A.; Ord, K.; Snyder, R. Forecasting with Exponential Smoothing: The State Space Approach; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Agaj, T.; Budka, A.; Janicka, E.; Bytyqi, V. Using ARIMA and ETS Models for Forecasting Water Level Changes for Sustainable Environmental Management. Sci. Rep. 2024, 14, 22444. [Google Scholar] [CrossRef] [PubMed]
- Jain, G.; Mallick, B. A Study of Time Series Models ARIMA and ETS. 2017. Available online: https://ssrn.com/abstract=2898968 (accessed on 6 July 2025).
- Han, J.C.; Huang, Y.; Zhang, H.; Wu, X. Characterization of Elevation and Land Cover Dependent Trends of NDVI Variations in the Hexi Region, Northwest China. J. Environ. Manage 2019, 232, 1037–1048. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Rotich, B.; Czimber, K. Climate Change as a Double-Edged Sword: Exploring the Potential of Environmental Recovery to Foster Stability in Darfur, Sudan. Climate 2025, 13, 63. [Google Scholar] [CrossRef]
- Mbuqwa, P.; Magagula, H.B.; Kalumba, A.M.; Afuye, G.A. Interdecadal Variations in Agricultural Drought Monitoring Using Land Surface Temperature and Vegetation Indices: A Case of the Amahlathi Local Municipality in South Africa. Sustainability 2024, 16, 8125. [Google Scholar] [CrossRef]
- Keria, H.; Bensaci, E.; Zoubiri, A. Assessment of the Long-Term Effects of Climate on Vegetation in 25 Watersheds in Dry and Semi-Dry Areas, Algeria. Nat. Hazards 2024, 120, 7575–7596. [Google Scholar] [CrossRef]
- Mwabumba, M.; Yadav, B.K.; Rwiza, M.J.; Larbi, I.; Dotse, S.Q.; Limantol, A.M.; Sarpong, S.; Kwawuvi, D. Rainfall and Temperature Changes under Different Climate Scenarios at the Watersheds Surrounding the Ngorongoro Conservation Area in Tanzania. Environ. Chall. 2022, 7, 100446. [Google Scholar] [CrossRef]
- Vega Briones, J.; De Jong, S.; Nijland, W.; Wanders, N. Surface and Groundwater Drought Impact on Natural Vegetation Growth and Drought Recovery. In Proceedings of the EGUGA, Vienna, Austria, 14–19 April 2024; p. 12189. [Google Scholar] [CrossRef]
- Wei, Q.; Peinan, C.; Pufang, Z.; Xingyou, T.; Jiuyuan, L.; Wei, Q.; Peinan, C.; Pufang, Z.; Xingyou, T.; Jiuyuan, L. Spatiotemporal Changes of GWS Changes and Their Sustainability in the Upper Reaches of the Yellow River Basin from 2002 to 2022 Revealed by GRACE/GRACE-FO Observations. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1287–1299. [Google Scholar] [CrossRef]
- Yagoub, Y.E.; Li, Z.; Musa, O.S.; Anjum, M.N.; Wang, F.; Xu, C.; Bo, Z. Investigation of Vegetation Cover Change in Sudan by Using Modis Data. J. Geogr. Inf. Syst. 2017, 9, 279–292. [Google Scholar] [CrossRef]
- Zeng, Y.; Jia, L.; Menenti, M.; Jiang, M.; Barnieh, B.A.; Bennour, A.; Lv, Y. Changes in Vegetation Greenness Related to Climatic and Non-Climatic Factors in the Sudano-Sahelian Region. Reg. Environ. Change 2023, 23, 92. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Z.; Fu, Z.; Xiong, S.; Chen, H.; Zhang, W.; Wang, S.; Zhang, D.; Lu, H.; Jiang, X. Impacts of Climatic Fluctuations and Vegetation Greening on Regional Hydrological Processes: A Case Study in the Xiaoxinganling Mountains–Sanjiang Plain Region, Northeastern China. Remote Sens. 2024, 16, 2709. [Google Scholar] [CrossRef]
- Ahmed, A.; Rotich, B.; Czimber, K. Assessment of the Environmental Impacts of Conflict-Driven Internally Displaced Persons: A Sentinel-2 Satellite Based Analysis of Land Use/Cover Changes in the Kas Locality, Darfur, Sudan. PLoS ONE 2024, 19, e0304034. [Google Scholar] [CrossRef]
- Lang, S.; Tiede, D.; Hölbling, D.; Füreder, P.; Zeil, P. Earth Observation (EO)-Based Ex Post Assessment of Internally Displaced Person (IDP) Camp Evolution and Population Dynamics in Zam Zam, Darfur. Int. J. Remote Sens. 2010, 31, 5709–5731. [Google Scholar] [CrossRef]
- Friedrich, H. Breaking Ground: Automating the Detection of Refugee Settlement Establishment and Growth through Landsat Time Series Analysis with a Case Study in Northern Uganda. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2019. [Google Scholar]
- Owen, J.R.; Kemp, D.; Lechner, A.M.; Ern, M.A.L.; Lèbre, É.; Mudd, G.M.; Macklin, M.G.; Saputra, M.R.U.; Witra, T.; Bebbington, A. Increasing Mine Waste Will Induce Land Cover Change That Results in Ecological Degradation and Human Displacement. J. Environ. Manage 2024, 351, 119691. [Google Scholar] [CrossRef] [PubMed]
- Wassie, S.B. Natural Resource Degradation Tendencies in Ethiopia: A Review. Environ. Syst. Res. 2020, 9, 33. [Google Scholar] [CrossRef]
- Omer, S.; Abdoun, M. Incentives for Reforestation and Forest’s Plantations Option, under the National Strategy of REDD+Program in Sudan. Adv. Ecol. Environ. Res. 2020, 5, 53–85. [Google Scholar]
- Funder, M.; Cold-Ravnkilde, S.M.; Ginsborg, I.P. Addressing Climate Change And Conflict in Development Cooperation Experiences from Natural Resource Management; Danish Institute for International Studies (DIIS): Copenhagen, Denmark, 2012. [Google Scholar]
- Fao Republic of Sudan Implementation of National Forest Monitoring System Action Plan. 2021. Available online: https://www.fao.org/fileadmin/user_upload/faoweb/Themes__pages/Forests/REDD-NFM/Sudan_MRV/Sudan_-_NFI_Report.pdf (accessed on 7 July 2025).
- Tenreiro, T.R.; García-Vila, M.; Gómez, J.A.; Jiménez-Berni, J.A.; Fereres, E. Using NDVI for the Assessment of Canopy Cover in Agricultural Crops within Modelling Research. Comput. Electron. Agric. 2021, 182, 106038. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Brandt, M.; Rasmussen, K.; Fensholt, R. Accelerating Land Cover Change in West Africa over Four Decades as Population Pressure Increased. Commun. Earth Environ. 2020, 1, 53. [Google Scholar] [CrossRef]
- Annette, B.S. Environmental Changes in the Lake Chad Basin: A Case Study Analyzing Its Influence on Boko Haram’s Violent Activities in Northern Nigeria. Master’s Thesis, University of Oslo, Oslo, Norway, 2024. [Google Scholar]
- Moyo, M.M.; Blake, R. Pastoralist Conflict in Ethiopia from 2015 to 2022: Climate Change and Food Insecurity as Exacerbating Factors. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2024. [Google Scholar]
- Ilintsev, A.; Bogdanov, A.; Nakvasina, E.; Amosova, I.; Koptev, S.; Tretyakov, S. The Natural Recovery of Disturbed Soil, Plant Cover and Trees after Clear-Cutting in the Boreal Forests, Russia. IForest 2020, 13, 531. [Google Scholar] [CrossRef]
Acquisition Date | Data Source | Resolution (m) | Bands |
---|---|---|---|
24 October 2015 | Sentinel–2 Level 2A | 10 | RGB + NIR |
24 October 2017 | Sentinel–2 Level 2A | 10 | RGB + NIR |
18 October 2020 | Sentinel–2 Level 2A | 10 | RGB + NIR |
12 October 2024 | Sentinel–2 Level 2A | 10 | RGB + NIR |
21 October 2015 | PlanetScope | 3.5 | RGB + NIR |
16 October 2017 | PlanetScope | 3.5 | RGB + NIR |
18 October 2020 | PlanetScope | 3.5 | RGB + NIR |
22 October 2024 | PlanetScope | 3.5 | RGB + NIR |
No Vegetation | Sparse Vegetation | Low Vegetation | Moderate Vegetation | Dense Vegetation |
---|---|---|---|---|
<0.0 | 0.0–0.2 | 0.2–0.3 | 0.3–0.4 | >0.4 |
LULC Classes | 2015 | 2017 | 2020 | 2024 | ||||
---|---|---|---|---|---|---|---|---|
PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) | |
No Vegetation | 97.36 | 0.97 | 98.45 | 97.43 | 92.51 | 91.90 | 92.82 | 93.36 |
Sparse Vegetation | 89.03 | 0.86 | 88.25 | 91.46 | 77.37 | 79.07 | 77.90 | 78.33 |
Low Vegetation | 94.27 | 0.94 | 62.89 | 73.32 | 68.47 | 88.93 | 65.13 | 79.90 |
Moderate Vegetation | 91.26 | 0.78 | 98.38 | 93.37 | 95.20 | 89.46 | 95.00 | 88.80 |
Dense Vegetation | 97.70 | 0.98 | 92.87 | 97.60 | 91.76 | 99.96 | 91.30 | 99.93 |
Overall Accuracy (%) | 91.74 | 93.59 | 88.32 | 87.84 | ||||
Kappa Hat | 0.85 | 0.88 | 0.78 | 0.78 |
LULC Class | 2015 | 2017 | 2020 | 2024 | ||||
---|---|---|---|---|---|---|---|---|
(ha) | % | (ha) | % | (ha) | % | (ha) | % | |
No Vegetation | 36,109.03 | 52.26 | 38,053.25 | 55.07 | 6289.63 | 9.10 | 3971.53 | 5.75 |
Sparse Vegetation | 28,888.13 | 41.81 | 27,746.36 | 40.16 | 30,750.50 | 44.50 | 25,747.18 | 37.26 |
Low Vegetation | 3809.31 | 5.51 | 3221.25 | 4.66 | 24,498.44 | 35.45 | 24,686.00 | 35.73 |
Moderate Vegetation | 273.92 | 0.40 | 76.08 | 0.11 | 6988.53 | 10.11 | 12,254.37 | 17.73 |
Dense Vegetation | 17.60 | 0.03 | 1.07 | 0.00 | 570.90 | 0.83 | 2438.92 | 3.53 |
Total | 69,098.00 | 100.00 | 69,098.00 | 100.00 | 69,098.00 | 100.00 | 69,098.00 | 100.00 |
Classes | (0–5 km) Buffer Zone | (5–10 km) Buffer Zone | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2015 | 2024 | 2015–2024 | 2015 | 2024 | 2015–2024 | |||||
km | % | km | % | Change % | km | % | km | % | Change % | |
No Vegetation | 52.00 | 50.00 | 10 | 9.62 | −40.38 | 250 | 49.60 | 27 | 5.36 | −44.25 |
Sparse Vegetation | 45.00 | 43.27 | 48 | 46.15 | +2.88 | 223 | 44.25 | 187 | 37.10 | −7.14 |
Low Vegetation | 5.00 | 4.81 | 31 | 29.81 | +25.00 | 29 | 5.75 | 180 | 35.71 | +29.96 |
Moderate Vegetation | 2.00 | 1.92 | 12 | 11.54 | +9.62 | 2 | 0.40 | 92 | 18.25 | +17.86 |
Dense Vegetation | 0.00 | 0.00 | 3 | 2.88 | +2.88 | 0 | 0.00 | 18 | 3.57 | +3.57 |
Total | 104 | 100.00 | 104 | 100.00 | 504 | 100.00 | 504 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.; Rotich, B.; Kipkulei, H.K.; Lameck, A.S.; Gallai, B.; Czimber, K. Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan. Land 2025, 14, 1680. https://doi.org/10.3390/land14081680
Ahmed A, Rotich B, Kipkulei HK, Lameck AS, Gallai B, Czimber K. Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan. Land. 2025; 14(8):1680. https://doi.org/10.3390/land14081680
Chicago/Turabian StyleAhmed, Abdalrahman, Brian Rotich, Harison K. Kipkulei, Azaria Stephano Lameck, Bence Gallai, and Kornel Czimber. 2025. "Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan" Land 14, no. 8: 1680. https://doi.org/10.3390/land14081680
APA StyleAhmed, A., Rotich, B., Kipkulei, H. K., Lameck, A. S., Gallai, B., & Czimber, K. (2025). Vegetation Dynamics and Climate Variability in Conflict Zones: A Case Study of Sortony Internally Displaced Camp, Darfur, Sudan. Land, 14(8), 1680. https://doi.org/10.3390/land14081680