The Relationship of Forest Fragmentation to Scots Pine Forest Mortality
Abstract
1. Introduction
2. Research Material and Methods
2.1. Study Site Description
2.2. Research Methods
2.3. Data Sources and Data Collection
2.4. Data Preprocessing
2.5. Model Development
3. Results
3.1. The Relationship Between FF and the Probability of FM at Different Spatial Scales
3.2. The Relationship Between FF and the Probability of FM at Different Spatial Multi-Scale Indices
3.3. The Spatial Presentation of the Relationship Between FF and the Probability of FM at Multi-Scales
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Buytaert, W.; Cuesta-Camacho, F.; Tobón, C. Potential impacts of climate change on the environmental services of humid tropical alpine regions. Glob. Ecol. Biogeogr. 2011, 20, 19–33. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Galicia, L.; Zarco-Arista, A.E. Multiple ecosystem services, possible trade-offs and synergies in a temperate forest ecosystem in Mexico: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2014, 10, 275–288. [Google Scholar] [CrossRef]
- Morreale, L.L.; Thompson, J.R.; Tang, X.; Reinmann, A.B.; Hutyra, L.R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 2021, 12, 7181. [Google Scholar] [CrossRef]
- Estreguil, C.; Caudullo, G.; de Rigo, D.; San-Miguel-Ayanz, J. Forest Landscape in Europe: Pattern, Fragmentation and Connectivity; Joint Research Centre, Institute for Environment and Sustainability: Ispra, Italy, 2013. [Google Scholar] [CrossRef]
- Debebe, D.; Feleha, D.; Tymińska-Czabańska, L.; Netzel, P. Academic Editor: Mark E. Harmon Forest Fragmentation and Forest Mortality—An In-Depth Systematic Review. Forests 2025, 16, 565. [Google Scholar] [CrossRef]
- Laurance, W.F.; Dell, B.; Turton, S.M.; Lawes, M.J.; Hutley, L.B.; McCallum, H.; Dale, P.; Bird, M.; Hardy, G.; Prideaux, G.; et al. The 10 Australian ecosystems most vulnerable to tipping points. Biol. Conserv. 2011, 144, 1472–1480. [Google Scholar] [CrossRef]
- Eckenwalder, J.E. Conifers of the World: The Complete Reference; Timber Press: Portland, OR, USA, 2009. [Google Scholar]
- Buras, A.; Schunk, C.; Zeiträg, C.; Herrmann, C.; Kaiser, L.; Lemme, H.; Straub, C.; Taeger, S.; Gößwein, S.; Klemmt, H.J.; et al. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 2018, 13, 025001. [Google Scholar] [CrossRef]
- Pasichnyk, D.; Lesinski, J.; Socha, J. Variability in biometric traits of Scots pine needles in Poland. Sylwan 2022, 166, 681–697. [Google Scholar] [CrossRef]
- Ambrose, M.J. Chapter 5—Tree mortality. Gen. Tech. Rep. SRS-261 2021, 261, 105–123. [Google Scholar]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- King, A.J.; Melbourne, B.A.; Davies, K.F.; Nicholls, A.O.; Austin, M.P.; Tuff, K.T.; Evans, M.J.; Hardy, C.M.; Cunningham, S.A. Spatial and temporal variability of fragmentation effects in a long term, eucalypt forest fragmentation experiment. Landsc. Ecol. 2018, 33, 609–623. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Wu, W.; Liu, J. Global forest fragmentation change from 2000 to 2020. Nat. Commun. 2023, 14, 3752. [Google Scholar] [CrossRef] [PubMed]
- Filip, G.M.; Schmitt, C.L.; Scott, D.W.; Fitzgerald, S.A. Understanding and Defining Mortality in Western Conifer Forests. West. J. Appl. For. 2007, 22, 105–115. [Google Scholar] [CrossRef]
- Harmon, M.E.; Bell, D.M. Mortality in Forested Ecosystems: Suggested Conceptual Advances. Forests 2020, 11, 572. [Google Scholar] [CrossRef]
- Laurance, W.F. Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 2008, 141, 1731–1744. [Google Scholar] [CrossRef]
- Vieilledent, G.; Grinand, C.; Rakotomalala, F.A.; Ranaivosoa, R.; Rakotoarijaona, J.R.; Allnutt, T.F.; Achard, F. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 2018, 222, 189–197. [Google Scholar] [CrossRef]
- Fischer, R.; Taubert, F.; Müller, M.S.; Groeneveld, J.; Lehmann, S.; Wiegand, T.; Huth, A. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 2021, 7, eabg7012. [Google Scholar] [CrossRef]
- Ries, L.; Fletcher, R.J.; Battin, J.; Sisk, T.D. Ecological Responses to Habitat Edges: Mechanisms, Models, and Variability Explained. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 491–522. [Google Scholar] [CrossRef]
- Harper, K.; Macdonald, S.; Burton, P.; Chen, J.; Brosofske, K.; Saunders, S.; Euskirchen, E.; Roberts, D.; Jaiteh, M.; Esseen, P.A. Edge Influence on Forest Structure and Composition in Fragmented Landscapes. Conserv. Biol. 2005, 19, 768–782. [Google Scholar] [CrossRef]
- Laurance, W.F.; Lovejoy, T.E.; Vasconcelos, H.L.; Bruna, E.M.; Didham, R.K.; Stouffer, P.C.; Gascon, C.; Bierregaard, R.O.; Laurance, S.G.; Sampaio, E. Ecosystem Decay of Amazonian Forest Fragments: A 22-Year Investigation. Conserv. Biol. 2002, 16, 605–618. [Google Scholar] [CrossRef]
- Reinmann, A.B.; Hutyra, L.R. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proc. Natl. Acad. Sci. USA 2017, 114, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Davies-Colley, R.; Payne, G.; Elswijk, M. Microclimate gradients across a forest edge. N. Z. J. Ecol. 2000, 24, 111–121. [Google Scholar]
- Matlack, G.R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Conserv. 1993, 66, 185–194. [Google Scholar] [CrossRef]
- Schwartz, N.B.; Uriarte, M.; DeFries, R.; Bedka, K.M.; Fernandes, K.; Gutiérrez-Vélez, V.; Pinedo-Vasquez, M.A. Fragmentation increases wind disturbance impacts on forest structure and carbon stocks in a western Amazonian landscape. Ecol. Appl. 2017, 27, 1901–1915. [Google Scholar] [CrossRef]
- Meeussen, C.; Govaert, S.; Vanneste, T.; Haesen, S.; Van Meerbeek, K.; Bollmann, K.; Brunet, J.; Calders, K.; Cousins, S.A.O.; Diekmann, M.; et al. Drivers of carbon stocks in forest edges across Europe. Sci. Total Environ. 2021, 759, 143497. [Google Scholar] [CrossRef]
- Chen, J.; Franklin, J.F.; Spies, T.A. Vegetation Responses to Edge Environments in Old-Growth Douglas-Fir Forests. Ecol. Appl. A Publ. Ecol. Soc. Am. 1992, 2, 387–396. [Google Scholar] [CrossRef]
- Barbati, A.; Bastrup-Birk, A.; Baycheva-Merger, T.; Bonhomme, C.; Bozzano, M.; Bücking, W.; Camia, A.; Caudullo, G.; Cienciala, E.; Cimini, D.; et al. State of Europe’s Forests 2011. Status and Trends in Sustainable Forest Management in Europe. In Proceedings of the FOREST EUROPE Ministerial Conference on the Protection of Forests in Europe, Oslo, Norway, 14–16 June 2011. [Google Scholar]
- Brando, P.M.; Balch, J.K.; Nepstad, D.C.; Morton, D.C.; Putz, F.E.; Coe, M.T.; Silvério, D.; Macedo, M.N.; Davidson, E.A.; Nóbrega, C.C.; et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl. Acad. Sci. USA 2014, 111, 6347–6352. [Google Scholar] [CrossRef]
- Tabarelli, M.; Cardoso da Silva, J.M.; Gascon, C. Forest fragmentation, synergisms and the impoverishment of neotropical forests. Biodivers. Conserv. 2004, 13, 1419–1425. [Google Scholar] [CrossRef]
- Lasy Państwowe z Dodatnim Wynikiem Finansowym za 2024 Rok. 2024. Available online: https://lochow.warszawa.lasy.gov.pl/aktualnosci/-/asset_publisher/1M8a/content/lasy-panstwowe-z-dodatnim-wynikiem-finansowym-za-2024-rok (accessed on 13 May 2025).
- Meeussen, C.; Govaert, S.; Vanneste, T.; Calders, K.; Bollmann, K.; Brunet, J.; Cousins, S.A.O.; Diekmann, M.; Graae, B.J.; Hedwall, P.O.; et al. Structural variation of forest edges across Europe. For. Ecol. Manag. 2020, 462, 117929. [Google Scholar] [CrossRef]
- Ordway, E.M.; Asner, G.P. Carbon declines along tropical forest edges correspond to heterogeneous effects on canopy structure and function. Proc. Natl. Acad. Sci. USA 2020, 117, 7863–7870. [Google Scholar] [CrossRef]
- Pinto, S.R.; Mendes, G.; Santos, A.M.; Dantas, M.; Tabarelli, M.; Melo, F.P.L. Landscape Attributes Drive Complex Spatial Microclimate Configuration of Brazilian Atlantic Forest Fragments. Trop. Conserv. Sci. 2010, 3, 389–402. [Google Scholar] [CrossRef]
- Riutta, T.; Clack, H.; Crockatt, M.; Slade, E.M. Landscape-Scale Implications of the Edge Effect on Soil Fauna Activity in a Temperate Forest. Ecosystems 2016, 19, 534–544. [Google Scholar] [CrossRef]
- Budniak, P.; Zięba, S. Effects of Forest Fragmentation on the Volume of Wood Resources in Managed, Pine-Dominated Forests in Poland. Forests 2022, 13, 590. [Google Scholar] [CrossRef]
- Kozak, J.; Ziółkowska, E.; Vogt, P.; Dobosz, M.; Kaim, D.; Kolecka, N.; Ostafin, K. Forest-Cover Increase Does Not Trigger Forest-Fragmentation Decrease: Case Study from the Polish Carpathians. Sustainability 2018, 10, 1472. [Google Scholar] [CrossRef]
- Mazgajski, T.; Żmihorski, M.; Abramowicz, K. Forest Habitat Loss and Fragmentation in Central Poland during the Last 100 Years. Silva Fenn. 2010, 44, 715–723. [Google Scholar] [CrossRef]
- Netzel, P.; Tyminska, L.; Dana Feleha, D.; Socha, J. New approach to assess forest fragmentation based on multiscale similarity index. Ecol. Indic. 2024, 158, 111530. [Google Scholar] [CrossRef]
- Rutkowski, R.; Jagołkowska, P.; Zawadzka, D.; Bogdanowicz, W. Impacts of forest fragmentation and post-glacial colonization on the distribution of genetic diversity in the Polish population of the hazel grouse Terastes bonasia. Eur. J. Wildl. Res. 2016, 62, 293–306. [Google Scholar] [CrossRef]
- Ziółkowska, E.; Ostapowicz, K.; Radeloff, V.C.; Kuemmerle, T. Effects of different matrix representations and connectivity measures on habitat network assessments. Landsc. Ecol. 2014, 29, 1551–1570. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.; Chenchouni, H.; Bachelet, D.; Mcdowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.; Hogg, E.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.; Neel, M.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps; University of Massachusetts: Amherst, MA, USA, 2012. [Google Scholar]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Klisz, M.; Buttò, V.; Rossi, S.; Morin, H.; Jastrzębowski, S. Intra-annual stem size variations converge across marginal populations of European beech. Trees 2020, 34, 255–265. [Google Scholar] [CrossRef]
- Netzel, P. Standardized Climatic Water Balance for Poland (1951–2023). 2025. Available online: https://landtax.urk.edu.pl/SCWB (accessed on 29 June 2025).
- Forest Information System of Europe. 2024. Available online: https://forest.eea.europa.eu (accessed on 13 May 2025).
- Pietzsch, B.W.; Peter, F.; Berger, U. The Effect of Sanitation Felling on the Spread of the European Spruce Bark Beetle—An Individual-Based Modeling Approach. Front. For. Glob. Chang. 2021, 4, 704930. [Google Scholar] [CrossRef]
- Socha, J.; Hawryło, P.; Leszczyński, K.; Tymińska-Czabańska, L. Height growth and site index models for main forest forming tree species in Poland. Sylwan 2023, 167, 617–632. [Google Scholar] [CrossRef]
- Ballabio, C.; Lugato, E.; Fernández-Ugalde, O.; Orgiazzi, A.; Jones, A.; Borrelli, P.; Montanarella, L.; Panagos, P. Mapping LUCAS topsoil chemical properties at European scale using Gaussian process regression. Geoderma 2019, 355, 113912. [Google Scholar] [CrossRef]
- European Digital Elevation Model (EU-DEM). 2024. Available online: https://www.eea.europa.eu/en/datahub/datahubitem-view/d08852bc-7b5f-4835-a776-08362e2fbf4b (accessed on 7 April 2025).
- Pascual Ferrer, J.; Candela Lledó, L. Water balance on the Central Rift Valley. In Case Studies for Developing Globally Responsible Engineers; Global Dimension in Engineering Education: Cham, Switzerland, 2015; pp. 563–591. [Google Scholar]
- Wilm, H.G.; Thornthwaite, C.W.; Colman, E.A.; Cummings, N.W.; Croft, A.R.; Gisborne, H.T.; Harding, S.T.; Hendrickson, A.H.; Hoover, M.D.; Houk, I.E.; et al. Report of the Committee on Transpiration and Evaporation, 1943-44. Trans. Am. Geophys. Union 1944, 25, 683–693. [Google Scholar] [CrossRef]
- Łabędzki, L.; Bąk, B. Standardized climatic water balance as drought index. Acta Agrophysica 2004, 3, 117–124. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Pub. Co.: Reading, MA, USA, 1977. [Google Scholar]
- Aertsen, W.; Kint, V.; van Orshoven, J.; Özkan, K.; Muys, B. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol. Model. 2010, 221, 1119–1130. [Google Scholar] [CrossRef]
- Guisan, A.; Edwards, T.C.; Hastie, T. Generalized linear and generalized additive models in studies of species distributions: Setting the scene. Ecol. Model. 2002, 157, 89–100. [Google Scholar] [CrossRef]
- Baayen, R.H.; Linke, M. Generalized Additive Mixed Models. In A Practical Handbook of Corpus Linguistics; Springer International Publishing: Cham, Switzerland, 2020; pp. 563–591. [Google Scholar] [CrossRef]
- Wood, S.N. Generalized Additive Models: An Introduction with R, Second Edition, 2nd ed.; Chapman and Hall/CRC: New York, MY, USA, 2017. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. (Eds.) Statistical Learning. In An Introduction to Statistical Learning: With Applications in R; Springer: New York, NY, USA, 2021; pp. 15–57. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive shifts in forest dynamics in a changing world. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef]
- Fahrig, L.; Arroyo-Rodríguez, V.; Bennett, J.R.; Boucher-Lalonde, V.; Cazetta, E.; Currie, D.J.; Eigenbrod, F.; Ford, A.T.; Harrison, S.P.; Jaeger, J.A.G.; et al. Is habitat fragmentation bad for biodiversity? Biol. Conserv. 2019, 230, 179–186. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Hicke, J.A.; Fisher, R.A.; Allen, C.D.; Aukema, J.; Bentz, B.; Hood, S.; Lichstein, J.W.; Macalady, A.K.; McDowell, N.; et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015, 208, 674–683. [Google Scholar] [CrossRef]
- Didham, R.K.; Kapos, V.; Ewers, R.M. Rethinking the conceptual foundations of habitat fragmentation research. Oikos 2012, 121, 161–170. [Google Scholar] [CrossRef]
- Taubert, F.; Fischer, R.; Groeneveld, J.; Lehmann, S.; Müller, M.S.; Rödig, E.; Wiegand, T.; Huth, A. Global patterns of tropical forest fragmentation. Nature 2018, 554, 519–522. [Google Scholar] [CrossRef]
- Bogaert, J.; Barima, Y.S.S.; Mongo, L.I.W.; Bamba, I.; Mama, A.; Toyi, M.; Lafortezza, R. Forest Fragmentation: Causes, Ecological Impacts and Implications for Landscape Management. In Landscape Ecology in Forest Management and Conservation: Challenges and Solutions for Global Change; Li, C., Lafortezza, R., Chen, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 273–296. [Google Scholar] [CrossRef]
- Gelber, S.; Blowes, S.A.; Chase, J.M.; Huth, A.; Schurr, F.M.; Tietjen, B.; Zeller, J.W.; May, F. Geometric and demographic effects explain contrasting fragmentation-biodiversity relationships across scales. bioRxiv 2024. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Andrade, A.C.; Fearnside, P.M.; Ribeiro, J.E.L.; Capretz, R.L.; Fearnside, P.M. Rain Forest Fragmentation and the Proliferation of Successional Trees. Ecology 2006, 87, 469–482. [Google Scholar] [CrossRef]
- Riitters, K.H. Forest Fragmentation. In Forest Health Monitoring 2005 National Technical Report; Gen. Tech. Rep. SRS-104; U.S. Department of Agriculture’s Forest Service Southern Research Station: Asheville, NC, USA, 2007; Volume 104, pp. 9–15. [Google Scholar]
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, K.B.; Smith, E. Global-Scale Patterns of Forest Fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology in North America: Past, Present, and Future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef]
Characteristics | Minimum | Maximum | Mean | Inter Quartile Range |
---|---|---|---|---|
Area [ha] | 0.1 | 36.27 | 5.32 | 4.45 |
Mean Slope [degrees] | 0.13 | 5.07 | 1.61 | 0.83 |
Mean Altitude [m] | 195.29 | 271.64 | 236.23 | 30.12 |
Age [year] | 2 | 155 | 66 | 58 |
Height [m] | 1 | 36 | 22 | 12 |
Diameter [cm] | 1 | 60 | 30 | 23 |
Volume [m3/ha] | 0.88 | 638.94 | 230.54 | 188.83 |
Site index [m] | 3.93 | 49.76 | 32.35 | 5.09 |
Density [trees/ha] | 24,873.75 | 65,255.48 | 51,698.86 | 8588.03 |
AMT1 [°C] | 18.45 | 21.90 | 20.01 | 20.84 |
AMT2 [°C] | 18.45 | 21.09 | 19.91 | 20.74 |
AMT3 [°C] | 18.45 | 21.09 | 19.95 | 20.74 |
AMR1 [mm] | 5.73 | 52.98 | 27.17 | 37.38 |
AMR2 [mm] | 5.73 | 50.12 | 25.70 | 34.52 |
AMR3 [mm] | 10.14 | 50.12 | 26.04 | 34.48 |
SCWB1 | −0.95 | 1.04 | −0.09 | 0.65 |
SCWB2 | −0.95 | 1.69 | 0.04 | 0.90 |
SCWB3 | −0.95 | 1.69 | −0.06 | 0.62 |
Model Evaluation | Base Model | Base Model with Fragmentation at a Given Scale | ||||
---|---|---|---|---|---|---|
Site and Stand | 50 m Scale | 100 m Scale | 200 m Scale | 400 m Scale | 600 m Scale | |
AUC | 0.818 | 0.832 | 0.834 | 0.835 | 0.835 | 0.835 |
Accuraccy | 0.734 | 0.754 | 0.737 | 0.745 | 0.732 | 0.746 |
Kappa | 0.467 | 0.507 | 0.506 | 0.499 | 0.505 | 0.492 |
p-value | < | < | < | < | < | < |
800 m scale | 1000 m scale | 1200 m scale | 1400 m scale | 1600 m scale | 1800 m scale | |
AUC | 0.835 | 0.835 | 0.834 | 0.834 | 0.833 | 0.833 |
Accuraccy | 0.753 | 0.755 | 0.758 | 0.751 | 0.755 | 0.752 |
Kappa | 0.505 | 0.509 | 0.517 | 0.503 | 0.511 | 0.513 |
p-value | < | < | < | |||
2000 m scale | 2500 m scale | 3000 m scale | Multi 50–600 m | Multi 800–3000 m | Multi 50–3000 m | |
AUC | 0.832 | 0.832 | 0.816 | 0.819 | 0.818 | 0.817 |
Accuraccy | 0.743 | 0.753 | 0.757 | 0.742 | 0.744 | 0.744 |
Kappa | 0.485 | 0.511 | 0.477 | 0.484 | 0.488 | 0.488 |
p-value | < | < | < | < | < |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feleha, D.D.; Netzel, P.; Talaga, J. The Relationship of Forest Fragmentation to Scots Pine Forest Mortality. Land 2025, 14, 1537. https://doi.org/10.3390/land14081537
Feleha DD, Netzel P, Talaga J. The Relationship of Forest Fragmentation to Scots Pine Forest Mortality. Land. 2025; 14(8):1537. https://doi.org/10.3390/land14081537
Chicago/Turabian StyleFeleha, Debebe Dana, Pawel Netzel, and Jakub Talaga. 2025. "The Relationship of Forest Fragmentation to Scots Pine Forest Mortality" Land 14, no. 8: 1537. https://doi.org/10.3390/land14081537
APA StyleFeleha, D. D., Netzel, P., & Talaga, J. (2025). The Relationship of Forest Fragmentation to Scots Pine Forest Mortality. Land, 14(8), 1537. https://doi.org/10.3390/land14081537