Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Forest Inventory
2.3. LiDAR Data Acquisition and Processing
2.3.1. Point Cloud Pre-Processing
2.3.2. Terrain Normalization
2.3.3. Stand-Level Parameters Extraction
2.4. Data and Statistical Analysis
2.4.1. Feature Selection
2.4.2. Above-Ground Biomass and Total Biomass Modeling
3. Results
3.1. Data Characterization and Analysis
3.2. Above Ground and Total Biomass Estimation
3.2.1. Biomass Estimation of Eucalyptus globulus Stands
3.2.2. Biomass Estimation of Pinus pinaster Stands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Floriano, E.P. Inventário Florestal, 2nd ed.; Pagel: Rio Largo, Brazil, 2021; ISBN 9786500261325. [Google Scholar]
- Akwaji, P.I.; Onah, D.O. Forest Inventory for Sustainable Forest Management in Cross River State, Nigeria. Sci. Rep. Life Sci. 2023, 4, 38–52. [Google Scholar]
- Heym, M.; Uhl, E.; Moshammer, R.; Dieler, J.; Stimm, K.; Pretzsch, H. Utilising Forest Inventory Data for Biodiversity Assessment. Ecol. Indic. 2021, 121, 107196. [Google Scholar] [CrossRef]
- He, X.; Lei, X.; Zeng, W.; Feng, L.; Zhou, C.; Wu, B. Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China. Sustainability 2022, 14, 5580. [Google Scholar] [CrossRef]
- da Silva, B.R.F.; Ucella-Filho, J.G.M.; Bispo, P.d.C.; Elera-Gonzales, D.G.; Silva, E.A.; Ferreira, R.L.C. Using Drones for Dendrometric Estimations in Forests: A Bibliometric Analysis. Forests 2024, 15, 1993. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Gennaro, S.F.D.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Ferreira, L.; Sousa, J.J.; Lourenço, J.M.; Peres, E.; Morais, R.; Pádua, L. Comparative Analysis of TLS and UAV Sensors for Estimation of Grapevine Geometric Parameters. Sensors 2024, 24, 5183. [Google Scholar] [CrossRef] [PubMed]
- Andersen, H.-E.; Mcgaughey, R.J.; Reutebuch, S.E. Assessing the Influence of Flight Parameters, Interferometric Processing, Slope and Canopy Density on the Accuracy of X-band IFSAR-derived Forest Canopy Height Models. Int. J. Remote Sens. 2008, 29, 1495–1510. [Google Scholar] [CrossRef]
- Mondello, C.; Hepner, G.; Williamson, R.A. 10-Year Industry Forecast: Phases I-III—Study Documentation. Photogramm. Eng. Remote Sens. 2004, 70, 5–58. [Google Scholar]
- Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; Nelson, R.F.; Parker, G.G.; Radeloff, V.C. Remote Sensing of Vegetation 3-D Structure for Biodiversity and Habitat: Review and Implications for Lidar and Radar Spaceborne Missions. J. Geophys. Res. Biogeosci. 2009, 114, 1–13. [Google Scholar] [CrossRef]
- Pilarska, M.; Ostrowski, W.; Bakuła, K.; Górski, K.; Kurczyński, Z. THE POTENTIAL OF LIGHT LASER SCANNERS DEVELOPED FOR UNMANNED AERIAL VEHICLES—THE REVIEW AND ACCURACY. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-2/W2, 87–95. [Google Scholar] [CrossRef]
- Almeida, D.R.A.; Stark, S.C.; Chazdon, R.; Nelson, B.W.; Cesar, R.G.; Meli, P.; Gorgens, E.B.; Duarte, M.M.; Valbuena, R.; Moreno, V.S.; et al. The Effectiveness of Lidar Remote Sensing for Monitoring Forest Cover Attributes and Landscape Restoration. For. Ecol. Manag. 2019, 438, 34–43. [Google Scholar] [CrossRef]
- Vazirabad, Y.F.; Karslioglu, M.O. Lidar for Biomass Estimation. In Biomass—Detection, Production and Usage; InTech: London, UK, 2011. [Google Scholar] [CrossRef]
- Baltsavias, E.P. A Comparison between Photogrammetry and Laser Scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Habib, A.; Ghanma, M.; Tait, M. Integration of LIDAR and Photogrammetry for Close Range Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 1045–1050. [Google Scholar]
- Barros, Q.S.; d’ Oliveira, M.V.N.; da Silva, E.F.; Görgens, E.B.; de Mendonça, A.R.; da Silva, G.F.; Reis, C.R.; Gomes, L.F.; de Carvalho, A.L.; de Oliveira, E.K.B.; et al. Indicators for Monitoring Reduced Impact Logging in the Brazilian Amazon Derived from Airborne Laser Scanning Technology. Ecol. Inform. 2024, 82, 102654. [Google Scholar] [CrossRef]
- Ferreira, L.; Bias, E.d.S.; Barros, Q.S.; Pádua, L.; Matricardi, E.A.T.; Sousa, J.J. Assessing the Impacts of Selective Logging on the Forest Understory in the Amazon Using Airborne LiDAR. Forests 2025, 16, 130. [Google Scholar] [CrossRef]
- Papa, D.d.A.; de Almeida, D.R.A.; Silva, C.A.; Figueiredo, E.O.; Stark, S.C.; Valbuena, R.; Rodriguez, L.C.E.; d’ Oliveira, M.V.N. Evaluating Tropical Forest Classification and Field Sampling Stratification from Lidar to Reduce Effort and Enable Landscape Monitoring. For. Ecol. Manag. 2020, 457, 117634. [Google Scholar] [CrossRef]
- Dutcă, I.; Mather, R.; Ioraș, F. Sampling Trees to Develop Allometric Biomass Models: How Does Tree Selection Affect Model Prediction Accuracy and Precision? Ecol. Indic. 2020, 117, 106553. [Google Scholar] [CrossRef]
- Almeida, D.R.A.D.; Nelson, B.W.; Schietti, J.; Gorgens, E.B.; Resende, A.F.; Stark, S.C.; Valbuena, R. Contrasting Fire Damage and Fire Susceptibility between Seasonally Flooded Forest and Upland Forest in the Central Amazon Using Portable Profiling LiDAR. Remote Sens. Environ. 2016, 184, 153–160. [Google Scholar] [CrossRef]
- Manzanera, J.A.; García-Abril, A.; Pascual, C.; Tejera, R.; Martín-Fernández, S.; Tokola, T.; Valbuena, R. Fusion of Airborne LiDAR and Multispectral Sensors Reveals Synergic Capabilities in Forest Structure Characterization. GIScience Remote Sens. 2016, 53, 723–738. [Google Scholar] [CrossRef]
- Maltamo, M.; Mehtätalo, L.; Valbuena, R.; Vauhkonen, J.; Packalen, P. Airborne Laser Scanning for Tree Diameter Distribution Modelling: A Comparison of Different Modelling Alternatives in a Tropical Single-Species Plantation. For. Int. J. For. Res. 2018, 91, 121–131. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, T.; Zhu, J.; Wu, F.; Li, X.; Lu, D.; Yu, F. Individual Tree Segmentation and Tree Height Estimation Using Leaf-Off and Leaf-On UAV-LiDAR Data in Dense Deciduous Forests. Remote Sens. 2022, 14, 2787. [Google Scholar] [CrossRef]
- Meyer, V.; Saatchi, S.; Clark, D.B.; Keller, M.; Vincent, G.; Ferraz, A.; Espírito-Santo, F.; d’Oliveira, M.V.N.; Kaki, D.; Chave, J. Canopy Area of Large Trees Explains Aboveground Biomass Variations across Neotropical Forest Landscapes. Biogeosciences 2018, 15, 3377–3390. [Google Scholar] [CrossRef]
- Ribas-Costa, V.A.; Gastón, A.; Cook, R.L. Modeling Dominant Height with USGS 3DEP LiDAR to Determine Site Index in Even-Aged Loblolly Pine (Pinus taeda L.) Plantations in the Southeastern US. For. Int. J. For. Res. 2024, cpae034. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Padrón Cedrés, E.; Cachinero-Vivar, A.M.; Valeriano, C.; Camarero, J.J. Integrating Dendrochronological and LiDAR Data to Improve Management of Pinus Canariensis Forests under Different Thinning and Climatic Scenarios. Remote Sens. 2024, 16, 850. [Google Scholar] [CrossRef]
- Rodríguez-Puerta, F.; Gómez-García, E.; Martín-García, S.; Pérez-Rodríguez, F.; Prada, E. UAV-Based LiDAR Scanning for Individual Tree Detection and Height Measurement in Young Forest Permanent Trials. Remote Sens. 2022, 14, 170. [Google Scholar] [CrossRef]
- Pirotti, F. Assessing a Template Matching Approach for Tree Height and Position Extraction from Lidar-Derived Canopy Height Models of Pinus pinaster Stands. Forests 2010, 1, 194–208. [Google Scholar] [CrossRef]
- Picos, J.; Bastos, G.; Míguez, D.; Alonso, L.; Armesto, J. Individual Tree Detection in a Eucalyptus Plantation Using Unmanned Aerial Vehicle (UAV)-LiDAR. Remote Sens. 2020, 12, 885. [Google Scholar] [CrossRef]
- Solares-Canal, A.; Alonso, L.; Picos, J.; Armesto, J. Individual Tree Identification and Segmentation in Pinus Spp. Stands through Portable LiDAR. Forests 2024, 15, 1133. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Suárez-Seoane, S.; Fernandes, P.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Pre-Fire Aboveground Biomass, Estimated from LiDAR, Spectral and Field Inventory Data, as a Major Driver of Burn Severity in Maritime Pine (Pinus pinaster) Ecosystems. For. Ecosyst. 2022, 9, 100022. [Google Scholar] [CrossRef]
- Rocha, K.D.; Silva, C.A.; Cosenza, D.N.; Mohan, M.; Klauberg, C.; Schlickmann, M.B.; Xia, J.; Leite, R.V.; Almeida, D.R.A.D.; Atkins, J.W.; et al. Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus Palustris Mill.) Forest Ecosystem. Remote Sens. 2023, 15, 1002. [Google Scholar] [CrossRef]
- Míguez, C.; Fernández, C. Evaluating the Combined Use of the NDVI and High-Density Lidar Data to Assess the Natural Regeneration of P. Pinaster after a High-Severity Fire in NW Spain. Remote Sens. 2023, 15, 1634. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A Machine Learning Algorithm to Detect Pine Wilt Disease Using UAV-Based Hyperspectral Imagery and LiDAR Data at the Tree Level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Shi, W.; Yu, Q.; Li, X.; Chen, X. Research on Accurate Estimation Method of Eucalyptus Biomass Based on Airborne LiDAR Data and Aerial Images. Sustainability 2022, 14, 10576. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and Estimating Tropical Forest Carbon Stocks: Making REDD a Reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Qin, S.; Cao, L.; Pu, R.; Li, G.; Sun, J. Estimation of Aboveground Biomass of Robinia Pseudoacacia Forest in the Yellow River Delta Based on UAV and Backpack LiDAR Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102014. [Google Scholar] [CrossRef]
- Silva, A.G.P.; Görgens, E.B.; Campoe, O.C.; Alvares, C.A.; Stape, J.L.; Rodriguez, L.C.E. Assessing Biomass Based on Canopy Height Profiles Using Airborne Laser Scanning Data in Eucalypt Plantations. Sci. Agric. 2015, 72, 504–512. [Google Scholar] [CrossRef]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labriere, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L.; et al. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef]
- Gomes, L.F.; Brites, R.S.; Locks, C.J.; Anjos, R.R. dos Estimativas das Alterações na Biomassa Florestal Utilizando LiDAR em Área de Manejo Florestal Sustentável na Amazônia Sul-Ocidental. Anuário Inst. Geociênc. 2020, 43, 260–268. [Google Scholar] [CrossRef]
- Nobre, S.; Silva, E.A. Estimativa de variáveis dendrométricas em plantios experimentais de Eucalyptus sp. utilizando imagens de VANT. Geogr. Ensino Pesqui. 2024, 28, e84504. [Google Scholar] [CrossRef]
- Rex, F.E.; Corte, A.P.D.; Silva, C.A.; Machado, S.d.A.; Sanquetta, C.R. Dynamics of Above-Ground Biomass in the Brazilian Amazon Using LiDAR Data. Anuário Inst. Geociênc. 2020, 43, 228–238. [Google Scholar] [CrossRef]
- Kc, Y.B.; Liu, Q.; Saud, P.; Gaire, D.; Adhikari, H. Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data. Land 2024, 13, 213. [Google Scholar] [CrossRef]
- Chan, E.P.Y.; Fung, T.; Wong, F.K.K. Estimating Above-Ground Biomass of Subtropical Forest Using Airborne LiDAR in Hong Kong. Sci. Rep. 2021, 11, 1751. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Zhang, X. Above-Ground Biomass Estimation of Plantation with Complex Forest Stand Structure Using Multiple Features from Airborne Laser Scanning Point Cloud Data. Forests 2021, 12, 1713. [Google Scholar] [CrossRef]
- Goldbergs, G.; Levick, S.R.; Lawes, M.; Edwards, A. Hierarchical Integration of Individual Tree and Area-Based Approaches for Savanna Biomass Uncertainty Estimation from Airborne LiDAR. Remote Sens. Environ. 2018, 205, 141–150. [Google Scholar] [CrossRef]
- Pinedo, L.E.; Ortega Quispe, K.; Ccopi Trucios, D.; Urquizo Barrera, J.; Rios Chavarría, C.; Pizarro Carcausto, S.; Matos Calderon, D.; Patricio Rosales, S.; Rodríguez Cerrón, M.; Ore Aquino, Z.; et al. Estimation of Height and Aerial Biomass in Eucalyptus Globulus Plantations Using UAV-LiDAR. Trees For. People 2025, 19, 100763. [Google Scholar] [CrossRef]
- Torre-Tojal, L.; Bastarrika, A.; Boyano, A.; Lopez-Guede, J.M.; Graña, M. Above-Ground Biomass Estimation from LiDAR Data Using Random Forest Algorithms. J. Comput. Sci. 2022, 58, 101517. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Y.; Jia, W.; Zhu, W.; Li, D.; Zhang, X.; Tang, Y.; Guo, H. Development of Estimation Models for Individual Tree Aboveground Biomass Based on TLS-Derived Parameters. Forests 2023, 14, 351. [Google Scholar] [CrossRef]
- de Oliveira, C.P.; Ferreira, R.L.C.; da Silva, J.A.A.; de Lima, R.B.; Silva, E.A.; da Silva, A.F.; de Lucena, J.D.S.; dos Santos, N.A.T.; Lopes, I.J.C.; Pessoa, M.M.d.L.; et al. Modeling and Spatialization of Biomass and Carbon Stock Using LiDAR Metrics in Tropical Dry Forest, Brazil. Forests 2021, 12, 473. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Li, M. Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China. Forests 2019, 10, 104. [Google Scholar] [CrossRef]
- Fadil, S.; Sebari, I.; Ajerame, M.M.; Ajeddour, R.; El Maghraoui, I.; Ait El Kadi, K.; Zefri, Y.; Jabrane, M. An Integrating Framework for Biomass and Carbon Stock Spatialization and Dynamics Assessment Using Unmanned Aerial Vehicle LiDAR (LiDAR UAV) Data, Landsat Imagery, and Forest Survey Data in the Mediterranean Cork Oak Forest of Maamora. Land 2024, 13, 688. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, P.; You, Q.; Tang, X.; Lai, X.; Chen, J.; You, H. Individual Tree Aboveground Biomass Estimation Based on UAV Stereo Images in a Eucalyptus Plantation. Forests 2023, 14, 1748. [Google Scholar] [CrossRef]
- Rodríguez-Puerta, F.; Alonso Ponce, R.; Pérez-Rodríguez, F.; Águeda, B.; Martín-García, S.; Martínez-Rodrigo, R.; Lizarralde, I. Comparison of Machine Learning Algorithms for Wildland-Urban Interface Fuelbreak Planning Integrating ALS and UAV-Borne LiDAR Data and Multispectral Images. Drones 2020, 4, 21. [Google Scholar] [CrossRef]
- Torre, L. Biomass Estimation Using LiDAR Data. Int. J. Sustain. Energy Plan. Manag. 2018, 17, 79–90. [Google Scholar] [CrossRef]
- Domingo, D.; Lamelas, M.; Montealegre, A.; García-Martín, A.; De La Riva, J. Estimation of Total Biomass in Aleppo Pine Forest Stands Applying Parametric and Nonparametric Methods to Low-Density Airborne Laser Scanning Data. Forests 2018, 9, 158. [Google Scholar] [CrossRef]
- O’Sullivan, K.S.W.; Vilà-Cabrera, A.; Chen, J.-C.; Greenwood, S.; Chang, C.-H.; Jump, A.S. High Intraspecific Trait Variation Results in a Resource Allocation Spectrum of a Subtropical Pine across an Elevational Gradient. J. Biogeogr. 2022, 49, 668–681. [Google Scholar] [CrossRef]
- Freeman, J.S.; Marques, C.M.P.; Carocha, V.; Borralho, N.; Potts, B.M.; Vaillancourt, R.E. Origins and Diversity of the Portuguese Landrace of Eucalyptus Globulus. Ann. For. Sci. 2007, 64, 639–647. [Google Scholar] [CrossRef]
- de Oliveira, L.T.; de Carvalho, L.M.T.; Ferreira, M.Z.; Oliveira, T.C.d.A.; Batista, V.T.F.P. Influência da idade na contagem de árvores de Eucalyptus sp. com dados de lidar. CERNE 2014, 20, 557–565. [Google Scholar] [CrossRef]
- Sheridan, R.D.; Popescu, S.C.; Gatziolis, D.; Morgan, C.L.S.; Ku, N.-W. Modeling Forest Aboveground Biomass and Volume Using Airborne LiDAR Metrics and Forest Inventory and Analysis Data in the Pacific Northwest. Remote Sens. 2015, 7, 229–255. [Google Scholar] [CrossRef]
- Borsah, A.A.; Nazeer, M.; Wong, M.S. LIDAR-Based Forest Biomass Remote Sensing: A Review of Metrics, Methods, and Assessment Criteria for the Selection of Allometric Equations. Forests 2023, 14, 2095. [Google Scholar] [CrossRef]
- Yan, Y.; Lei, J.; Huang, Y. Forest Aboveground Biomass Estimation Based on Unmanned Aerial Vehicle–Light Detection and Ranging and Machine Learning. Sensors 2024, 24, 7071. [Google Scholar] [CrossRef]
- Silva, C.A.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Liesenberg, V.; e Carvalho, S.P.C.; Rodriguez, L.C.E. A Principal Component Approach for Predicting the Stem Volume in Eucalyptus Plantations in Brazil Using Airborne LiDAR Data. For. Int. J. For. Res. 2016, 89, 422–433. [Google Scholar] [CrossRef]
- Leite, R.V.; do Amaral, C.H.; Pires, R.d.P.; Silva, C.A.; Soares, C.P.B.; Macedo, R.P.; da Silva, A.A.L.; Broadbent, E.N.; Mohan, M.; Leite, H.G. Estimating Stem Volume in Eucalyptus Plantations Using Airborne LiDAR: A Comparison of Area- and Individual Tree-Based Approaches. Remote Sens. 2020, 12, 1513. [Google Scholar] [CrossRef]
- Liu, X.; Hao, Y.; Widagdo, F.R.A.; Xie, L.; Dong, L.; Li, F. Predicting Height to Crown Base of Larix Olgensis in Northeast China Using UAV-LiDAR Data and Nonlinear Mixed Effects Models. Remote Sens. 2021, 13, 1834. [Google Scholar] [CrossRef]
- Magalhaes Albuquerque, A.; Debiasi, P.; Lourenço de Lima, T.V.; Hirokawa Higa, G.T.; Pistori, H.; Ferraço Scolforo, H.; Ferreira Silva, T.C.; de Andrade Porto, J.V.; Stape, J.L. Qualitative Forest Inventory in Eucalyptus Plantations Using Unmanned Aerial Vehicles, Multispectral Sensors, and Deep Learning. IEEE Geosci. Remote Sens. Lett. 2024, 21, 1–5. [Google Scholar] [CrossRef]
- Talebiesfandarani, S.; Shamsoddini, A. Global-Scale Biomass Estimation Based on Machine Learning and Deep Learning Methods. Remote Sens. Appl. Soc. Environ. 2022, 28, 100868. [Google Scholar] [CrossRef]
- Fernandes, P.A.T. Natural Regeneration and Expansion Capacity of Forestry Species: Pinus pinaster and Eucalyptus Globulus. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2016. [Google Scholar]
- Martins, M.A.S.; Parente, J.; Keizer, J.J.; Vieira, D.C.S. What Is the Extension of Bench Terrace Construction for Forest Plantations? The Case of North Central Portugal. Land Degrad. Dev. 2023, 34, 5180–5190. [Google Scholar] [CrossRef]
- Maia, P.; Keizer, J.; Vasques, A.; Abrantes, N.; Roxo, L.; Fernandes, P.; Ferreira, A.; Moreira, F. Post-Fire Plant Diversity and Abundance in Pine and Eucalypt Stands in Portugal: Effects of Biogeography, Topography, Forest Type and Post-Fire Management. For. Ecol. Manag. 2014, 334, 154–162. [Google Scholar] [CrossRef]
- Ferreira-Leite, F.; Ganho, N.; Bento-Gonçalves, A.; Botelho, F. Iberian Atmospheric Dynamics and Large Forest Fires in Mainland Portugal. Agric. For. Meteorol. 2017, 247, 551–559. [Google Scholar] [CrossRef]
- Costa, L.; Thonicke, K.; Poulter, B.; Badeck, F.-W. Sensitivity of Portuguese Forest Fires to Climatic, Human, and Landscape Variables: Subnational Differences between Fire Drivers in Extreme Fire Years and Decadal Averages. Reg. Environ. Change 2011, 11, 543–551. [Google Scholar] [CrossRef]
- Pedersen, J.S.T.; Dias, L.F.; Kok, K.; van Vuuren, D.; Soares, P.M.; Santos, F.D.; Azevedo, J.C. Increased Policy Ambition Is Needed to Avoid the Effects of Climate Change and Reach Carbon Removal Targets in Portugal. Reg. Environ. Change 2024, 24, 62. [Google Scholar] [CrossRef]
- Valente, S.; Coelho, C.; Ribeiro, C.; Marsh, G. Sustainable Forest Management in Portugal: Transition from Global Policies to Local Participatory Strategies. Int. For. Rev. 2015, 17, 368–383. [Google Scholar] [CrossRef]
- Tomé, M.; Barreiro, S.; Paulo, J.A.; Faias, S.P. Seleção de Equações Para Estimação de Variáveis Da Árvore Em Inventários Florestais a Realizar Em Portugal. 2007. Available online: https://www.isa.ulisboa.pt/cef/forchange/fctools/sites/default/files/pub/docs/equacoes-if_em_portugal.pdf (accessed on 30 May 2025).
- Faias, S.; Morais, P.; Dias, S.; Morão, S.; Salas, R.; Tomé, M.; Ôchoa, P. Uma Rede Europeia de Zonas Piloto Para Avaliação de Critérios e Indicadores de Gestão Florestal Sustentável–Relatório Final Do Projecto FORSEE. 2007. Available online: https://repositorio.ulisboa.pt/bitstream/10400.5/1763/1/REP-RFP1_2007_relatorio_FORSEE.pdf (accessed on 30 May 2025).
- Soares, P.; Tomé, M. Analysis of the Effectiveness of Biomass Expansion Factors to Estimate Stand Biomass. In Proceedings of the International Conference on Modeling Forest Production, Vienna, Austria, 9–22 April 2004; pp. 368–374. [Google Scholar]
- Pingel, T.J.; Clarke, K.C.; McBride, W.A. An Improved Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data. ISPRS J. Photogramm. Remote Sens. 2013, 77, 21–30. [Google Scholar] [CrossRef]
- Edelsbrunner, H.; Mücke, E.P. Three-Dimensional Alpha Shapes. ACM Trans. Graph. 1994, 13, 43–72. [Google Scholar] [CrossRef]
- Ma, Q.; Su, Y.; Guo, Q. Comparison of Canopy Cover Estimations From Airborne LiDAR, Aerial Imagery, and Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4225–4236. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using IBM SPSS Statistics; SAGE: Singapore, 2013; ISBN 978-1-4462-7458-3. [Google Scholar]
- Mukaka, M. Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Graham, M.H. Confronting Multicollinearity in Ecological Multiple Regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef]
- Zuur, A.F. Mixed Effects Models and Extensions in Ecology with R. Available online: https://biblioteca.uazuay.edu.ec/buscar/item/74750 (accessed on 30 June 2025).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Statistics and Computing; Springer: New York, NY, USA, 2002; ISBN 978-1-4419-3008-8. [Google Scholar]
- Sauerbrei, W.; Royston, P.; Binder, H. Selection of Important Variables and Determination of Functional Form for Continuous Predictors in Multivariable Model Building. Stat. Med. 2007, 26, 5512–5528. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 978-1-119-57875-8. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- R Core Team, R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 27 October 2024).
- Breiman, L.; Cutler, A.; Liaw, A.; Wiener, M. R randomForest: Breiman and Cutlers Random Forests for Classification and Regression 2024. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 1 July 2025).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenke, B.; R Core Team; et al. Caret: Classification and Regression Training. 2022. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 13 July 2025).
- Aliferis, C.; Simon, G. Overfitting, Underfitting and General Model Overconfidence and Under-Performance Pitfalls and Best Practices in Machine Learning and AI. In Artificial Intelligence and Machine Learning in Health Care and Medical Sciences: Best Practices and Pitfalls; Simon, G.J., Aliferis, C., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 477–524. ISBN 978-3-031-39355-6. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer Texts in Statistics; Springer US: New York, NY, USA, 2021; ISBN 978-1-07-161417-4. [Google Scholar]
- Willmott, C.J.; Matsuura, K. Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and Variable Importance in Random Forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Puliti, S.; Breidenbach, J.; Schumacher, J.; Hauglin, M.; Klingenberg, T.F.; Astrup, R. Above-Ground Biomass Change Estimation Using National Forest Inventory Data with Sentinel-2 and Landsat. Remote Sens. Environ. 2021, 265, 112644. [Google Scholar] [CrossRef]
- da Silva, V.S.; Silva, C.A.; Mohan, M.; Cardil, A.; Rex, F.E.; Loureiro, G.H.; de Almeida, D.R.A.; Broadbent, E.N.; Gorgens, E.B.; Dalla Corte, A.P.; et al. Combined Impact of Sample Size and Modeling Approaches for Predicting Stem Volume in Eucalyptus Spp. Forest Plantations Using Field and LiDAR Data. Remote Sens. 2020, 12, 1438. [Google Scholar] [CrossRef]
- Liu, M.; Hu, S.; Ge, Y.; Heuvelink, G.B.M.; Ren, Z.; Huang, X. Using Multiple Linear Regression and Random Forests to Identify Spatial Poverty Determinants in Rural China. Spat. Stat. 2021, 42, 100461. [Google Scholar] [CrossRef]
- Maesano, M.; Santopuoli, G.; Moresi, F.; Matteucci, G.; Lasserre, B.; Scarascia Mugnozza, G. Above Ground Biomass Estimation from UAV High Resolution RGB Images and LiDAR Data in a Pine Forest in Southern Italy. iForest 2022, 15, 451–457. [Google Scholar] [CrossRef]
- Domingo, D.; Lamelas-Gracia, M.T.; Montealegre-Gracia, A.L.; de la Riva-Fernández, J. Comparison of Regression Models to Estimate Biomass Losses and CO2 Emissions Using Low-Density Airborne Laser Scanning Data in a Burnt Aleppo Pine Forest. Eur. J. Remote Sens. 2017, 50, 384–396. [Google Scholar] [CrossRef]
- Zhao, K.; Popescu, S.; Nelson, R. Lidar Remote Sensing of Forest Biomass: A Scale-Invariant Estimation Approach Using Airborne Lasers. Remote Sens. Environ. 2009, 113, 182–196. [Google Scholar] [CrossRef]
- Mascaro, J.; Asner, G.P.; Muller-Landau, H.C.; van Breugel, M.; Hall, J.; Dahlin, K. Controls over Aboveground Forest Carbon Density on Barro Colorado Island, Panama. Biogeosciences 2011, 8, 1615–1629. [Google Scholar] [CrossRef]
- Smith, P.F.; Ganesh, S.; Liu, P. A Comparison of Random Forest Regression and Multiple Linear Regression for Prediction in Neuroscience. J. Neurosci. Methods 2013, 220, 85–91. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions 2017. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf (accessed on 30 May 2025).
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? Geosci. Model Dev. Discuss. 2014, 7, 1525–1534. [Google Scholar] [CrossRef]
Compartment | Pinus pinaster | Eucalyptus globulus |
---|---|---|
Trunk | , if > 10.7100 , if ≤ 10.7100 | |
Bark | , if > 18.2691 , if ≤ 18.2691 | |
Branches | ||
Foliage | — | |
AGB | ||
Root | ||
TB |
Variables | Description |
---|---|
, , | Height dispersion metrics: variance, standard deviation, and amplitude (max. − min.) |
, , , , , , , | Height percentiles and statistics at 25th, 40th, 50th (median), mean, 75th, 90th, 95th, and maximum height |
, , , , , , , | Proportion of area covered by the vertical projection of the tree canopy above a given at different percentiles |
, , , , , , , | Horizontal area covered by canopy at different height percentiles |
, , , , , , , | Estimated canopy volume, computed at different height percentiles |
Parameter | Species | Mean ± SD | Min. | P25 | Median | P75 | Max. |
---|---|---|---|---|---|---|---|
TB (Mg ha−1) | E. globulus | 42.14 ± 25.21 | 3.41 | 24.36 | 40.09 | 59.83 | 107.72 |
P. pinaster | 416.30 ± 189.23 | 112.97 | 289.10 | 452.01 | 576.60 | 680.82 | |
AGB (Mg ha−1) | E. globulus | 33.74 ± 20.19 | 2.73 | 19.51 | 32.10 | 47.91 | 86.26 |
P. pinaster | 403.62 ± 185.79 | 105.34 | 279.57 | 440.67 | 561.46 | 664.17 | |
Max. height (m) | E. globulus | 14.93 ± 3.53 | 6.61 | 12.47 | 14.48 | 17.35 | 21.65 |
P. pinaster | 18.69 ± 4.78 | 9.66 | 15.90 | 18.66 | 22.66 | 25.99 | |
Canopy density (%) | E. globulus | 20.71 ± 10.14 | 1.09 | 12.55 | 19.80 | 28.74 | 45.19 |
P. pinaster | 37.62 ± 19.18 | 2.86 | 27.54 | 36.33 | 47.14 | 67.85 | |
Crown area (m2 ha−1) | E. globulus | 3318.07 ± 1493.64 | 139.67 | 2336.56 | 3305.69 | 4293.84 | 6672.64 |
P. pinaster | 5059.16 ± 2554.35 | 328.89 | 3907.07 | 4605.55 | 6639.56 | 9444.33 | |
Volume (m3 ha−1) | E. globulus | 3198.48 ± 2987.50 | 7.03 | 1429.90 | 1927.56 | 4415.91 | 13,602.75 |
P. pinaster | 3921.92 ± 3009.54 | 53.66 | 1412.93 | 3630.60 | 4480.60 | 11,199.45 |
Variables | Eucalyptus globulus | Pinus pinaster | ||||||
---|---|---|---|---|---|---|---|---|
AGB | TB | Both | AGB | TB | Both | |||
r | r | VIF1 | VIF2 | r | r | VIF1 | VIF2 | |
0.542 | 0.542 | 3.17 | 1.20 | 0.430 | 0.333 | 3.56 | 1.62 | |
0.542 | 0.542 | — | — | 0.430 | 0.333 | — | — | |
0.855 | 0.855 | — | — | 0.915 | 0.903 | — | — | |
0.925 | 0.925 | 6.62 | 1.68 | 0.927 | 0.952 | — | — | |
0.943 | 0.943 | — | — | 0.939 | 0.964 | — | — | |
0.944 | 0.944 | — | — | 0.939 | 0.964 | — | — | |
0.949 | 0.949 | — | — | 0.939 | 0.964 | — | — | |
0.937 | 0.937 | — | — | 0.927 | 0.939 | — | — | |
0.924 | 0.924 | — | — | 0.927 | 0.939 | — | — | |
0.915 | 0.915 | — | — | 0.927 | 0.939 | — | — | |
0.853 | 0.853 | 8.49 | — | 0.903 | 0.915 | 2.55 | 1.75 | |
0.513 | 0.513 | 13.67 | 4.71 | 0.515 | 0.527 | 126.35 | — | |
0.548 | 0.548 | — | — | 0.455 | 0.491 | — | — | |
0.551 | 0.551 | — | — | 0.394 | 0.442 | — | — | |
0.559 | 0.559 | — | — | 0.394 | 0.442 | — | — | |
0.581 | 0.581 | — | — | 0.455 | 0.491 | — | — | |
0.571 | 0.571 | — | — | 0.394 | 0.442 | — | — | |
0.605 | 0.605 | 66.70 | — | 0.309 | 0.345 | — | — | |
0.578 | 0.578 | 38.44 | 3.02 | 0.164 | 0.200 | — | — | |
0.564 | 0.564 | — | — | 0.430 | 0.455 | 219.27 | ||
0.521 | 0.521 | — | — | 0.358 | 0.370 | — | — | |
0.505 | 0.505 | — | — | 0.345 | 0.358 | — | — | |
0.510 | 0.510 | — | — | 0.345 | 0.358 | — | — | |
0.501 | 0.501 | — | — | 0.430 | 0.442 | — | — | |
0.449 | 0.449 | — | — | 0.345 | 0.358 | — | — | |
0.450 | 0.450 | — | — | 0.261 | 0.273 | — | — | |
0.437 | 0.437 | 18.65 | — | 0.261 | 0.273 | 20.69 | — | |
0.302 | 0.302 | — | — | 0.503 | 0.442 | — | — | |
0.373 | 0.373 | — | — | 0.455 | 0.418 | 14.76 | 1.52 | |
0.372 | 0.372 | — | — | 0.418 | 0.382 | — | — | |
0.384 | 0.384 | 15.18 | 2.59 | 0.418 | 0.382 | — | — | |
0.395 | 0.395 | — | — | 0.527 | 0.491 | — | — | |
0.413 | 0.413 | — | — | 0.370 | 0.345 | — | — | |
0.459 | 0.459 | — | — | 0.321 | 0.309 | — | — | |
0.505 | 0.505 | — | — | 0.430 | 0.418 | — | — |
Model | Dataset | Parameter | AGB | TB |
---|---|---|---|---|
MLR | Train | R2 | 0.89 | 0.89 |
RMSE (Mg ha−1) | 6.70 | 8.37 | ||
MAE (Mg ha−1) | 5.36 | 6.69 | ||
Test | R2 | 0.73 | 0.73 | |
RMSE (Mg ha−1) | 10.49 | 13.10 | ||
MAE (Mg ha−1) | 8.03 | 10.03 | ||
RF | Train | R2 | 0.96 | 0.96 |
RMSE (Mg ha−1) | 4.69 | 5.71 | ||
MAE (Mg ha−1) | 3.61 | 4.43 | ||
Test | R2 | 0.72 | 0.73 | |
RMSE (Mg ha−1) | 10.42 | 12.92 | ||
MAE (Mg ha−1) | 7.95 | 9.76 |
Dataset | Parameter | AGB | TB |
---|---|---|---|
Train | R2 | 0.91 | 0.91 |
RMSE (Mg ha−1) | 56.43 | 58.53 | |
MAE (Mg ha−1) | 51.80 | 53.31 | |
Test | R2 | 0.91 | 0.91 |
RMSE (Mg ha−1) | 89.10 | 91.59 | |
MAE (Mg ha−1) | 79.37 | 81.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, L.; Sandim, A.S.d.A.; Lopes, D.A.; Sousa, J.J.; Lopes, D.M.M.; Silva, M.E.C.M.; Pádua, L. Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal. Land 2025, 14, 1460. https://doi.org/10.3390/land14071460
Ferreira L, Sandim ASdA, Lopes DA, Sousa JJ, Lopes DMM, Silva MECM, Pádua L. Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal. Land. 2025; 14(7):1460. https://doi.org/10.3390/land14071460
Chicago/Turabian StyleFerreira, Leilson, André Salgado de Andrade Sandim, Dalila Araújo Lopes, Joaquim João Sousa, Domingos Manuel Mendes Lopes, Maria Emília Calvão Moreira Silva, and Luís Pádua. 2025. "Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal" Land 14, no. 7: 1460. https://doi.org/10.3390/land14071460
APA StyleFerreira, L., Sandim, A. S. d. A., Lopes, D. A., Sousa, J. J., Lopes, D. M. M., Silva, M. E. C. M., & Pádua, L. (2025). Estimating Biomass in Eucalyptus globulus and Pinus pinaster Forests Using UAV-Based LiDAR in Central and Northern Portugal. Land, 14(7), 1460. https://doi.org/10.3390/land14071460