Spatiotemporal Data Analytics and the Modeling of Land Systems: Shaping Sustainable Landscape
1. Introduction
2. Topics
2.1. Ecological and Environmental Functioning
2.2. Urban Development
2.3. Land Change Dynamics
3. Summary and Perspectives
Conflicts of Interest
List of Contributions
- Shen, Z.; Gong, J. Spatial–Temporal Changes and Driving Mechanisms of Ecological Environmental Quality in the Qinghai–Tibet Plateau, China. Land 2024, 13, 2203. https://doi.org/10.3390/land13122203.
- Cai, X.; Song, Y.; Xue, D.; Ma, B.; Liu, X.; Zhang, L. Spatial and Temporal Changes in Ecological Resilience in the Shanxi–Shaanxi–Inner Mongolia Energy Zone with Multi-Scenario Simulation. Land 2024, 13, 425. https://doi.org/10.3390/land13040425.
- Li, Q.; Yang, L.; Jiao, H.; He, Q. Spatiotemporal Analysis of the Impacts of Land Use Change on Ecosystem Service Value: A Case from Guiyang, China. Land 2024, 13, 211. https://doi.org/10.3390/land13020211.
- Zou, S.; Fan, R.; Gong, J. Spatial Optimization and Temporal Changes in the Ecological Network: A Case Study of Wanning City, China. Land 2024, 13, 122. https://doi.org/10.3390/land13010122.
- Cai, C.; Li, J.; Wang, Z. Long-Term Ecological and Environmental Quality Assessment Using an Improved Remote-Sensing Ecological Index (IRSEI): A Case Study of Hangzhou City, China. Land 2024, 13, 1152. https://doi.org/10.3390/land13081152.
- Zhang, Y.; Lin, T.; Zhang, J.; Lin, M.; Chen, Y.; Zheng, Y.; Wang, X.; Liu, Y.; Ye, H.; Zhang, G. Potential and Influencing Factors of Urban Spatial Development under Natural Constraints: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Area. Land 2024, 13, 783. https://doi.org/10.3390/land13060783.
- Zhang, Y.; Xia, X.; Li, J.; Xing, L.; Yang, C.; Wang, H.; Dai, X.; Wang, J. Simulation of Urban Growth Boundary under the Guidance of Stock Development: A Case Study of Wuhan City. Land 2024, 13, 1174. https://doi.org/10.3390/land13081174.
- Wang, Z.; Zeng, Y.; Wang, X.; Gu, T.; Chen, W. Impact of Urban Expansion on Carbon Emissions in the Urban Agglomerations of Yellow River Basin, China. Land 2024, 13, 651. https://doi.org/10.3390/land13050651.
- Lin, S.; Li, C.; Li, Y.; Chen, L. Exploring Integrative Development of Urban Agglomeration from the Perspective of Urban Symbiosis and Production–Living–Ecological Function. Land 2024, 13, 258. https://doi.org/10.3390/land13020258.
- Zhao, Y.; Ni, Z.; Zhang, Y.; Wan, P.; Geng, C.; Yu, W.; Li, Y.; Long, Z. Exploring the Spatiotemporal Evolution Patterns and Determinants of Construction Land in Mianning County on the Eastern Edge of the Qinghai–Tibet Plateau. Land 2024, 13, 993. https://doi.org/10.3390/land13070993.
- Bilintoh, T.M.; Pontius, R.G., Jr.; Liu, Z. Analyzing the Losses and Gains of a Land Category: Insights from the Total Operating Characteristic. Land 2024, 13, 1177. https://doi.org/10.3390/land13081177.
- Zhao, L.Q.; van Duynhoven, A.; Dragićević, S. Machine Learning for Criteria Weighting in GIS-Based Multi-Criteria Evaluation: A Case Study of Urban Suitability Analysis. Land 2024, 13, 1288. https://doi.org/10.3390/land13081288.
- Wang, K.; Wang, L.; Zhang, J. Towards a Comprehensive Framework for Regional Transportation Land Demand Forecasting: Empirical Study from Yangtze River Economic Belt, China. Land 2024, 13, 847. https://doi.org/10.3390/land13060847.
References
- Rindfuss, R.R.; Walsh, S.J.; Turner, B.L., 2nd; Fox, J.; Mishra, V. Developing a Science of Land Change: Challenges and Methodological Issues. Proc. Natl. Acad. Sci. USA 2004, 101, 13976–13981. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C. The Causes of Land-Use and Land-Cover Change: Moving Beyond the Myths. Glob. Environ. Change 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Verburg, P.H.; Erb, K.-H.; Mertz, O.; Espindola, G. Land System Science: Between Global Challenges and Local Realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Council; National Research; Division of Behavioral; Social Sciences; Board on Environmental Change; Committee on the Human Dimensions of Global Change. People and Pixels: Linking Remote Sensing and Social Science; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Turner, B.L., 2nd; Lambin, E.F.; Reenberg, A. The Emergence of Land Change Science for Global Environmental Change and Sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Liu, J.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of Coupled Human and Natural Systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef]
- Brown, D.G.; Riolo, R.; Robinson, D.T.; North, M.; Rand, W. Spatial Process and Data Models: Toward Integration of Agent-Based Models and Gis. J. Geogr. Syst. 2005, 7, 25–47. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-Agent Systems for the Simulation of Land-Use and Land-Cover Change: A Review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef]
- Irwin, E.G.; Geoghegan, J. Theory, Data, Methods: Developing Spatially Explicit Economic Models of Land Use Change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in Using Land Use and Land Cover Data for Global Change Studies. Glob. Change Bio 2011, 17, 974–989. [Google Scholar] [CrossRef]
- An, L. Modeling Human Decisions in Coupled Human and Natural Systems: Review of Agent-Based Models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Council; National Research Advancing Land Change Modeling: Opportunities and Research Requirements; The National Academies Press: Washington, DC, USA, 2014.
- Costanza, R.; Voinov, A. Landscape Simulation Modeling: A Spatially Explicit, Dynamic Approach; Springer: New York, NY, USA, 2004. [Google Scholar]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the Input, Output, and Validation Maps for Several Models of Land Change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Tang, W.; Yang, J. Agent-Based Land Change Modeling of a Large Watershed: Space-Time Locations of Critical Threshold. J. Artif. Soc. Soc. Simul. 2020, 23, 15. [Google Scholar] [CrossRef]
- Ripley, B.D. Spatial Statistics; John Wiley & Sons: Hoboken, NJ, USA, 2005; Volume 272. [Google Scholar]
- Mitchell, T.; Hill, M.G. Machine Learning: A Guide to Current Research; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; Volume 12. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Heaton, J. Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep Learning. Genet. Program. Evolvable Mach. 2018, 19, 305–307. [Google Scholar] [CrossRef]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice; Springer: New York, NY, USA, 2015. [Google Scholar]
- Gunderson, L.H. Ecological Resilience—In Theory and Application. Annu. Rev. Ecol. Evol. Syst. 2000, 31, 425–439. [Google Scholar] [CrossRef]
- Cumming, G.S. ; Spatial Resilience in Social-Ecological Systems; Springer Nature: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Benenson, I.; Torrens, P.M. Geosimulation: Object-Based Modeling of Urban Phenomena. Comput. Environ. Urban Syst. 2004, 28, 1–8. [Google Scholar] [CrossRef]
- Batten, D.F. Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals, by Michael Batty; The MIT Press: Cambridge, MA, USA, 2007; Volume 47, pp. 624–627. [Google Scholar]
- Batty, M. ; The New Science of Cities; MIT press: Cambridge, UK, 2013. [Google Scholar]
- Eastman, J.R. Multi-Criteria Evaluation and Gis. Geogr. Inf. Syst. 1999, 1, 493–502. [Google Scholar]
- Pontius, R.G., Jr.; Si, K. The Total Operating Characteristic to Measure Diagnostic Ability for Multiple Thresholds. Int. J. Geogr. Inf. Sci. 2014, 28, 570–583. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic Hierarchy Process: An Overview of Applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Coburn, T.C. Statistical Methods for Spatial Data Analysis. Math. Geol. 2006, 38, 511–513. [Google Scholar] [CrossRef]
- White, R.; Engelen, G.; Uljee, I. The Use of Constrained Cellular Automata for High-Resolution Modelling of Urban Land-Use Dynamics. Environ. Plan. B 1997, 24, 323–343. [Google Scholar] [CrossRef]
- Clarke KC, Gazulis N, Dietzel CK, Goldstein NC. A decade of SLEUTHing: Lessons learned from applications of a cellular automaton land use change model. In Classics in IJGIS: Twenty Years of the International Journal of Geographical Information Science and Systems; Taylor and Francis: Boca Raton, FL, USA, 2007; pp. 413–425. [Google Scholar]
- Veldkamp, A.; Lambin, E.F. Predicting Land-Use Change. Agric. Ecosyst. Environ. 2001, 85, 1–6. [Google Scholar] [CrossRef]
- Meentemeyer, R.K.; Tang, W.; Dorning, M.A.; Vogler, J.B.; Cunniffe, N.J.; Shoemaker, D.A. Futures: Multilevel Simulations of Emerging Urban–Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm. Ann. Assoc. Am. Geogr. 2013, 103, 785–807. [Google Scholar] [CrossRef]
- Batty, M.; Milton, R. A New Framework for Very Large-Scale Urban Modelling. Urban Stud. 2021, 58, 3071–3094. [Google Scholar] [CrossRef]
- Manson, S.M. Simplifying Complexity: A Review of Complexity Theory. Geoforum 2001, 32, 405–414. [Google Scholar] [CrossRef]
- Lansing, J.S. Complex Adaptive Systems. Annu. Rev. Anthropol. 2003, 32, 183–204. [Google Scholar] [CrossRef]
- Verburg, P.H. Simulating Feedbacks in Land Use and Land Cover Change Models. Landsc. Ecol. 2006, 21, 1171–1183. [Google Scholar] [CrossRef]
- Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.A.; van Vliet, J. Beyond Land Cover Change: Towards a New Generation of Land Use Models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach, Global Edition; Pearson Education: London, UK, 2021. [Google Scholar]
- Niu, J.; Tang, W.; Xu, F.; Zhou, X.; Song, Y. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 66. [Google Scholar] [CrossRef]
- Bail, C.A. Can Generative Ai Improve Social Science? Proc. Natl. Acad. Sci. USA 2024, 121, e2314021121. [Google Scholar] [CrossRef]
- Acharya, D.B.; Kuppan, K.; Divya, B. Agentic Ai: Autonomous Intelligence for Complex Goals—A Comprehensive Survey. IEEE Access 2025, 13, 18912–18936. [Google Scholar] [CrossRef]
- Epstein, Z.; Hertzmann, A. Art and the science of generative AI. Science 2023, 380, 1110–1111. [Google Scholar] [CrossRef]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the Opportunities and Risks of Foundation Models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- Moor, M.; Banerjee, O.; Abad, Z.S.H.; Krumholz, H.M.; Leskovec, J.; Topol, E.J.; Rajpurkar, P. Foundation Models for Generalist Medical Artificial Intelligence. Nature 2023, 616, 259–265. [Google Scholar] [CrossRef]
Author (Year) | Study Region | Type of Models | Type of Factors |
---|---|---|---|
Shen and Gong (2024) | Qinghai–Tibet Plateau, China | Statistical Model, Machine Learning | Biophysical Factors |
Zou, Fan et al. (2024) | Wanning City, China | Statistical Model | Regulation and Policy, Infrastructure and Accessibility, Biophysical Factors |
Li, Yang et al. (2024) | Guiyang, China | Statistical Model, Spatial Statistics | Biophysical, Socioeconomic Factors |
Lin, Li et al. (2024) | Central Yunnan Urban Agglomeration, China | Statistical Model | Regulation and Policy, Socioeconomic Factors |
Cai, Song et al. (2024) | Shanxi–Shaanxi–Inner Mongolia Energy Zone, China | Simulation, Spatial Statistics | Regulation and Policy, Biophysical, Infrastructure and Accessibility |
Wang, Zeng et al. (2024) | Urban Agglomerations of the Yellow River Basin, China | Spatial Statistics | Socioeconomic, Biophysical Factors |
Zhang, Lin et al. (2024) | Guangdong-Hong Kong-Macao Greater Bay Area, China | Statistical Model, Spatial Statistics | Biophysical Factors |
Wang, Wang et al. (2024) | Yangtze River Economic Belt, China | Machine Learning, Statistical Model | Infrastructure and Accessibility, Socioeconomic Factors |
Zhao, Ni et al. (2024) | Mianning County, Eastern Edge of the Qinghai–Tibet Plateau, China | Statistical Model | Infrastructure and Accessibility, Biophysical Factors |
Cai, Li et al. (2024) | Hangzhou City, China | Statistical Model, Machine Learning | Biophysical Factors |
Zhang, Xia et al. (2024) | Wuhan City, China | Statistical Model, Simulation | Biophysical Factors, Regulation and Policy, Socioeconomic, Infrastructure and Accessibility Factors |
Bilintoh, Pontius et al. (2024) | The Plum Island Ecosystems of northeastern Massachusetts, USA | Statistical Model | Biophysical Factors |
Zhao, van Duynhoven et al. (2024) | Kelowna, BC, Canada | Statistical Model, Machine Learning | Biophysical, Infrastructure and Accessibility Factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Yang, J.; Zheng, M.; Li, J. Spatiotemporal Data Analytics and the Modeling of Land Systems: Shaping Sustainable Landscape. Land 2025, 14, 1428. https://doi.org/10.3390/land14071428
Tang W, Yang J, Zheng M, Li J. Spatiotemporal Data Analytics and the Modeling of Land Systems: Shaping Sustainable Landscape. Land. 2025; 14(7):1428. https://doi.org/10.3390/land14071428
Chicago/Turabian StyleTang, Wenwu, Jianxin Yang, Minrui Zheng, and Jingye Li. 2025. "Spatiotemporal Data Analytics and the Modeling of Land Systems: Shaping Sustainable Landscape" Land 14, no. 7: 1428. https://doi.org/10.3390/land14071428
APA StyleTang, W., Yang, J., Zheng, M., & Li, J. (2025). Spatiotemporal Data Analytics and the Modeling of Land Systems: Shaping Sustainable Landscape. Land, 14(7), 1428. https://doi.org/10.3390/land14071428