A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios
Abstract
1. Introduction
2. Literature Review
2.1. Construction of Shelter Space Network and Location Suitability for UCESs
2.2. Evaluation of Service Effectiveness Based on Supply–Demand Analysis
2.2.1. Conceptualization and Assessment Methods for ES Service Effectiveness from a Supply–Demand Alignment Perspective
2.2.2. Spatial Accessibility-Driven Assessment of ES Service Effectiveness and Optimization of Supply–Demand Alignment
2.2.3. Supply–Demand Mismatch Identification and Multi-Indicator Assessment of ES Service Effectiveness
3. Materials and Methods
3.1. Disaster Scenario and Data
3.2. Study Area
3.3. Evaluation Framework of UCESs Service Effectiveness
3.3.1. Identification of Emergency Shelter Spaces Within UCESs
3.3.2. Capacity Measurement, Type Classification, and Service Zone Delineation for UCESs
3.3.3. Measurement of ESS Demand Within Service Zones
3.3.4. Evaluation of Service Effectiveness for UCESs
4. Results
4.1. Emergency Shelter Spaces Within UCESs
4.2. Capacity, Types, and Service Zones of UCESs
4.3. ESS Demand Within Service Zones
4.4. Service Effectiveness of UCESs
4.4.1. Improvement Degree of Service Supply Capacity Within Service Zones
4.4.2. Service Effectiveness and Planning Intervention Priority of UCESs
5. Discussion
5.1. Analysis of the Driving Factors and Research Paradigms of UCES Service Effectiveness
5.2. Determinants of Service Effectiveness Variation and the Logic of Hierarchical Planning Interventions
5.2.1. Service Effectiveness Disparities Among UCESs Driven by Supply–Demand Coupling
5.2.2. Phased Planning Interventions Guided by Supply–Demand Alignment
5.3. Optimization Strategies for UCESs
5.3.1. Short-Term Optimization: Enhancing Utilization Efficiency of Existing Resources
5.3.2. Long-Term Optimization: Building a Resilience-Driven Spatial System
5.4. Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Service Zone of UCES | Various Indicators of Service Zone Before Incorporating UCES | Various Indicators of Service Zone After Incorporating UCES | DR (%) | DP (%) | DS (%) | DA (%) | DC (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Proportion of Served Population (%) | Per Capita Shelter Area (m2) | Indoor Shelter Space Area (m2) | Accessibility to High-Risk Points (m) | Pre-Existing Service Blind Spots (hm2) | Proportion of Served Population (%) | Per Capita Shelter Area (m2) | Indoor Shelter Space Area (m2) | Accessibility to High-Risk Points (m) | Area of Service Zone (hm2) | ||||||
NKU | 87.478 | 1.237 | 963,791 | 5723.025 | 109.423 | 96.473 | 1.365 | 996,710 | 2578.861 | 7010.917 | 10.288 | 10.336 | 3.416 | 54.939 | 1.586 |
TJU | 78.491 | 1.102 | 829,357 | 4907.462 | 0.000 | 85.565 | 1.204 | 867,998 | 2225.930 | 5948.439 | 9.007 | 9.2751 | 4.659 | 54.642 | 0.000 |
TUC | 99.322 | 1.361 | 377,723 | 4337.315 | 597.163 | 100.000 | 1.735 | 400,943 | 2448.446 | 5708.990 | 0.686 | 27.476 | 6.147 | 43.549 | 11.682 |
TVI | 100.000 | 1.649 | 106,343 | 8376.896 | 1998.673 | 100.000 | 2.984 | 106,343 | 2098.818 | 4183.288 | 0.000 | 80.944 | 0.000 | 74.945 | 91.489 |
TMU | 62.643 | 0.947 | 79,246 | 305.646 | 0.000 | 72.605 | 1.098 | 83,734 | 305.646 | 417.633 | 15.904 | 15.898 | 5.663 | 0.00% | 0.000 |
TUST | 87.268 | 1.344 | 15,340 | 725.504 | 0.000 | 100.000 | 1.830 | 17,822 | 722.817 | 643.450 | 14.595 | 36.218 | 16.180 | 0.370 | 0.000 |
TUFE | 100.000 | 1.615 | 138,144 | 4831.730 | 249.696 | 100.000 | 2.137 | 147,476 | 2834.326 | 6150.324 | 0.000 | 32.308 | 6.755 | 41.339 | 4.232 |
TMC | 54.336 | 0.623 | 14,803 | 1029.972 | 179.235 | 92.344 | 1.192 | 14,803 | 850.676 | 843.288 | 69.961 | 91.412 | 0.000 | 17.408 | 26.991 |
TFSU | 84.604 | 1.359 | 124,491 | 543.018 | 0.000 | 90.482 | 1.454 | 130,064 | 368.518 | 474.757 | 6.947 | 6.946 | 4.477 | 32.135 | 0.000 |
TUTE | 100.000 | 1.771 | 138,762 | 5292.886 | 530.114 | 100.000 | 2.258 | 168,017 | 2660.513 | 6187.078 | 0.000 | 27.487 | 21.083 | 49.734 | 9.371 |
HEBUT(N) | 100.000 | 1.855 | 101,103 | 428.641 | 0.000 | 100.000 | 2.102 | 101,103 | 428.127 | 371.807 | 0.000 | 13.351 | 0.000 | 0.120 | 0.000 |
HEBUT(S) | 100.000 | 1.770 | 61,425 | 501.341 | 0.000 | 100.000 | 1.941 | 61,425 | 496.859 | 278.935 | 0.000 | 9.693 | 0.000 | 0.894 | 0.000 |
HEBUT(E) | 100.000 | 1.600 | 89,481 | 506.586 | 0.000 | 100.000 | 1.845 | 89,481 | 217.742 | 633.236 | 0.000 | 15.316 | 0.000 | 57.018 | 0.000 |
References
- United Nations Office for Disaster Risk Reduction. The Human Cost of Disasters: An Overview of the Last 20 Years (2000–2019); United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2020. [Google Scholar]
- Wei, Y.; Jin, L.; Xu, M.; Pan, S.; Xu, Y.; Zhang, Y. Instructions for planning emergency shelters and open spaces in China: Lessons from global experiences and expertise. Int. J. Disaster Risk Reduct. 2020, 51, 101813. [Google Scholar] [CrossRef]
- Ministry of Natural Resources of the People’s Republic of China. Resilient Urban Planning and Land Policy Guidelines for the Integration of Flat and Urgent Functions Have Been Released. Available online: https://www.mnr.gov.cn/dt/ywbb/202405/t20240515_2845237.html (accessed on 4 March 2025).
- The State Council of the People’s Republic of China. The Construction of the “Dual-Use of Flat and Urgent” Project is Rapidly Advancing from Point to Surface. Available online: https://www.gov.cn/lianbo/bumen/202407/content_6960782.htm (accessed on 3 March 2025).
- Ran, J.; Jiang, X.; He, L.; Xu, Y.; Zhang, P.; Yan, X. Typology and Spatial System of Urban Dual-Use Public Infrastructure and the Key Points in Planning. Urban Plan. Forum 2024, 5, 98–105. (In Chinese) [Google Scholar]
- Xin, F.; Ma, Y.; Liao, P.; Fu, B. Evaluation of the university campus layout for the dual use as a city-level emergency shelter. Habitat Int. 2025, 156, 103285. [Google Scholar] [CrossRef]
- Villagra-Islas, P.; Alves, S. Open space and their attributes, uses and restorative qualities in an earthquake emergency scenario: The case of Concepcion, Chile. Urban For. Urban Green. 2016, 19, 56–67. [Google Scholar] [CrossRef]
- Kim, M.; Kim, K.; Kim, E. Problems and Implications of Shelter Planning Focusing on Habitability: A Case Study of a Temporary Disaster Shelter after the Pohang Earthquake in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 2868. [Google Scholar] [CrossRef]
- Shenzhen Planning and Natural Resources Bureau. Shenzhen Emergency Evacuation and Rescue Space Plan (2021–2035). Available online: https://www.sz.gov.cn/cn/xxgk/szszdxzjczl/jctzgg/content/mpost_10948850.html (accessed on 4 March 2025).
- Great Value Colleges. 30 US Colleges that Are Prepared for Natural Disasters: These Colleges Are Well Equipped to Overcome a Range of Environmental Emergencies. Available online: https://news.stthom.edu/ust-ranks-among-30-us-colleges--best-prepared-for-natural-disasters/ (accessed on 4 February 2025).
- The Netherlands’ Ministry of Infrastructure and Water Management. National Policy Strategy for Infrastructure and Spatial Planning. Available online: https://www.government.nl/ministries/ministry-of-infrastructure-and-water-management (accessed on 21 January 2025).
- OOHSM. Evacuation Area at Tsukuba Campus. Office of Occupational Health and Safety Management. University of Tsukuba. Available online: https://anzenkanri.tsukuba.ac.jp/?page_id=13263 (accessed on 1 March 2025).
- Mi, S.; Piao, Y.-J.; Zhang, R.; Cho, T.-D. The Campus of University Earthquake Disaster Prevention Planning—The Research of Spatial Pattern Based on GIS. J. Environ. Sci. Int. 2014, 23, 1213–1221. [Google Scholar] [CrossRef]
- Broege, T. A Shelter in the Time of Storm. Available online: https://library.timelesstruths.org/music/A_Shelter_in_the_Time_of_Storm/ (accessed on 18 January 2025).
- Chouhan, S.; Narang, A.; Mukherjee, M. Multihazard risk assessment of educational institutes of Dehradun, Uttarakhand. Int. J. Disaster Resil. Built Environ. 2024, 15, 45–58. [Google Scholar] [CrossRef]
- Gibbs, L.; bin Jehangir, H.; Kwong, E.J.L.; Little, A. Universities and multiple disaster scenarios: A transformative framework for disaster resilient universities. Int. J. Disaster Risk Reduct. 2022, 78, 103132. [Google Scholar] [CrossRef]
- Kuo, J.-I.; Chuko, C.; Tung, H.C.; Huang, W.-C.; Chao, F.-L. Relationships between Sustainable Campus Partial Renovation Project and Disaster Prevention Indices. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Changchun, China, 21–23 August 2020; Volume 505, p. 012038. [Google Scholar]
- Gao, J.; Sang, Y. Identification and estimation of landslide-debris flow disaster risk in primary and middle school campuses in a mountainous area of Southwest China. Int. J. Disaster Risk Reduct. 2017, 25, 60–71. [Google Scholar] [CrossRef]
- Zheng, L.; Guo, Y.; Peeta, S.; Wu, B. Impacts of Information from Various Sources on the Evacuation Decision-Making Process during No-Notice Evacuations in Campus Environment. J. Transp. Saf. Secur. 2018, 12, 892–923. [Google Scholar] [CrossRef]
- Ke, X.; Yang, W.; Misheng, L.; Ranting, Z. Urban and architectural design from the perspective of flood resilience: Framework development and case study of a Chinese university campus. J. Asian Archit. Build. Eng. 2023, 22, 3100–3114. [Google Scholar] [CrossRef]
- Kapucu, N.; Khosa, S. Disaster Resiliency and Culture of Preparedness for University and College Campuses. Adm. Soc. 2013, 45, 3–37. [Google Scholar] [CrossRef]
- Omidvar, B.; Karimloo, K.; Tavakoli Sani, S.; Darabi, H. Disaster Management Structure of Universities: Case Study of the Central Campus of the University of Tehran. Disaster Med. Public Health Prep. 2017, 11, 681–693. [Google Scholar] [CrossRef]
- Lu, X.; Yang, Z.; Chea, C.; Guan, H. Experimental study on earthquake-induced falling debris of exterior infill walls and its impact to pedestrian evacuation. Int. J. Disaster Risk Reduct. 2020, 43, 101372. [Google Scholar] [CrossRef]
- Kassem, M.M.; Nazri, F.M.; Farsangi, E.N.; Ozturk, B. Development of a uniform seismic vulnerability index framework for reinforced concrete building typology. J. Build. Eng. 2022, 47, 103838. [Google Scholar] [CrossRef]
- Wang, T.; Guomai, S.; Zhang, L.; Li, G.; Li, Y.; Chen, J. Earthquake emergency response framework on campus based on multi-source data monitoring. J. Clean. Prod. 2019, 238, 117965. [Google Scholar] [CrossRef]
- Tan, Y.; Cheng, Q.; Lyu, F.; Liu, F.; Liu, L.; Su, Y.; Yuan, S.; Xiao, W.; Liu, Z.; Chen, Y. Hydrological reduction and control effect evaluation of sponge city construction based on one-way coupling model of SWMM-FVCOM: A case in university campus. J. Environ. Manag. 2024, 349, 119599. [Google Scholar] [CrossRef]
- Wu, S.; Shao, B.; Bian, G.; Zhang, Z. Research on Fire Disaster Chain and Emergency Management Decision—making in Colleges and University Based on Complex Network. J. Catastrophol. 2022, 37, 156–161+166. (In Chinese) [Google Scholar]
- Cao, S.; Fu, L.; Wang, P.; Zeng, G.; Song, W. Experimental and modeling study on evacuation under good and limited visibility in a supermarket. Fire Saf. J. 2018, 102, 27–36. [Google Scholar] [CrossRef]
- Liu, W. Considering the Effects of Sustainable Safety Education on Student Evacuation Behavior During College Emergencies. IEEE Access 2024, 12, 154901–154917. [Google Scholar] [CrossRef]
- Xie, W.; Lee, E.W.M.; Cheng, Y.; Shi, M.; Cao, R.; Zhang, Y. Evacuation performance of individuals and social groups under different visibility conditions: Experiments and surveys. Int. J. Disaster Risk Reduct. 2020, 47, 101527. [Google Scholar] [CrossRef]
- Bera, S.; Gnyawali, K.; Dahal, K.; Melo, R.; Li-Juan, M.; Guru, B.; Ramana, G.V. Assessment of shelter location-allocation for multi-hazard emergency evacuation. Int. J. Disaster Risk Reduct. 2023, 84, 103435. [Google Scholar] [CrossRef]
- Duan, P.; Xiong, S.; Yang, C.; Zhang, H.; Liu, M. Personalized route planning system based on Wardrop Equilibrium model for pedestrian–vehicle mixed evacuation in campus. J. Inf. Secur. Appl. 2016, 31, 14–22. [Google Scholar] [CrossRef]
- Rahman, S.A.F.S.A.; Maulud, K.N.A.; Pradhan, B.; Mustorpha, S.N.A.S.; Ani, A.I.C. Impact of evacuation design parameter on users’ evacuation time using a multi-agent simulation. Ain Shams Eng. J. 2021, 12, 2355–2369. [Google Scholar] [CrossRef]
- Chen, W.; Zhai, G.; Ren, C.; Shi, Y.; Zhang, J. Urban Resources Selection and Allocation for Emergency Shelters: In a Multi-Hazard Environment. Int. J. Environ. Res. Public Health 2018, 15, 1261. [Google Scholar] [CrossRef]
- Trivedi, A. A multi-criteria decision approach based on DEMATEL to assess determinants of shelter site selection in disaster response. Int. J. Disaster Risk Reduct. 2018, 31, 722–728. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, X.; Ma, Y.; Li, Y.; Qin, L.; Wang, Y.; Du, J. A multi-objective optimization based method for evaluating earthquake shelter location–allocation. Geomat. Nat. Hazards Risk 2018, 9, 662–677. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Y.; Luo, A.; Xu, S.; Chen, J.; Liu, W. Site selection and prediction of urban emergency shelter based on VGAE-RF model. Sci. Rep. 2024, 14, 14368. [Google Scholar] [CrossRef]
- Kar, B.; Hodgson, M. A GIS-Based Model to Determine Site Suitability of Emergency Evacuation Shelters. Trans. GIS 2008, 12, 227–248. [Google Scholar] [CrossRef]
- Soltani, A.; Ardalan, A.; Boloorani, A.D.; Haghdoost, A.; Hosseinzadeh-Attar, M.J. Site selection criteria for sheltering after earthquakes: A systematic review. PLoS Curr. 2014, 6. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Lin, K.; Liu, Z.; Liang, Y.; Liu, Y.; Li, C. A Novel Framework for Urban Flood Risk Assessment: Multiple Perspectives and Causal Analysis. Water Res. 2024, 256, 121591. [Google Scholar] [CrossRef]
- Ding, J.-W.; Lu, D.-G.; Cao, Z.-G. Risk Assessment of Spatially Distributed Assets with Generalized Seismic Fragility Models Based on Machine Learning. Soil Dyn. Earthq. Eng. 2025, 198, 109533. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Tomás, A.; Ródenas, J.L. The Spatial Perspective in Post-Earthquake Evaluation to Improve Mitigation Strategies: Geostatistical Analysis of the Seismic Damage Applied to a Real Case Study. Appl. Sci. 2019, 9, 3182. [Google Scholar] [CrossRef]
- Benito, G.; Lang, M.; Barriendos, M.; Llasat, M.C.; Francés, F.; Ouarda, T.; Thorndycraft, V.; Enzel, Y.; Bardossy, A.; Coeur, D.; et al. Use of Systematic, Palaeoflood and Historical Data for the Improvement of Flood Risk Estimation. Review of scientific methods. Nat. Hazards 2004, 31, 623–643. [Google Scholar]
- Lyu, H.-M.; Zhou, W.-H.; Shen, S.-L.; Zhou, A.-N. Inundation Risk Assessment of Metro System Using AHP and TFN-AHP in Shenzhen. Sustain. Cities Soc. 2020, 56, 102103. [Google Scholar] [CrossRef]
- Lyu, H.-M.; Sun, W.-J.; Shen, S.-L.; Arulrajah, A. Flood Risk Assessment in Metro Systems of Mega-Cities Using a GIS-Based Modeling Approach. Sci. Total Environ. 2018, 626, 1012–1025. [Google Scholar] [CrossRef]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting Future Urban Waterlogging-Prone Areas by Coupling the Maximum Entropy and FLUS Model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Banke-Thomas, A.O.; Wong, K.L.M.; Olubodun, T.; Macharia, P.M.; Sundararajan, N.; Shah, Y.; Prasad, G.; Kansal, M.; Vispute, S.; Shekel, T.; et al. Geographical accessibility to functional emergency obstetric care facilities in urban Nigeria using closer-to-reality travel time estimates: A population-based spatial analysis. Lancet Glob. Health 2024, 12 5, e848–e858. [Google Scholar] [CrossRef]
- Allan, P.; Bryant, M. The Critical Role of Open Space in Earthquake Recovery: A Case Study. Environ. Sci. Eng. 2010. [Google Scholar]
- Chen, W.; Shi, Y.; Wang, W.; Li, W.; Wu, C. The Spatial Optimization of Emergency Shelters Based on an Urban-Scale Evacuation Simulation. Appl. Sci. 2021, 11, 11909. [Google Scholar] [CrossRef]
- Ertugay, K.; Argyroudis, S.; Düzgün, H.Ş. Accessibility modeling in earthquake case considering road closure probabilities: A case study of health and shelter service accessibility in Thessaloniki, Greece. Int. J. Disaster Risk Reduct. 2016, 17, 49–66. [Google Scholar] [CrossRef]
- Mazhi, K.Z.; Suryana, L.E.; Davi, A.; Devi, W.R. Site Selection of Retail Shop Based on Spatial Analysis and Machine Learning. In Proceedings of the 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Depok, Indonesia, 17–18 October 2020. [Google Scholar]
- Mohsin, M.; Ali, S.A.; Shamim, S.K.; Ahmad, A. A GIS-based novel approach for suitable sanitary landfill site selection using integrated fuzzy analytic hierarchy process and machine learning algorithms. Environ. Sci. Pollut. Res. 2022, 29, 31511–31540. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, J.; Luo, H.; Law, R. Hotel location evaluation: A combination of machine learning tools and web GIS. Int. J. Hosp. Manag. 2015, 47, 14–24. [Google Scholar] [CrossRef]
- Church, R.L. Geographical information systems and location science. Comput. Oper. Res. 2002, 29, 541–562. [Google Scholar] [CrossRef]
- Murray, A.T. Advances in location modeling: GIS linkages and contributions. J. Geogr. Syst. 2010, 12, 335–354. [Google Scholar] [CrossRef]
- Zhu, Y.; Gan, L.; Li, X.; Zuo, Y.; Liu, J.; Lev, B. Orienting people-centred disaster shelter planning based on risk assessing with semi-supervised learning. Heliyon 2024, 10, e35128. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, J.; Chen, Y.; Wen, J.; Chen, J.; Yin, Z. Supply–Demand Analysis of Urban Emergency Shelters Based on Spatiotemporal Population Estimation. Int. J. Disaster Risk Sci. 2020, 11, 519–537. [Google Scholar] [CrossRef]
- Chen, W.; Fang, Y.; Zhai, Q.; Wang, W.; Zhang, Y. Assessing Emergency Shelter Demand Using POI Data and Evacuation Simulation. ISPRS Int. J. Geo-Inf. 2020, 9, 41. [Google Scholar] [CrossRef]
- Geng, S.; Hou, H. Demand Stratification and Prediction of Evacuees after Earthquakes. Sustainability 2021, 13, 8837. [Google Scholar] [CrossRef]
- Jue, J.; Xiaolu, G.; Congcong, X.; Shixiang, X.; Fei, T. Evaluating method on service quality of seismic emergency shelters based on evacuation behaviors. Prog. Geogr. 2017, 36, 965–973. (In Chinese) [Google Scholar]
- Wang, P.; Hou, Z.; An, L. Demand estimation of emergency shelters based on setting earthquake scenarios: A case study of Hedong District, Tianjin City. China Earthq. Eng. J. 2024, 46, 1484–1492. (In Chinese) [Google Scholar]
- Ge, H.; Cao, W.; Song, W. Precision scale-based research on the spatiotemporal coverage efficacy of urban emergency shelters: A case study in the main urban area of Nanjing. Geogr. Res. 2024, 43, 2887–2901. (In Chinese) [Google Scholar]
- Zhao, L.; Li, H.; Sun, Y.; Huang, R.; Hu, Q.; Wang, J.; Gao, F. Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach. Sustainability 2017, 9, 2098. [Google Scholar] [CrossRef]
- Yu, J.; Wen, J. Multi-Criteria Satisfaction Assessment of the Spatial Distribution of Urban Emergency Shelters Based on High-Precision Population Estimation. Int. J. Disaster Risk Sci. 2016, 7, 413–429. [Google Scholar] [CrossRef]
- Ma, D.; Guo, X.; Wang, Z. Guidelines for the Implementation of Urban Seismic and Disaster Prevention Planning Standards. China Architecture Publishing: Beijing, China, 2008. [Google Scholar]
- Yang, W.; Caunhye, A.M.; Zhuo, M.; Wang, Q. Integrated planning of emergency supply pre-positioning and victim evacuation. Socio-Econ. Plan. Sci. 2024, 95, 101965. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, X.; Qiang, L.; Chen, J. The Temporal Hierarchy of Shelters: A Hierarchical Location Model for Earth-quake-Shelter Planning. Int. J. Geogr. Inf. Sci. 2013, 27, 1612–1630. [Google Scholar] [CrossRef]
- Yu, S.; Chen, W.; Zhang, N.; Liu, C.; Yang, S.; Wang, Y. Study on the Layout of Urban Earthquake Emergency Shelters based on Spatiotemporal Big Data: A Case Study of Xi’xia District, Yinchuan City. North China Earthq. Sci. 2022, 40, 8–15. (In Chinese) [Google Scholar]
- Fei, W.; Lu, D.; Li, Z. Research on the layout of urban disaster-prevention and risk-avoidance green space under the improvement of supply and demand match: The case study of the main urban area of Nanjing, China. Ecol. Indic. 2023, 154, 110657. [Google Scholar] [CrossRef]
- Maragno, D.; Gaglio, M.; Robbi, M.; Appiotti, F.; Fano, E.A.; Gissi, E. Fine-scale analysis of urban flooding reduction from green infrastructure: An ecosystem services approach for the management of water flows. Ecol. Model. 2018, 386, 1–10. [Google Scholar] [CrossRef]
- Ye, K.; Su, X. Dislocation of Supply and Demand in the Spatial Layout of Shelters in Mountainous Cities Driven by Data: A Case Study of Yuzhong District, Chongqing. Urban Dev. Stud. 2022, 29, 54–59+33. (In Chinese) [Google Scholar]
- Jia, Y.; Jiahong, W.; Yun, C.; Banggu, L.; Shiqiang, D. Spatial configuration of urban shelters based on simulation using emer-gency evacuation agent-based model:A case study in Jing’an District, Shanghai. Acta Geogr. Sin. 2017, 72, 1458–1475. (In Chinese) [Google Scholar]
- Aihemaiti, N.; Zeng, J.; Jiang, F. Supply—Demand Analysis and Planning Intervention of Emergency Shelter Services based on Comprehensive Disaster Risk: A Case Study in Tianjin. J. Catastrophol. 2022, 37, 92–100. (In Chinese) [Google Scholar]
- McGrail, M.R.; Humphreys, J.S. Measuring Spatial Accessibility to Primary Health Care Services: Utilising Dynamic Catch-ment Sizes. Appl. Geogr. 2014, 54, 182–188. [Google Scholar] [CrossRef]
- Dai, D. Racial/Ethnic and Socioeconomic Disparities in Urban Green Space Accessibility: Where to Intervene? Landsc. Urban Plan. 2011, 102, 234–244. [Google Scholar] [CrossRef]
- Laura, B. Access to Primary Health Care: Does Neighbourhood of Residence Matter? Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2009. [Google Scholar]
- Luo, J. Integrating the Huff Model and Floating Catchment Area Methods to Analyze Spatial Access to Healthcare Services. Trans. GIS 2014, 18, 436–448. [Google Scholar] [CrossRef]
- Jia, H.; Yao, H.; Tang, Y.; Yu, S.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manag. 2015, 149, 65–76. [Google Scholar] [CrossRef]
- Xin, F.; Ma, Y.; Fu, B. Research Matching of University Campus Space and Urban Emergency Needs. Contemp. Archit. 2022, 51–56. (In Chinese) [Google Scholar]
- Tun, E.; Nishikiori, T.; Varghese, V.; Chikaraishi, M.; Seike, M.; Fujiwara, A. Emergency Shelter Location–Allocation Analysis with Time–Varying Demand. Asian Transp. Stud. 2024, 10, 100152. [Google Scholar] [CrossRef]
- Ding, Z.; Dong, H.; Yang, L.; Xue, N.; He, L.; Yao, X. A Study on the Emergency Shelter Spatial Accessibility Based on the Adaptive Catchment Size 2SFCA Method. ISPRS Int. J. Geo-Inf. 2022, 11, 593. [Google Scholar] [CrossRef]
- Zhu, X.; Tong, Z.; Liu, X.; Li, X.; Lin, P.; Wang, T. An Improved Two-Step Floating Catchment Area Method for Evaluating Spatial Accessibility to Urban Emergency Shelters. Sustainability 2018, 10, 2180. [Google Scholar] [CrossRef]
- Koshiba, Y.; Suzuki, Y. Factors affecting post-evacuation behaviors following an earthquake: A questionnaire-based survey. Int. J. Disaster Risk Reduct. 2018, 31, 548–554. [Google Scholar] [CrossRef]
- Wang, X.; Guan, M.; Dong, C.; Wang, J.; Fan, Y.; Xin, F.; Lian, G. A Multi-Indicator Evaluation Method for Spatial Distribution of Urban Emergency Shelters. Remote Sens. 2022, 14, 4649. [Google Scholar] [CrossRef]
- Xu, W.; Ma, Y.; Zhao, X.; Li, Y.; Qin, L.; Du, J. A Comparison of Scenario-Based Hybrid Bilevel and Multi-Objective Loca-tion-Allocation Models for Earthquake Emergency Shelters: A Case Study in the Central Area of Beijing, China. Int. J. Geogr. Inf. Sci. 2017, 32, 236–256. [Google Scholar] [CrossRef]
- Xu, Z. Assessment on the vulnerability of urban hazard bearing body based on refined spatial patterns. Adv. Water Sci. 2024, 35, 38–47. (In Chinese) [Google Scholar]
- Hou, J.; Zhang, Y.; Wang, L.; Zhao, Z. Earthquake relocation using a 3D velocity model and implications on seismogenic faults in the Beijing-Tianjin-Hebei region. Earthq. Res. Adv. 2024, 4, 100256. [Google Scholar] [CrossRef]
- Ministry of Education of the People’s Republic of China. Number of Higher Education Institutions. Available online: http://www.moe.gov.cn/jyb_sjzl/moe_560/2023/gedi/202501/t20250120_1176264.html (accessed on 31 December 2024).
- GB/T 44013-2024; Emergency Shelter—Grading and Classification. Ministry of Emergency Management of the People’s Republic of China: Beijing, China, 2024. Available online: https://openstd.samr.gov.cn/bzgk/std/newGbInfo?hcno=E71005A86694B2613A01CAFCAA70D884 (accessed on 1 March 2025).
- Min, L.; Changdong, Y. Threshold Standard and Global Distribution of High-Density Cities. World Reg. Stud. 2015, 24, 38. (In Chinese) [Google Scholar]
- Ellidokuz, H.; Ucku, R.; Aydin, U.Y.; Ellidokuz, E. Risk factors for death and injuries in earthquake: Cross-sectional study from Afyon, Turkey. Croat. Med. J. 2005, 46, 613–618. [Google Scholar]
- GB 51143-2015; Announcement of the Ministry of Housing and Urban Rural Development on Issuing the National Standard “Design Specification for Disaster Prevention and Refuge Sites”. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2015. Available online: https://www.mohurd.gov.cn/gongkai/zc/wjk/art/2016/art_17339_226442.html (accessed on 1 March 2025).
- GB 50011-2010; Announcement of the Ministry of Housing and Urban Rural Development on the Partial Revision of the National Standard “Code for Seismic Design of Buildings”. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2024. Available online: https://www.mohurd.gov.cn/gongkai/zc/wjk/art/2024/art_17339_778179.html (accessed on 1 March 2025).
- GB 50223-2008; Standard for Classification of Seismic Protection of Building Constructions. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2008. Available online: https://www.doc88.com/p-1731450277275.html (accessed on 1 March 2025).
- Berrett, B.E.; Vernon, C.A.; Beckstrand, H.; Pollei, M.; Markert, K.; Franke, K.W.; Hedengren, J.D. Large-Scale Reality Modeling of a University Campus Using Combined UAV and Terrestrial Photogrammetry for Historical Preservation and Practical Use. Drones 2021, 5, 136. [Google Scholar] [CrossRef]
- Cao, J.; Leng, W.; Liu, K.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- DB 12/T 1031-2021; Construction Requirements of Emergency Shelters. Bureau of Emergency Management of Tianjin: Tianjin, China, 2022. Available online: https://yjgl.tj.gov.cn/ZWFW5050/BZ2939/DFBZ7510/202103/t20210305_5375254.html (accessed on 24 September 2024).
- GB/T 51327-2018; Standard for Urban Planning on Comprehensivedisaster Resistance and Prevention. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2018. Available online: https://max.book118.com/html/2024/0604/8046115125006075.shtm (accessed on 2 March 2025).
- Gao, C.; Zhang, B.; Shao, S.; Hao, M.; Zhang, Y.; Xu, Y.; Kuang, Y.; Dong, L.; Wang, Z. Risk assessment and zoning of flood disaster in Wuchengxiyu Region, China. Urban Clim. 2023, 49, 101562. [Google Scholar] [CrossRef]
- Gober, P.; Wheater, H. Debates-Perspectives on Socio-Hydrology: Modeling Flood Risk as a Public Policy Problem: Socio-Hydrology Modeling for Public Policy Problems. Water Resour. Res. 2015, 51, 4789–4794. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, Impacts and Patterns of Disastrous River Floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Reisinger, A.; Howden, M.; Vera, C.; Garschagen, M. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group Discussions; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2020; p. 15. [Google Scholar]
- Coles, D.; Yu, D.; Wilby, R.L.; Green, D.; Herring, Z. Beyond ‘Flood Hotspots’: Modelling Emergency Service Accessibility during Flooding in York, UK. J. Hydrol. 2017, 546, 419–436. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, Y.; Wang, H.; Wu, M. Urban Flood Disaster Risk Evaluation Based on Ontology and Bayesian Network. J. Hydrol. 2020, 583, 124596. [Google Scholar] [CrossRef]
- Fajfar, P. Analysis in Seismic Provisions for Buildings: Past, Present and Future. Geotech. Geol. Earthq. Eng. 2018, 46, 1–49. [Google Scholar]
- Hosseinpour, V.; Saeidi, A.; Nollet, M.-J.; Nastev, M. Seismic Loss Estimation Software: A Comprehensive Review of Risk Assessment Steps, Software Development and Limitations. Eng. Struct. 2021, 232, 111866. [Google Scholar] [CrossRef]
- Zhang, Y.; Fung, J.F.; Johnson, K.J.; Sattar, S. Review of Seismic Risk Mitigation Policies in Earthquake-Prone Countries: Lessons for Earthquake Resilience in the United States. J. Earthq. Eng. 2022, 26, 6208–6235. [Google Scholar] [CrossRef]
- Musacchio, G.; Saraò, A.; Falsaperla, S.; Scolobig, A. A Scoping Review of Seismic Risk Communication in Europe. Front. Earth Sci. 2023, 11, e1155576. [Google Scholar] [CrossRef]
- Chitkeshwar, A. The Role of Machine Learning in Earthquake Seismology: A Review. Arch. Comput. Methods Eng. 2024, 31, 3963–3975. [Google Scholar] [CrossRef]
- Li, W.; Zhai, G.; Chen, W. Location-allocation of fixed shelters for the elderly from the perspective of needs for refuge: A case of Hefei, China. Int. J. Disaster Risk Reduct. 2023, 92, 103717. [Google Scholar] [CrossRef]
- Dávila, L.D.; Cabrero, J.M.; Flores, O. New Seismic Exposure Modeling Approach for Guatemala City. Bull. Earthq. Eng. 2023, 21, 739–766. [Google Scholar] [CrossRef]
- Scudero, S.; Costanzo, A.; D’Alessandro, A. Urban Seismic Networks: A Worldwide Review. Appl. Sci. 2023, 13, 13165. [Google Scholar] [CrossRef]
- Pavel, F.; Nica, G. The Seismic Evaluation of Existing Buildings for Energy Renovation—A Case Study for the Residential Building Stock in Bucharest (Romania). Buildings 2024, 14, 1742. [Google Scholar] [CrossRef]
- Jena, R.; Pradhan, B.; Beydoun, G.; Al-Amri, A.; Sofyan, H. Seismic Hazard and Risk Assessment: A Review of State-of-the-Art Traditional and GIS Models. Arab. J. Geosci. 2020, 13, 50. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Kuria, K.K.; Kegyes-Brassai, O.K. Pushover Analysis in Seismic Engineering: A Detailed Chronology and Review of Techniques for Structural Assessment. Appl. Sci. 2024, 14, 151. [Google Scholar] [CrossRef]
- Samuel, M.A.; Xiong, E.; Haris, M.; Lekeufack, B.C.; Xie, Y.; Han, Y. Assessing Seismic Vulnerability Methods for RC-Frame Buildings Pre- and Post-Earthquake. Sustainability 2024, 16, 10392. [Google Scholar] [CrossRef]
- Djerbal, L.; Khoudi, I.; Alimrina, N.; Melbouci, B.; Bahar, R. Assessment and Mapping of Earthquake-Induced Landslides in Tigzirt City, Algeria. Nat. Hazards 2017, 87, 1859–1879. [Google Scholar] [CrossRef]
- Goda, K.; Risi, R.D. Future Perspectives of Earthquake-Tsunami Catastrophe Modelling: From Single-Hazards to Cascading and Compounding Multi-Hazards. Front. Built Environ. 2023, 8, 1022736. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, C.; Chen, G.; Xie, Z. Evaluation Framework ACR-UFDR for Urban Form Disaster Resilience under Rain-storm and Flood Scenarios: A Case Study in Nanjing, China. Sustain. Cities Soc. 2024, 107, 105424. [Google Scholar] [CrossRef]
- Sun, J.; Zhai, N.; Mu, H.; Miao, J.; Li, W.; Li, M. Assessment of Urban Resilience and Subsystem Coupling Coordination in the Beijing-Tianjin-Hebei Urban Agglomeration. Sustain. Cities Soc. 2024, 100, 105058. [Google Scholar] [CrossRef]
- Salihu, H.M.; Salinas-Miranda, A.A.; Wang, W.; Turner, D.; Berry, E.L.; Zoorob, R. Community Priority Index: Utility, Ap-plicability and Validation for Priority Setting in Community-Based Participatory Research. J. Public Health Res. 2015, 4, 443. [Google Scholar] [CrossRef]
- Mohammed, A.M.S. The Heat Adaptation Priority Index (HAPI): A Practical Tool for Urban Heat Risk Assessment and Mitigation Priority. Sustain. Cities Soc. 2025, 126, 106420. [Google Scholar] [CrossRef]
- Salihu, H.M.; Salinas-Miranda, A.A.; Paothong, A.; Wang, W.; King, L.M. Community-Based Decision Making and Priority Setting Using the R Software: The Community Priority Index. Comput. Math. Methods Med. 2015, 2015, 347501. [Google Scholar] [CrossRef]
- Xiao, H. Effectiveness Research of the Urban Primary and Secondary Emergency Shelter. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2017. (In Chinese). [Google Scholar]
- Anhorn, J.; Khazai, B. Open Space Suitability Analysis for Emergency Shelter after an Earthquake. Nat. Hazards Earth Syst. Sci. 2015, 15, 789–803. [Google Scholar] [CrossRef]
- Zhong, G.; Lu, Y.; Chen, W.; Zhai, G. Multi-objective optimization approach of shelter location with maximum equity: An empirical study in Xin Jiekou district of Nanjing, China. Geomat. Nat. Hazards Risk 2023, 14, 2165973. [Google Scholar] [CrossRef]
- Shaoli, L.; Yuqi, L.; Xiaoping, G.; Youfa, P.; Tao, L. Reasonability of Spatial Distribution for Urban Emergency Shelter. Urban Dev. Stud. 2012, 19, 113–117+120. (In Chinese) [Google Scholar]
- Ekaputra, R.A.; Lee, C.; Kee, S.; Yee, J. Emergency Shelter Geospatial Location Optimization for Flood Disaster Condition: A Review. Sustainability 2022, 14, 12482. [Google Scholar] [CrossRef]
- Geng, S.; Hou, H.; Geng, J. The Mechanism of Operation Effectiveness of Emergency Shelter Rescue Systems. Sustainability 2021, 13, 5540. [Google Scholar] [CrossRef]
- Geng, S.; Hou, H.; Zhou, Z. A dynamic multi-objective model for emergency shelter relief system design integrating the supply and demand sides. Nat. Hazards 2024, 120, 2379–2402. [Google Scholar] [CrossRef]
Category | Type | Precision | Time | Source |
---|---|---|---|---|
University campuses’ built environment data |
| 0.1 m | 2024 |
|
| ||||
| ||||
| ||||
| — | 2025 |
| |
| — | 2025 |
| |
Tianjin seismic risk assessment indicator data |
| 100 m | 2020 |
|
| 30 m | 2020 |
| |
| — | 2024 |
| |
| — | 2025 |
| |
| 30 m | 2025 |
| |
| — | 2025 |
| |
| — | 2025 |
| |
Basic information data of ES in Tianjin |
| — | 2025 |
|
Administrative District | University Campus | Construction Land Area (Km2) | Population (Students/Faculty) (Person) | |
---|---|---|---|---|
Nankai |
| 1.216 | 14,706 (13,800/906) | |
| 1.362 | 19,994 (17,750/2244) | ||
Beichen |
| 0.933 | 24,181 (23,000/1181) | |
| 0.497 | 12,656 (11,900/756) | ||
Heping |
| 0.152 | 3220 (2870/350) | |
Hexi |
| 0.241 | 28,426 (27,000/1426) | |
| 0.787 | 17,232 (16,000/1232) | ||
| 0.189 | 8701 (8000/701) | ||
| 0.116 | 2710 (2500/210) | ||
Jinnan |
| 0.543 | 19,400 (18,000/1400) | |
Hongqiao |
|
| 0.098 | 2250 (1994/256) |
| 0.069 | 1584 (1404/180) | ||
| 0.177 | 4065 (3602/463) |
Types of Distances Affected by Building Damage | Building Height (H) | Width Coefficient (K) | |
---|---|---|---|
Parallel to the Building’s Long Axis | Parallel to the Building’s Short Axis | ||
Distance affected by collapsed buildings | <24 m | 0.67 | 0.50 |
24 m~54 m | 0.67~0.50 | 0.50~0.30 | |
54 m~100 m | 0.50 | 0.30~0.25 | |
100 m~160 m | 0.50~0.40 | 0.25~0.20 | |
160 m~250 m | 0.40~0.30 | 0.20~0.15 | |
Safety buffer distance for non-collapsed buildings | Determined based on the safety distance to prevent falling objects (≥3 m) |
Number of People Aggregated Within the Shelter Unit (People) | Correction Factor (γ) |
---|---|
≥1000 | 0.90 |
≥5000 | 0.95 |
≥10,000 | 1.00 |
≥20,000 | 1.05 |
≥40,000 | 1.10 |
Categories of Emergency Shelter | Categorical Control Indicators | |
---|---|---|
Service Radius (Km) | Shelter Capacity (10 Thousand Person) | |
CECS | 2.5~5.0 | >9.00 |
Long-Term RECS | 1.5~2.5 | 2.3~9.0 |
Medium-Term RECS | 1.0~1.5 | 0.50~2.30 |
Short-Term RECS | 0.5~1.0 | 0.10~0.50 |
EEES | 0.5 | unlimited |
Target Layer | Criterion Layer | Index Layer | Factor Layer | Direction | AHP Weight | EWM Weight | Integrated Weight |
---|---|---|---|---|---|---|---|
Seismic risk of UCES service zones (R) | Hazard (H) | Seismic hazard (H1) | Distance from the seismic fault zone (H11) | Negative | 0.1044 | 0.0231 | 0.0727 |
Seismic fortification intensity (H12) | Positive | 0.1091 | 0.1358 | 0.1228 | |||
Historical earthquake magnitudes (H13) | Positive | 0.1120 | 0.0261 | 0.0814 | |||
Exposure (E) | Population exposure (E1) | Population density (E11) | Positive | 0.0526 | 0.0409 | 0.0461 | |
Proportion of elderly and young population (E12) | Positive | 0.0787 | 0.1391 | 0.1077 | |||
Economic exposure (E2) | Per capita GDP (E21) | Positive | 0.0343 | 0.0355 | 0.0335 | ||
Regional GDP(E22) | Positive | 0.0347 | 0.0235 | 0.0289 | |||
Building and road exposure (E3) | Building density (E31) | Positive | 0.0789 | 0.1378 | 0.1054 | ||
Road density (E32) | Positive | 0.0424 | 0.0499 | 0.0431 | |||
Vulnerability (V) | Public service facilities’ vulnerability (V1) | Density of medical institutions (V11) | Negative | 0.0591 | 0.0222 | 0.0443 | |
Distance from the fire stations (V12) | Positive | 0.0371 | 0.0297 | 0.0327 | |||
Density of the public security organizations (V13) | Negative | 0.0434 | 0.0221 | 0.0329 | |||
Building vulnerability (V2) | Building height (V21) | Positive | 0.0476 | 0.0970 | 0.0656 | ||
Construction date (V22) | Negative | 0.0573 | 0.0117 | 0.0359 | |||
Topographic vulnerability (V3) | Ground elevation difference (V31) | Positive | 0.0564 | 0.0615 | 0.0572 | ||
Slope (V32) | Positive | 0.0520 | 0.1440 | 0.0898 |
University Campus (UCES) | Total Sheltering Capacity (Person) | Campus Population (Person) | Redundant Shelter Capacity (Person) | Shelter Types | Service Radius (Km) |
---|---|---|---|---|---|
NKU | 208,708 | 14,706 | 194,002 | CECS | 5 |
TJU | 167,454 | 19,994 | 147,460 | CECS | 5 |
TUC | 228,634 | 24,181 | 204,453 | CECS | 5 |
TVI | 151,789 | 12,656 | 139,133 | CECS | 5 |
TMU | 19,566 | 3220 | 16,346 | Medium-Term RECS | 1.315 |
TUST | 52,912 | 28,426 | 24,486 | Long-Term RECS | 1.522 |
TUFE | 218,571 | 17,232 | 201,339 | CECS | 5 |
TMC | 56,036 | 8701 | 47,335 | Long-Term RECS | 1.863 |
TFSU | 15,481 | 27,10 | 12,771 | Medium-Term RECS | 1.216 |
TUTE | 161,114 | 19,400 | 141,714 | CECS | 5 |
HEBUT(N) | 23,762 | 2250 | 21,512 | Medium-Term RECS | 1.459 |
HEBUT(S) | 14,796 | 1584 | 13,212 | Medium-Term RECS | 1.228 |
HEBUT(E) | 31,106 | 4065 | 27,041 | Long-Term RECS | 1.56 |
Service Zone of UCES | Improvement Degree of Service Supply Capacity (%) |
---|---|
NKU | 17.668 |
TJU | 16.965 |
TUC | 18.630 |
TVI | 51.195 |
TMU | 7.535 |
TUST | 12.786 |
TUFE | 17.476 |
TMC | 43.035 |
TFSU | 10.899 |
TUTE | 21.626 |
HEBUT(N) | 2.595 |
HEBUT(S) | 2.067 |
HEBUT(E) | 15.915 |
Service Effectiveness Level | University Campus (UCES) | Service Zone Cluster | PRI | Priority for Planning Intervention at the Central Urban Area Scale | Priority for Planning Intervention at the Service Zone Cluster Scale |
---|---|---|---|---|---|
Higher | TVI | N | 1.257 | 1 | 1 |
TMC | SE | 1.150 | 2 | 1 | |
Medium | TUC | NW | 0.988 | 3 | 1 |
NKU | SW | 0.979 | 4 | 1 | |
TJU | SW | 0.974 | 5 | 2 | |
TUTE | SE | 0.967 | 6 | 2 | |
HEBUT(E) | NW | 0.957 | 7 | 2 | |
Lower | TUFE | SE | 0.932 | 8 | 3 |
TFSU | SW | 0.921 | 9 | 3 | |
TUST | SE | 0.904 | 10 | 4 | |
TMU | SW | 0.895 | 11 | 4 | |
HEBUT(N) | NW | 0.847 | 12 | 3 | |
HEBUT(S) | NW | 0.842 | 13 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Han, Y.; Zhang, J.; Song, Y.; Zhang, T.; Tang, F.; Sun, S. A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios. Land 2025, 14, 1411. https://doi.org/10.3390/land14071411
Gao H, Han Y, Zhang J, Song Y, Zhang T, Tang F, Sun S. A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios. Land. 2025; 14(7):1411. https://doi.org/10.3390/land14071411
Chicago/Turabian StyleGao, Hao, Yuqi Han, Jiahao Zhang, Yuanzhen Song, Tianlin Zhang, Fengliang Tang, and Su Sun. 2025. "A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios" Land 14, no. 7: 1411. https://doi.org/10.3390/land14071411
APA StyleGao, H., Han, Y., Zhang, J., Song, Y., Zhang, T., Tang, F., & Sun, S. (2025). A Supply–Demand-Driven Framework for Evaluating Service Effectiveness of University Campus Emergency Shelter: Evidence from Central Tianjin Under Earthquake Scenarios. Land, 14(7), 1411. https://doi.org/10.3390/land14071411