The Usability of Citizen Science Data for Research on Invasive Plant Species in Urban Cores and Fringes: A Hungarian Case Study
Abstract
1. Introduction
- To what extent do the occurrence data of invasive plants in urban and suburban areas differ when obtained from spatially fragmented citizen science data (GBIF) and from spatially homogeneous expert-collected data (LUCAS)?
- For which plant species and within which study areas can citizen science data be effectively utilised to investigate species occurrence?
- What are the limitations of citizen science data in investigating the occurrence of invasive plant species commonly found in Hungary, as compared with data collected by experts?
2. Materials and Methods
2.1. Study Area
2.2. Land Use and Land Cover Data
2.3. LUCAS-Based Data of the Investigated Plant Species
2.4. Citizen Science-Based Data of the Investigated Plant Species
2.5. Geostatistical Methods
3. Results
3.1. Descriptive Statistics
3.2. Comparative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Investigated Plant Species | Urban Core | 0–500 m Buffer | 500–1000 m Buffer | 1000–1500 m Buffer | ||||
---|---|---|---|---|---|---|---|---|
Urban Fringe | ||||||||
Occurrence Count | Occurrence Density | Occurrence Count | Occurrence Density | Occurrence Count | Occurrence Density | Occurrence Count | Occurrence Density | |
Ailanthus altissima | 107 | 0.125 | 60 | 0.092 | 5 | 0.014 | −4 | −0.008 |
Asclepias syriaca | 14 | 0.059 | −56 | −0.076 | −33 | −0.058 | −37 | −0.084 |
Elaeagnus angustifolia | 146 | 0.465 | 76 | 0.112 | −25 | −0.079 | −27 | −0.058 |
Robinia pseudoacacia | −100 | −0.634 | −488 | −0.749 | −304 | −0.599 | −215 | −0.555 |
Solidago spp. | 1 | −0.039 | −130 | −0.258 | −140 | −0.313 | −81 | −0.238 |
The GBIF database overestimates the occurrence count of a given invasive plant species. | ||||||||
The GBIF database underestimates the occurrence count of a given invasive plant species. |
References
- Bayliss, H.R.; Schindler, S.; Adam, M.; Essl, F.; Rabitsch, W. Evidence for Changes in the Occurrence, Frequency or Severity of Human Health Impacts Resulting from Exposure to Alien Species in Europe: A Systematic Map. Environ. Evid. 2017, 6, 21. [Google Scholar] [CrossRef]
- Csiszár, Á.; Kézdy, P.; Korda, M.; Bartha, D. Occurrence and Management of Invasive Alien Species in Hungarian Protected Areas Compared to Europe. Folia Oecologica 2020, 47, 178–191. [Google Scholar] [CrossRef]
- Constán-Nava, S.; Soliveres, S.; Torices, R.; Serra, L.; Bonet, A. Direct and Indirect Effects of Invasion by the Alien Tree Ailanthus altissima on Riparian Plant Communities and Ecosystem Multifunctionality. Biol. Invasions 2015, 17, 1095–1108. [Google Scholar] [CrossRef]
- Montagnani, C.; Gentili, R.; Smith, M.; Guarino, M.F.; Citterio, S. The Worldwide Spread, Success, and Impact of Ragweed (Ambrosia spp.). Crit. Rev. Plant Sci. 2017, 36, 139–178. [Google Scholar] [CrossRef]
- Nguyen, N.A.; Eskelson, B.N.I.; Gergel, S.E.; Murray, T. The Occurrence of Invasive Plant Species Differed Significantly across Three Urban Greenspace Types of Metro Vancouver, Canada. Urban For. Urban Green. 2021, 59, 126999. [Google Scholar] [CrossRef]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ Warning on Invasive Alien Species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.; Thyrring, J.; Muscarella, R.; Borchsenius, F. Climate-Change-Induced Range Shifts of Three Allergenic Ragweeds (Ambrosia L.) in Europe and Their Potential Impact on Human Health. PeerJ 2017, 5, e3104. [Google Scholar] [CrossRef] [PubMed]
- Turbelin, A.J.; Cuthbert, R.N.; Essl, F.; Haubrock, P.J.; Ricciardi, A.; Courchamp, F. Biological Invasions Are as Costly as Natural Hazards. Perspect. Ecol. Conserv. 2023, 21, 143–150. [Google Scholar] [CrossRef]
- Welsh, M.J.; Turner, J.A.; Epanchin-Niell, R.S.; Monge, J.J.; Soliman, T.; Robinson, A.P.; Kean, J.M.; Phillips, C.; Stringer, L.D.; Vereijssen, J.; et al. Approaches for Estimating Benefits and Costs of Interventions in Plant Biosecurity across Invasion Phases. Ecol. Appl. 2021, 31, e2319. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P. Allergenic Pollen and Pollen Allergy in Europe. Allergy Eur. J. Allergy Clin. Immunol. 2007, 62, 976–990. [Google Scholar] [CrossRef]
- Pauková, Ž.; Knápeková, M.; Hauptvogl, M. Mapovanie Výskytu Populácií Cudzích Druhov Asclepias Syriaca a Fallopia Japonica v Poľnohospodárskej Krajine. J. Cent. Eur. Agric. 2014, 15, 12–22. [Google Scholar] [CrossRef]
- Kiss, T.; Nagy, J.; Fehérváry, I.; Vaszkó, C. (Mis) Management of Floodplain Vegetation: The Effect of Invasive Species on Vegetation Roughness and Flood Levels. Sci. Total Environ. 2019, 686, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Alvey, A.A. Promoting and Preserving Biodiversity in the Urban Forest. Urban For. Urban Green. 2006, 5, 195–201. [Google Scholar] [CrossRef]
- Sladonja, B.; Sušek, M.; Guillermic, J. Review on Invasive Tree of Heaven (Ailanthus altissima (Mill.) Swingle) Conflicting Values: Assessment of Its Ecosystem Services and Potential Biological Threat. Environ. Manag. 2015, 56, 1009–1034. [Google Scholar] [CrossRef] [PubMed]
- Sultana, M.; Corlatti, L.; Storch, I. Are the Same Factors Determining Biodiversity in Cities across Different Regions? Comparing Drivers of Urban Bird Richness Patterns in Southern Asia vs. Western Europe. Urban Ecosyst. 2023, 26, 1545–1557. [Google Scholar] [CrossRef]
- Ives, C.D.; Lentini, P.E.; Threlfall, C.G.; Ikin, K.; Shanahan, D.F.; Garrard, G.E.; Bekessy, S.A.; Fuller, R.A.; Mumaw, L.; Rayner, L.; et al. Cities Are Hotspots for Threatened Species. Glob. Ecol. Biogeogr. 2016, 25, 117–126. [Google Scholar] [CrossRef]
- Kantsa, A.; Tscheulin, T.; Junker, R.R.; Petanidou, T.; Kokkini, S. Urban Biodiversity Hotspots Wait to Get Discovered: The Example of the City of Ioannina, NW Greece. Landsc. Urban Plan. 2013, 120, 129–137. [Google Scholar] [CrossRef]
- Rebelo, A.G.; Holmes, P.M.; Dorse, C.; Wood, J. Impacts of Urbanization in a Biodiversity Hotspot: Conservation Challenges in Metropolitan Cape Town. S. Afr. J. Bot. 2011, 77, 20–35. [Google Scholar] [CrossRef]
- Schwartz, M.W.; Jurjavcic, N.L.; O’Brien, J.M. Conservation’s Disenfranchised Urban Poor. BioScience 2002, 52, 601–606. [Google Scholar] [CrossRef]
- Soanes, K.; Lentini, P.E. When Cities Are the Last Chance for Saving Species. Front. Ecol. Environ. 2019, 17, 225–231. [Google Scholar] [CrossRef]
- Francis, R.A.; Chadwick, M.A. Urban Invasions: Non-Native and Invasive Species in Cities. Geography 2015, 100, 144–151. [Google Scholar] [CrossRef]
- Tait, C.J.; Daniels, C.B.; Hill, R.S. Changes in Species Assemblages within the Adelaide Metropolitan Area, Australia, 1836–2002. Ecol. Appl. 2005, 15, 346–359. [Google Scholar] [CrossRef]
- Szilassi, P.; Szatmári, G.; Pásztor, L.; Árvai, M.; Szatmári, J.; Szitár, K.; Papp, L. Understanding the Environmental Background of an Invasive Plant Species (Asclepias syriaca) for the Future: An Application of Lucas Field Photographs and Machine Learning Algorithm Methods. Plants 2019, 8, 593. [Google Scholar] [CrossRef]
- Szilassi, P.; Soóky, A.; Bátori, Z.; Hábenczyus, A.A.; Frei, K.; Tölgyesi, C.; van Leeuwen, B.; Tobak, Z.; Csikós, N. Natura 2000 Areas, Road, Railway, Water, and Ecological Networks May Provide Pathways for Biological Invasion: A Country Scale Analysis. Plants 2021, 10, 2670. [Google Scholar] [CrossRef]
- Bonney, R.; Shirk, J.L.; Phillips, T.B.; Wiggins, A.; Ballard, H.L.; Miller-Rushing, A.J.; Parrish, J.K. Next Steps for Citizen Science: Strategic Investments and Coordination Are Needed for Citizen Science to Reach Its Full Potential. Science 2014, 343, 1436–1437. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, J.L.; Zuckerberg, B.; Bonter, D.N. Citizen Science as an Ecological Research Tool: Challenges and Benefits. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 149–172. [Google Scholar] [CrossRef]
- Dickinson, J.L.; Shirk, J.; Bonter, D.; Bonney, R.; Crain, R.L.; Martin, J.; Phillips, T.; Purcell, K. The Current State of Citizen Science as a Tool for Ecological Research and Public Engagement. Front. Ecol. Environ. 2012, 10, 291–297. [Google Scholar] [CrossRef]
- Edwards, T.; Jones, C.B.; Perkins, S.E.; Corcoran, P. Passive Citizen Science: The Role of Social Media in Wildlife Observations. PLoS ONE 2021, 16, e0255416. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, M.C.; Schott, M.; Dsouza, A.; Metz, Y.; Volpi, M.; Purves, R.S. A Text and Image Analysis Workflow Using Citizen Science Data to Extract Relevant Social Media Records: Combining Red Kite Observations from Flickr, EBird and INaturalist. Ecol. Inform. 2022, 71, 101782. [Google Scholar] [CrossRef]
- Danielsen, F.; Burgess, N.D.; Jensen, P.M.; Pirhofer-Walzl, K. Environmental Monitoring: The Scale and Speed of Implementation Varies According to the Degree of Peoples Involvement. J. Appl. Ecol. 2010, 47, 1166–1168. [Google Scholar] [CrossRef]
- Kennett, R.; Danielsen, F.; Silvius, K.M. Citizen Science Is Not Enough on Its Own. Nature 2015, 521, 161. [Google Scholar] [CrossRef] [PubMed]
- Browning, E.; Freeman, R.; Boughey, K.L.; Isaac, N.J.B.; Jones, K.E. Accounting for Spatial Autocorrelation and Environment Are Important to Derive Robust Bat Population Trends from Citizen Science Data. Ecol. Indic. 2022, 136, 108719. [Google Scholar] [CrossRef]
- Pocock, M.J.O.; Adriaens, T.; Bertolino, S.; Eschen, R.; Essl, F.; Hulme, P.E.; Jeschke, J.M.; Roy, H.E.; Teixeira, H.; de Groot, M. Citizen Science Is a Vital Partnership for Invasive Alien Species Management and Research. iScience 2024, 27, 108623. [Google Scholar] [CrossRef]
- Rae, M.; Miró, A.; Hall, J.; O’Brien, K.; O’Brien, D. Evaluating the Validity of a Simple Citizen Science Index for Assessing the Ecological Status of Urban Drainage Ponds. Ecol. Indic. 2019, 98, 1–8. [Google Scholar] [CrossRef]
- Roe, A.D.; Greenwood, L.F.; Coyle, D.R. Catching Invasives with Curiosity: The Importance of Passive Biosecurity Surveillance Systems for Invasive Forest Pest Detection. Environ. Entomol. 2024, 53, 881–893. [Google Scholar] [CrossRef]
- Nahrung, H.F.; Liebhold, A.M.; Brockerhoff, E.G.; Rassati, D. Forest Insect Biosecurity: Processes, Patterns, Predictions, Pitfalls. Annu. Rev. Entomol. 2023, 68, 211–229. [Google Scholar] [CrossRef]
- Kosmala, M.; Wiggins, A.; Swanson, A.; Simmons, B. Assessing Data Quality in Citizen Science. Front. Ecol. Environ. 2016, 14, 551–560. [Google Scholar] [CrossRef]
- Swanson, A.; Kosmala, M.; Lintott, C.; Packer, C. A Generalized Approach for Producing, Quantifying, and Validating Citizen Science Data from Wildlife Images. Conserv. Biol. 2016, 30, 520–531. [Google Scholar] [CrossRef]
- Amano, T.; Lamming, J.D.L.; Sutherland, W.J. Spatial Gaps in Global Biodiversity Information and the Role of Citizen Science. BioScience 2016, 66, 393–400. [Google Scholar] [CrossRef]
- Crall, A.W.; Newman, G.J.; Stohlgren, T.J.; Holfelder, K.A.; Graham, J.; Waller, D.M. Assessing Citizen Science Data Quality: An Invasive Species Case Study. Conserv. Lett. 2011, 4, 433–442. [Google Scholar] [CrossRef]
- Danielsen, F.; Jensen, P.M.; Burgess, N.D.; Altamirano, R.; Alviola, P.A.; Andrianandrasana, H.; Brashares, J.S.; Burton, A.C.; Coronado, I.; Corpuz, N.; et al. A Multicountry Assessment of Tropical Resource Monitoring by Local Communities. BioScience 2014, 64, 236–251. [Google Scholar] [CrossRef]
- Farmer, R.G.; Leonard, M.L.; Horn, A.G. Observer Effects and Avian-Call-Count Survey Quality: Rare-Species Biases and Overconfidence. Auk 2012, 129, 76–86. [Google Scholar] [CrossRef]
- Luigi Nimis, P.; Pittao, E.; Altobelli, A.; De Pascalis, F.; Laganis, J.; Martellos, S. Mapping Invasive Plants with Citizen Science. A Case Study from Trieste (NE Italy). Plant Biosyst. 2019, 153, 700–709. [Google Scholar] [CrossRef]
- Foster-Smith, J.; Evans, S.M. The Value of Marine Ecological Data Collected by Volunteers. Biol. Conserv. 2003, 113, 199–213. [Google Scholar] [CrossRef]
- Graham, C.H.; Elith, J.; Hijmans, R.J.; Guisan, A.; Townsend Peterson, A.; Loiselle, B.A.; Anderson, R.P.; Dudk, M.; Ferrier, S.; Huettmann, F.; et al. The Influence of Spatial Errors in Species Occurrence Data Used in Distribution Models. J. Appl. Ecol. 2008, 45, 239–247. [Google Scholar] [CrossRef]
- Yesson, C.; Brewer, P.W.; Sutton, T.; Caithness, N.; Pahwa, J.S.; Burgess, M.; Gray, W.A.; White, R.J.; Jones, A.C.; Bisby, F.A.; et al. How Global Is the Global Biodiversity Information Facility? PLoS ONE 2007, 2, e1124. [Google Scholar] [CrossRef] [PubMed]
- Buckland, S.T.; Johnston, A. Monitoring the Biodiversity of Regions: Key Principles and Possible Pitfalls. Biol. Conserv. 2017, 214, 23–34. [Google Scholar] [CrossRef]
- Botts, E.A.; Erasmus, B.F.N.; Alexander, G.J. Geographic Sampling Bias in the South African Frog Atlas Project: Implications for Conservation Planning. Biodivers. Conserv. 2011, 20, 119–139. [Google Scholar] [CrossRef]
- Isaac, N.J.B.; Pocock, M.J.O. Bias and Information in Biological Records. Biol. J. Linn. Soc. 2015, 115, 522–531. [Google Scholar] [CrossRef]
- Martin, L.J.; Blossey, B.; Ellis, E. Mapping Where Ecologists Work: Biases in the Global Distribution of Terrestrial Ecological Observations. Front. Ecol. Environ. 2012, 10, 195–201. [Google Scholar] [CrossRef]
- Beck, J.; Böller, M.; Erhardt, A.; Schwanghart, W. Spatial Bias in the GBIF Database and Its Effect on Modeling Species’ Geographic Distributions. Ecol. Inform. 2014, 19, 10–15. [Google Scholar] [CrossRef]
- Costello, M.J.; Michener, W.K.; Gahegan, M.; Zhang, Z.Q.; Bourne, P.E. Biodiversity Data Should Be Published, Cited, and Peer Reviewed. Trends Ecol. Evol. 2013, 28, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R. Species Distribution Models: Ecological Explanation and Prediction across Space and Time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guralnick, R.; Hill, A. Biodiversity Informatics: Automated Approaches for Documenting Global Biodiversity Patterns and Processes. Bioinformatics 2009, 25, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Kocsis, K. (Ed.) National Atlas of Hungary: Natural Environment. Hungarian Academy of Sciences, Research Centre for Astronomy and Earth Sciences, Budapest. 2018. Available online: https://www.nemzetiatlasz.hu/MNA/2.html (accessed on 1 June 2025).
- McKinney, M.L. Urbanization as a Major Cause of Biotic Homogenization. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Vakhlamova, T.; Rusterholz, H.P.; Kanibolotskaya, Y.; Baur, B. Changes in Plant Diversity along an Urban-Rural Gradient in an Expanding City in Kazakhstan, Western Siberia. Landsc. Urban Plan. 2014, 132, 111–120. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, J. Urbanization Strengthens the Edge Effects on Species Diversity and Composition of Woody Plants in Remnant Forests. For. Ecosyst. 2022, 9, 100063. [Google Scholar] [CrossRef]
- Johnson, B.A.; Mader, A.D.; Dasgupta, R.; Kumar, P. Citizen Science and Invasive Alien Species: An Analysis of Citizen Science Initiatives Using Information and Communications Technology (ICT) to Collect Invasive Alien Species Observations. Glob. Ecol. Conserv. 2020, 21, e00812. [Google Scholar] [CrossRef]
- Bird, T.J.; Bates, A.E.; Lefcheck, J.S.; Hill, N.A.; Thomson, R.J.; Edgar, G.J.; Stuart-Smith, R.D.; Wotherspoon, S.; Krkosek, M.; Stuart-Smith, J.F.; et al. Statistical Solutions for Error and Bias in Global Citizen Science Datasets. Biol. Conserv. 2014, 173, 144–154. [Google Scholar] [CrossRef]
- Delaney, D.G.; Sperling, C.D.; Adams, C.S.; Leung, B. Marine Invasive Species: Validation of Citizen Science and Implications for National Monitoring Networks. Biol. Invasions 2008, 10, 117–128. [Google Scholar] [CrossRef]
- Sladonja, B.; Poljuha, D. Citizen Science as a Tool in Biological Recording-A Case Study of Ailanthus altissima (Mill.) Swingle. Forests 2018, 9, 31. [Google Scholar] [CrossRef]
- Fuccillo, K.K.; Crimmins, T.M.; de Rivera, C.E.; Elder, T.S. Assessing Accuracy in Citizen Science-Based Plant Phenology Monitoring. Int. J. Biometeorol. 2015, 59, 917–926. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, M.M.; Allee, L.L.; Brown, P.M.J.; Losey, J.E.; Roy, H.E.; Smyth, R.R. Lessons from Lady Beetles: Accuracy of Monitoring Data from US and UK Citizenscience Programs. Front. Ecol. Environ. 2012, 10, 471–476. [Google Scholar] [CrossRef]
- Kowarik, I.; Säumel, I. Biological Flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspect. Plant Ecol. Evol. Syst. 2007, 8, 207–237. [Google Scholar] [CrossRef]
- Kowarik, I. Novel Urban Ecosystems, Biodiversity, and Conservation. Environ. Pollut. 2011, 159, 1974–1983. [Google Scholar] [CrossRef] [PubMed]
- Paź-Dyderska, S.; Ladach-Zajdler, A.; Jagodziński, A.M.; Dyderski, M.K. Landscape and Parental Tree Availability Drive Spread of Ailanthus altissima in the Urban Ecosystem of Poznań, Poland. Urban For. Urban Green. 2020, 56, 126868. [Google Scholar] [CrossRef]
- Zisenis, M. Alien Plant Species: A Real Fear for Urban Ecosystems in Europe? Urban Ecosyst. 2015, 18, 355–370. [Google Scholar] [CrossRef]
- Aguirre, J.M.S.; Szép, T.; Váczi, O.; Halpern, B.; Biró, M.; Szentirmai, I.; Juhász, E.; Károlyi, B.; Soltész, Z.; Czeglédi, A.; et al. Citizen Science for Nature Conservation in Hungary A Three-Dimensional Approach. Citiz. Sci. Theory Pract. 2024, 9, 39. [Google Scholar] [CrossRef]
- Nagy, A.; Neményi, Z.; Hagyó, A.; Lukács, B.A.; Vitál, Z.; Mozsár, A.; Reynolds, S.J.; Nagy, J.; Löki, V. The Knowledge and Perceptions of Recreational Anglers Related to Alien Plant Species in Freshwater Ecosystems: A Case Study From Hungary. Aquat. Conserv. Mar. Freshw. Ecosyst. 2025, 35, e70082. [Google Scholar] [CrossRef]
- Przemysław, B.; Czekalski, M. Distribution of Tree-of-Heaven, Ailanthus altissima (Mill.) Swingle, in Wrocław, Lower Silesia, Poland. Acta Sci. Polonorum. Hortorum Cultus 2005, 4, 45–57. [Google Scholar]
- Botta-Dukat, Z.; Balogh, L.; Feher, A. The Most Important Invasive Plants in Hungary; Hungarian Academy of Sciences: Boedapest, Hongarije, 2008; ISBN 9789638391421. [Google Scholar]
- Lundgren, M.R.; Small, C.J.; Dreyer, G.D. Influence of Land Use and Site Characteristics on Invasive Plant Abundance in the Quinebaug Highlands of Southern New England. Northeast. Nat. 2004, 11, 313–332. [Google Scholar] [CrossRef]
- Priede, A. Invasive Non-Native Solidago Species in Latvia:Expansion History and Current Distribution. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2008, 62, 78–83. [Google Scholar] [CrossRef]
- Pyšek, P.; Lambdon, P.W.; Arianoutsou, M.; Kühn, I.; Pino, J.; Winter, M. Alien Vascular Plants of Europe. In Handbook of Alien Species in Europe; Springer: Dordrecht, The Netherlands, 2009; pp. 43–61. [Google Scholar] [CrossRef]
- Saffer, A.; Worm, T.; Takeuchi, Y.; Meentemeyer, R. GIATAR: A Spatio-Temporal Dataset of Global Invasive and Alien Species and Their Traits. Sci. Data 2024, 11, 991. [Google Scholar] [CrossRef]
- Cuthbert, R.N.; Diagne, C.; Hudgins, E.J.; Turbelin, A.; Ahmed, D.A.; Albert, C.; Bodey, T.W.; Briski, E.; Essl, F.; Haubrock, P.J.; et al. Biological Invasion Costs Reveal Insufficient Proactive Management Worldwide. Sci. Total Environ. 2022, 819, 153404. [Google Scholar] [CrossRef]
- Martinez, B.; Reaser, J.K.; Dehgan, A.; Zamft, B.; Baisch, D.; McCormick, C.; Giordano, A.J.; Aicher, R.; Selbe, S. Technology Innovation: Advancing Capacities for the Early Detection of and Rapid Response to Invasive Species. Biol. Invasions 2020, 22, 75–100. [Google Scholar] [CrossRef]
- Mastin, A.J.; Van Den Bosch, F.; Van Den Berg, F.; Parnell, S.R. Quantifying the Hidden Costs of Imperfect Detection for Early Detection Surveillance. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Peterson’, A.T.; Navarro-Siguenza, A.G.; Benítez-Díaz, H. The Need for Continued Scientific Collecting; a Geographic Analysis of Mexican Bird Specimens. Ibis 1998, 140, 288–294. [Google Scholar] [CrossRef]
- Beck, J.; Ballesteros-Mejia, L.; Nagel, P.; Kitching, I.J. Online Solutions and the “Wallacean Shortfall”: What Does GBIF Contribute to Our Knowledge of Species’ Ranges? Divers. Distrib. 2013, 19, 1043–1050. [Google Scholar] [CrossRef]
Aggregated LULC Category | Urban Atlas Land Use Category (LULC) | Urban Atlas Code |
---|---|---|
Urban Core Area | Continuous urban fabric (S. L.: >80%) | 11,100 |
Discontinuous dense urban fabric (S. L.: 50–80%) | 11,210 | |
Discontinuous medium-density urban fabric (S. L.: 30–50%) | 11,220 | |
Discontinuous low-density urban fabric (S. L.: 10–30%) | 11,230 | |
Discontinuous very-low-density urban fabric (S. L.: <10%) | 11,240 | |
Industrial, commercial, public, military, and private units | 12,100 | |
Green urban areas | 14,100 |
Investigated Plant Species | Urban Core | 0–500 m Buffer | 500–1000 m Buffer | 1000–1500 m Buffer | ||||
---|---|---|---|---|---|---|---|---|
Urban Fringe | ||||||||
z | p | z | p | z | p | z | p | |
Ailanthus altissima | −0.516 | 0.606 | −2.07 | 0.039 | −0.811 | 0.417 | 0.287 | 0.774 |
Asclepias syriaca | −1.082 | 0.279 | 0.951 | 0.342 | 1.081 | 0.280 | 0.862 | 0.389 |
Elaeagnus angustifolia | −3.172 | 0.002 | −1.543 | 0.123 | 1.825 | 0.068 | 1.93 | 0.054 |
Robinia pseudoacacia | 4.583 | <0.0001 | 7.097 | <0.0001 | 8.738 | <0.0001 | 6.064 | <0.0001 |
Solidago spp. | 0.45 | 0.652 | 3.575 | 0.0004 | 4.065 | <0.0001 | 3.933 | 0.0001 |
The GBIF database shows a significantly higher occurrence density of the given invasive plant species. | ||||||||
The GBIF database shows a significantly lower occurrence density of the given invasive plant species. |
LUCAS | GBIF | |||||||
---|---|---|---|---|---|---|---|---|
Invasive Plant Species | Urban Core | 0–500 m Buffer | 500–1000 m Buffer | 1000–1500 m Buffer | Urban Core | 0–500 m Buffer | 500–1000 m Buffer | 1000–1500 m Buffer |
Urban Fringe | Urban Fringe | |||||||
A, Ailanthus altissima B, Asclepias syriaca | ||||||||
A, Ailanthus altissima B, Elaeagnus angustifolia | ||||||||
A, Ailanthus altissima BA, Robinia pseudoacacia | ||||||||
A, Ailanthus altissima B, Solidago spp. | ||||||||
A, Asclepias syriaca B, Elaeagnus angustifolia | ||||||||
A, Asclepias syriaca B, Robinia pseudoacacia | ||||||||
A, Asclepias syriaca B, Solidago spp. | ||||||||
A, Elaeagnus angustifolia B, Robinia pseudoacacia | ||||||||
A, Elaeagnus angustifolia B, Solidago spp. | ||||||||
A, Robinia pseudoacacia B, Solidago spp. | ||||||||
The occurrence-density-based dominance of A plants is significantly higher than the occurrence-density-based dominance of B plants. | ||||||||
The occurrence-density-based dominance of A plants is significantly lower than the occurrence-density-based dominance of B plants. |
A, Urban Core B, 0–500 m Buffer | A, 0–500 m Buffer B, 500–1000 m Buffer | A, 500–1000 m Buffer B, 1000–1500 m Buffer | A, Urban Core B, 500–1000 m Buffer | A, Urban Core B, 1000–1500 m Buffer | A, 0–500 m Buffer B, 1000–1500 m Buffer | |||
---|---|---|---|---|---|---|---|---|
Invasive Plant Species | Type of Database | z/p-Values | ||||||
Ailanthus altissima | LUCAS | z | 1.533 | 2.548 | −0.793 | 1.767 | 1.704 | 1.625 |
p | 0.125 | 0.011 | 0.428 | 0.0773 | 0.0885 | 0.1042 | ||
GBIF | z | 2.713 | 2.700 | 0.383 | 3.849 | 3.926 | 3.041 | |
p | 0.007 | 0.007 | 0.702 | 0.0001 | 0.0001 | 0.0024 | ||
Asclepias syriaca | LUCAS | z | 1.376 | 0.612 | −0.410 | −1.444 | −1.289 | 0.128 |
p | 0.169 | 0.541 | 0.682 | 0.1488 | 0.1975 | 0.8982 | ||
GBIF | z | 0.206 | 0.755 | −0.201 | 0.789 | 0.471 | 0.352 | |
p | 0.837 | 0.450 | 0.841 | 0.4299 | 0.6380 | 0.7246 | ||
Elaeagnus angustifolia | LUCAS | z | −1.486 | 0.317 | 1.515 | −1.269 | −0.133 | 1.758 |
p | 0.137 | 0.751 | 0.130 | 0.2043 | 0.8941 | 0.0787 | ||
GBIF | z | 1.737 | 3.032 | 1.448 | 3.326 | 3.694 | 3.945 | |
p | 0.082 | 0.002 | 0.148 | 0.0009 | 0.0002 | 0.0001 | ||
Robinia pseudoacacia | LUCAS | z | −0.354 | 1.798 | 0.068 | 1.017 | 1.044 | 1.805 |
p | 0.724 | 0.072 | 0.946 | 0.3092 | 0.2964 | 0.0711 | ||
GBIF | z | 0.963 | 1.292 | −0.656 | 3.019 | 1.200 | 0.327 | |
p | 0.336 | 0.196 | 0.512 | 0.0025 | 0.2300 | 0.7434 | ||
Solidago spp. | LUCAS | z | −1.303 | 0.062 | 0.763 | −1.157 | −0.483 | 0.891 |
p | 0.193 | 0.950 | 0.445 | 0.2473 | 0.6288 | 0.3730 | ||
GBIF | z | 1.594 | 2.400 | −0.057 | 2.845 | 2.814 | 2.302 | |
p | 0.111 | 0.016 | 0.954 | 0.0044 | 0.0049 | 0.0213 | ||
The occurrence densities of the invasive plant species studied are significantly higher in the A territorial unit than in the B territorial unit, based on different source of datasets. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visztra, G.V.; Szilassi, P. The Usability of Citizen Science Data for Research on Invasive Plant Species in Urban Cores and Fringes: A Hungarian Case Study. Land 2025, 14, 1389. https://doi.org/10.3390/land14071389
Visztra GV, Szilassi P. The Usability of Citizen Science Data for Research on Invasive Plant Species in Urban Cores and Fringes: A Hungarian Case Study. Land. 2025; 14(7):1389. https://doi.org/10.3390/land14071389
Chicago/Turabian StyleVisztra, Georgina Veronika, and Péter Szilassi. 2025. "The Usability of Citizen Science Data for Research on Invasive Plant Species in Urban Cores and Fringes: A Hungarian Case Study" Land 14, no. 7: 1389. https://doi.org/10.3390/land14071389
APA StyleVisztra, G. V., & Szilassi, P. (2025). The Usability of Citizen Science Data for Research on Invasive Plant Species in Urban Cores and Fringes: A Hungarian Case Study. Land, 14(7), 1389. https://doi.org/10.3390/land14071389