Assessment of Farm Vulnerability to Climate Change in Southern France
Abstract
1. Introduction
2. Theoretical Background
2.1. Definition of Vulnerability
2.2. The Components of Vulnerability
2.3. Vulnerability Factors
2.4. Approaches and Methods for Assessing Vulnerability
3. Materials and Methods
3.1. Description of the Study Area
3.2. Estimation of Integrated Vulnerability Index and Vulnerability Calculation Methods
4. Variable Identification and Data Collection
4.1. Scoping Interviews with Local Stakeholders
- Understand the main characteristics of the area (demographics, employment, agriculture, resources) and identify the main challenges and development opportunities;
- Know how the territory is affected by CC and to understand how this climatic variation has impacted the agricultural sector;
- Study the role of agriculture in territorial development;
- Understand the priorities of different stakeholders regarding CC adaptation, depending on their professions and level of involvement in local development;
- Know how the climatic issues are integrated in the design of the territory’s development strategies and actions, and to know the territory’s future outlook for adaptation;
- To investigate if local public policies aim to support the agricultural sector in territorial development by reducing its vulnerability and creating new opportunities for adaptation.
4.2. Expert Consultations
4.3. Farmer Questionnaire
4.4. Farm Exposure to CC
4.5. Farm Sensitivity to CC
4.6. Farm Adaptive Capacity to CC
4.6.1. Adaptive Capacity Linked to Human Capital
4.6.2. Adaptive Capacity Linked to Economic Capital
4.6.3. Adaptive Capacity Linked to Technical Capital
5. Data Analysis and Characterization of the Different Farm Vulnerability Groups
6. Results
6.1. The Importance of Vulnerability Variables According to Farmers’ Declarations
6.2. Assessment of Calculated and Declared Farm Vulnerability
6.3. Creation of a Farm Typology Based on the Vulnerability Index
7. Discussion and Policy Implication
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Discriminant Analysis Output (SAS)
Total Sample Size | 90 | DF Total | 89 | |
Variables | 31 | DF Within Classes | 87 | |
Classes | 3 | DF Between Classes | 2 | |
Number of Observations Read | 90 | |||
Number of Observations Used | 90 |
Average R-Square | ||||
Unweighted | 0.1329693 | |||
Weighted by Variance | 0.0794961 |
Univariate Test Statistics | ||||||||||||
F Statistics, Num DF = 2, Den DF = 87 | ||||||||||||
Variable | Total Standard Deviation | Pooled Standard Deviation | Between Standard Deviation | R-Square | R-Square/(1-RSq) | F Value | Pr > F | |||||
Overall vulnerability score assigned by farmers | 1.6507 | 1.5724 | 0.6757 | 0.1130 | 0.1273 | 5.54 | 0.0054 | |||||
Farm income | 0.9969 | 0.9877 | 0.2446 | 0.0406 | 0.0423 | 1.84 | 0.1650 | |||||
Farm Type | 1.4491 | 1.1667 | 1.0683 | 0.3664 | 0.5782 | 25.15 | <0.0001 | |||||
Geographical location | 0.5027 | 0.4798 | 0.2027 | 0.1096 | 0.1231 | 5.35 | 0.0064 | |||||
S (soil type) | 0.2147 | 0.1869 | 0.1331 | 0.2591 | 0.3498 | 15.22 | <0.0001 | |||||
S (varietal diversification) | 0.2991 | 0.2190 | 0.2514 | 0.4762 | 0.9092 | 39.55 | <0.0001 | |||||
S (crop diversification) | 0.1828 | 0.1551 | 0.1211 | 0.2960 | 0.4204 | 18.29 | <0.0001 | |||||
S (trees age of perennial crops) | 0.2302 | 0.2124 | 0.1150 | 0.1681 | 0.2020 | 8.79 | 0.0003 | |||||
S (plots orientation) | 0.3331 | 0.2929 | 0.2004 | 0.2440 | 0.3227 | 14.04 | <0.0001 | |||||
AC(age of the farmer) | 0.2319 | 0.2283 | 0.0644 | 0.0521 | 0.0549 | 2.39 | 0.0977 | |||||
AC (training) | 0.1703 | 0.1713 | 0.0212 | 0.0105 | 0.0106 | 0.46 | 0.6320 | |||||
AC (agricultural experience) | 0.2160 | 0.2158 | 0.0411 | 0.0244 | 0.0250 | 1.09 | 0.3415 | |||||
AC (agricultural network) | 0.1294 | 0.1306 | 0.009715 | 0.0038 | 0.0038 | 0.17 | 0.8474 | |||||
CA (legal status) | 0.2551 | 0.2446 | 0.0990 | 0.1016 | 0.1130 | 4.92 | 0.0095 | |||||
CA (land status) | 0.2596 | 0.2602 | 0.0432 | 0.0186 | 0.0190 | 0.83 | 0.4411 | |||||
AC (product marketing) | 0.1707 | 0.1703 | 0.0336 | 0.0261 | 0.0269 | 1.17 | 0.3158 | |||||
CA (crop insurance) | 0.2525 | 0.2524 | 0.0473 | 0.0236 | 0.0242 | 1.05 | 0.3532 | |||||
AC (off-farm income) | 0.1574 | 0.1570 | 0.0323 | 0.0283 | 0.0291 | 1.27 | 0.2868 | |||||
CA (soil management) | 0.1486 | 0.1304 | 0.0901 | 0.2476 | 0.3291 | 14.32 | <0.0001 | |||||
CA (plant management) | 0.1613 | 0.1616 | 0.0277 | 0.0198 | 0.0202 | 0.88 | 0.4188 | |||||
CA (irrigation) | 0.2768 | 0.2298 | 0.1926 | 0.3262 | 0.4841 | 21.06 | <0.0001 | |||||
CA (agro-ecological infrastructure) | 0.2504 | 0.2464 | 0.0705 | 0.0534 | 0.0564 | 2.45 | 0.0919 | |||||
UAA | 27.5160 | 26.7199 | 9.3727 | 0.0782 | 0.0849 | 3.69 | 0.0289 | |||||
Variation in farm size | 0.6516 | 0.6534 | 0.1039 | 0.0171 | 0.0174 | 0.76 | 0.4712 | |||||
Labor type | 0.5156 | 0.5128 | 0.1142 | 0.0331 | 0.0342 | 1.49 | 0.2316 | |||||
Labor need | 0.4983 | 0.4715 | 0.2143 | 0.1247 | 0.1425 | 6.20 | 0.0030 | |||||
Current adaptation measures | 0.4926 | 0.4358 | 0.2909 | 0.2350 | 0.3073 | 13.37 | <0.0001 | |||||
Future land project | 0.4788 | 0.4820 | 0.0557 | 0.0091 | 0.0092 | 0.40 | 0.6712 | |||||
Crops introduced during the last 10 years | 0.4814 | 0.4482 | 0.2289 | 0.1524 | 0.1799 | 7.82 | 0.0008 | |||||
Crops abandoned during the last 10 years | 0.4447 | 0.4082 | 0.2275 | 0.1764 | 0.2142 | 9.32 | 0.0002 | |||||
Adaptation policies should be favored by public policies | 0.9738 | 0.8318 | 0.6352 | 0.2869 | 0.4023 | 17.50 | <0.0001 |
Multivariate Statistics and F Approximations | ||||||||||||
S = 2 M = 14 N = 27.5 | ||||||||||||
Statistic | Value | F Value | DDL Num. | DDL Res. | Pr > F | |||||||
Wilks’ Lambda | 0.09591817 | 4.10 | 62 | 114 | <0.0001 | |||||||
Pillai’s Trace | 1.27983296 | 3.32 | 62 | 116 | <0.0001 | |||||||
Hotelling–Lawley Trace | 5.50813992 | 4.98 | 62 | 102.22 | <0.0001 | |||||||
Roy’s Greatest Root | 4.66913860 | 8.74 | 31 | 58 | <0.0001 | |||||||
NOTE: F statistic for Roy’s Greatest Root is an upper bound | ||||||||||||
NOTE: F statistic for Wilks’ Lambda is exact. |
References
- Villegas-González, P.A.; Ramos-Cañón, A.M.; González-Méndez, M.; González-Salazar, R.E.; De Plaza-Solórzano, J.S. Territorial Vulnerability Assessment Frame in Colombia: Disaster Risk Management. Int. J. Disaster Risk Reduct. 2017, 21, 384–395. [Google Scholar] [CrossRef]
- Neil Adger, W.; Arnell, N.W.; Tompkins, E.L. Successful Adaptation to Climate Change across Scales. Glob. Environ. Change 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Fedele, G.; Donatti, C.I.; Harvey, C.A.; Hannah, L.; Hole, D.G. Transformative Adaptation to Climate Change for Sustainable Social-Ecological Systems. Environ. Sci. Policy 2019, 101, 116–125. [Google Scholar] [CrossRef]
- Simonet, G. De l’ajustement à La Transformation: Vers Un Essor de l’adaptation? Développement Durable Territ. 2016, 7, 1–17. [Google Scholar] [CrossRef]
- Rebotier, J. Adaptations Aux Changements Environnementaux et Territoires. Questions de (Science En) Société: Avant-Propos. Sud-Ouest Eur. 2014, 5–12. [Google Scholar] [CrossRef]
- Villalba, B.; Petit, O. Quinze Ans de Recherches Sur l’interface Entre Développement Durable et Territoires. Un Bilan Réflexif. Développement Durable Territ. 2014, 5, 10487. [Google Scholar] [CrossRef]
- François, A.; Gauché, E.; Génin, A. L’adaptation Des Territoires Aux Changements Climatiques Dans l’Oriental Marocain: La Vulnérabilité Entre Action et Perceptions. Vertigo 2016, 16, 17177. [Google Scholar] [CrossRef]
- Richard, D.; George-Marcelpoil, E.; Boudières, V. Changement Climatique et Développement Des Territoires de Montagne: Quelles Connaissances Pour Quelles Pistes d’action? J. Alp. Res. 2010, 98, 1322. [Google Scholar] [CrossRef]
- Baccour, S.; Albiac, J.; Ward, F.; Kahil, T.; Esteban, E.; Uche, J.; Calvo, E.; Crespo, D. Managing Climate Risks: New Evidence from Integrated Analysis at the Basin Scale. Int. J. Water Resour. Dev. 2024, 40, 915–939. [Google Scholar] [CrossRef]
- Ingrao, C.; Strippoli, R.; Lagioia, G.; Huisingh, D. Water Scarcity in Agriculture: An Overview of Causes, Impacts and Approaches for Reducing the Risks. Heliyon 2023, 9, e18507. [Google Scholar] [CrossRef]
- Longo, M.; Dal Ferro, N.; Lazzaro, B.; Morari, F. Trade-Offs among Ecosystem Services Advance the Case for Improved Spatial Targeting of Agri-Environmental Measures. J. Environ. Manag. 2021, 285, 112131. [Google Scholar] [CrossRef]
- Seguin, B. Climate Change and Its Impact on Agricultural Production, with a Focus on the Mediterranean Area. In Economics of Drought and Drought Preparedness in a Climate Change Context; Lopez-François, A., Ed.; Options Méditerranéennes: Série A. Séminaires Méditerranéens; CIHEAM-IAMZ: Zaragoza, Spain, 2010; pp. 9–18. [Google Scholar]
- Skoufias, E. Economic Crises and Natural Disasters: Coping Strategies and Policy Implications. World Dev. 2003, 31, 1087–1102. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate Change Effects on Biodiversity, Ecosystems, Ecosystem Services, and Natural Resource Management in the United States. Sci. Total Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A. Global Climate Change and Its Impact on Agriculture. In Changing Climate and Resource Use Efficiency in Plants; Academic Press: London, UK, 2019; pp. 1–50. ISBN 978-0-12-816209-5. [Google Scholar]
- Giannakopoulos, C.; Le Sager, P.; Bindi, M.; Moriondo, M.; Kostopoulou, E.; Goodess, C.M. Climatic Changes and Associated Impacts in the Mediterranean Resulting from a 2 °C Global Warming. Glob. Planet. Change 2009, 68, 209–224. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Change 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate Change and Impacts in the Eastern Mediterranean and the Middle East. Clim. Change 2012, 114, 667–687. [Google Scholar] [CrossRef] [PubMed]
- Perrin, J.-A.; Bouisset, C. Emerging Local Public Action in Renewable Energy Production. Discussion of the Territorial Dimension of the Energy Transition Based on the Cases of Four Intermunicipal Cooperation Entities in France. Energy Policy 2022, 168, 113143. [Google Scholar] [CrossRef]
- Radtke, J.; Renn, O. Participation in Energy Transitions: A Comparison of Policy Styles. Energy Res. Soc. Sci. 2024, 118, 103743. [Google Scholar] [CrossRef]
- OECD Agricultural Policy Monitoring and Evaluation 2023: Adapting Agriculture to Climate Change; Agricultural Policy Monitoring and Evaluation; OECD: Paris, France, 2023; ISBN 978-92-64-82624-3.
- Rosenzweig, C.; Tubiello, F.N. Adaptation and Mitigation Strategies in Agriculture: An Analysis of Potential Synergies. Mitig. Adapt. Strat. Glob. Change 2007, 12, 855–873. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Policy and Technological Constraints to Implementation of Greenhouse Gas Mitigation Options in Agriculture. Agric. Ecosyst. Environ. 2007, 118, 6–28. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting Agriculture to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef] [PubMed]
- Pari, L. (Ed.) Renewable Energy Production from Energy Crops and Agricultural Residues; MDPI: Basel, Switerland, 2021; ISBN 978-3-0365-0107-9. [Google Scholar]
- Don, A.; Seidel, F.; Leifeld, J.; Kätterer, T.; Martin, M.; Pellerin, S.; Emde, D.; Seitz, D.; Chenu, C. Reply Letter to Munoz et al. ‘on the Importance of Time in Carbon Sequestration in Soils and Climate Change Mitigation’—Keep Carbon Sequestration Terminologies Consistent and Functional. Glob. Change Biol. 2024, 30, e17230. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Climate Change, Impacts and Vulnerability in Europe 2016. An Indicator-Based Report; EEA Report; Publications Office of the European: Luxembourg, 2017; Volume 1. [Google Scholar]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social Vulnerability Indicators in Disasters: Findings from a Systematic Review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Füssel, H.-M. Vulnerability: A Generally Applicable Conceptual Framework for Climate Change Research. Glob. Environ. Change 2007, 17, 155–167. [Google Scholar] [CrossRef]
- Maiti, S.; Jha, S.K.; Garai, S.; Nag, A.; Bera, A.K.; Paul, V.; Upadhaya, R.C.; Deb, S.M. An Assessment of Social Vulnerability to Climate Change among the Districts of Arunachal Pradesh, India. Ecol. Indic. 2017, 77, 105–113. [Google Scholar] [CrossRef]
- Murphy, E.; Scott, M. Household Vulnerability in Rural Areas: Results of an Index Applied during a Housing Crash, Economic Crisis and under Austerity Conditions. Geoforum 2014, 51, 75–86. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; de Voil, P.; Nidumolu, U. The Vulnerability of Australian Rural Communities to Climate Variability and Change: Part II—Integrating Impacts with Adaptive Capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Pandey, R.; Jha, S.K.; Alatalo, J.M.; Archie, K.M.; Gupta, A.K. Sustainable Livelihood Framework-Based Indicators for Assessing Climate Change Vulnerability and Adaptation for Himalayan Communities. Ecol. Indic. 2017, 79, 338–346. [Google Scholar] [CrossRef]
- Preston, B.; Stafford-Smith, M. Framing Vulnerability and Adaptive Capacity Assessment: Discussion Paper; Climate Adaptation Flagship Working Paper; CSIRO: Aspendale, VIC, Australia, 2009. [Google Scholar]
- Stânga, I.C.; Grozavu, A. Quantifying Human Vulnerability in Rural Areas: Case Study of Tutova Hills (Eastern Romania). Nat. Hazards Earth Syst. Sci. 2012, 12, 1987. [Google Scholar] [CrossRef]
- Tesso, G. Individual Level Vulnerability to Climate Change Impact among Crop Dependent Communities of Western Ethiopia. J. Agric. Econ. Dev. 2013, 2, 356–370. [Google Scholar]
- Tzilivakis, J.; Warner, D.J.; Green, A.; Lewis, K.A. Adapting to Climate Change: Assessing the Vulnerability of Ecosystem Services in Europe in the Context of Rural Development. Mitig. Adapt. Strateg. Glob. Change 2015, 20, 547–572. [Google Scholar] [CrossRef]
- IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Neset, T.-S.; Wiréhn, L.; Opach, T.; Glaas, E.; Linnér, B.-O. Evaluation of Indicators for Agricultural Vulnerability to Climate Change: The Case of Swedish Agriculture. Ecol. Indic. 2019, 105, 571–580. [Google Scholar] [CrossRef]
- Asrat, P.; Simane, B. Farmers’ Perception of Climate Change and Adaptation Strategies in the Dabus Watershed, North-West Ethiopia. Ecol. Process 2018, 7, 7. [Google Scholar] [CrossRef]
- Wise, R.M.; Fazey, I.; Stafford Smith, M.; Park, S.E.; Eakin, H.C.; Archer Van Garderen, E.R.M.; Campbell, B. Reconceptualising Adaptation to Climate Change as Part of Pathways of Change and Response. Glob. Environ. Change 2014, 28, 325–336. [Google Scholar] [CrossRef]
- Jha, C.K.; Gupta, V. Farmer’s Perception and Factors Determining the Adaptation Decisions to Cope with Climate Change: An Evidence from Rural India. Environ. Sustain. Indic. 2021, 10, 100112. [Google Scholar] [CrossRef]
- Bryan, E.; Ringler, C.; Okoba, B.; Roncoli, C.; Silvestri, S.; Herrero, M. Adapting Agriculture to Climate Change in Kenya: Household Strategies and Determinants. J. Environ. Manag. 2013, 114, 26–35. [Google Scholar] [CrossRef]
- Vautier, C.; Roggero, P.; Adreit, F.; Sibertin-Blanc, C. Evaluation by Simulation of the Social Acceptability of Agricultural Policies for Water Quality. In Information Technologies in Environmental Engineering; Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, J.M., Eds.; Environmental Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2009; pp. 478–490. ISBN 978-3-540-88350-0. [Google Scholar]
- Bhave, A.G.; Mishra, A.; Raghuwanshi, N.S. A Combined Bottom-up and Top-down Approach for Assessment of Climate Change Adaptation Options. J. Hydrol. 2014, 518, 150–161. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.T.; Wandel, J. An Anatomy of Adaptation to Climate Change and Variability. Clim. Change 2000, 45, 223–251. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, Adaptive Capacity and Vulnerability. Glob. Environ. Change 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Specht, K.; Krikser, T.; Vanni, C.; Pennisi, G.; Orsini, F.; Gianquinto, G.P. Social Acceptance and Perceived Ecosystem Services of Urban Agriculture in Southern Europe: The Case of Bologna, Italy. PLoS ONE 2018, 13, e0200993. [Google Scholar] [CrossRef]
- Vy, D.; Mh, S.; Nm, D. Assessing the Social Acceptance of Agricultural Drought Adaptation Measures in Chaharmahal and Bakhtiari Province, Iran. J. Geogr. Nat. Disast 2018, 6, 234. [Google Scholar] [CrossRef]
- Jones, B.; Andrey, J. Vulnerability Index Construction: Methodological Choices and Their Influence on Identifying Vulnerable Neighbourhoods. Int. J. Emerg. Manag. 2007, 4, 269. [Google Scholar] [CrossRef]
- Wolf, J.; Moser, S.C. Individual Understandings, Perceptions, and Engagement with Climate Change: Insights from in-Depth Studies across the World. WIREs Clim. Change 2011, 2, 547–569. [Google Scholar] [CrossRef]
- Pelling, M. Adaptation to Climate Change: From Resilience to Transformation; Routledge: Oxford, UK; New York, NY, USA, 2011; ISBN 978-0-415-47750-5. [Google Scholar]
- Deressa, T.; Hassan, R.M.; Ringler, C. Measuring Ethiopian Farmers’ Vulnerability to Climate Change Across Regional States; IFPRI Discussion Paper; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2008. [Google Scholar]
- Uddin, M.; Bokelmann, W.; Entsminger, J. Factors Affecting Farmers’ Adaptation Strategies to Environmental Degradation and Climate Change Effects: A Farm Level Study in Bangladesh. Climate 2014, 2, 223–241. [Google Scholar] [CrossRef]
- Adger, W.N. Social Vulnerability to Climate Change and Extremes in Coastal Vietnam. World Dev. 1999, 27, 249–269. [Google Scholar] [CrossRef]
- Polsky, C.; Neff, R.; Yarnal, B. Building Comparable Global Change Vulnerability Assessments: The Vulnerability Scoping Diagram. Glob. Environ. Change 2007, 17, 472–485. [Google Scholar] [CrossRef]
- Borges, F.J.A.; Ribeiro, B.R.; Lopes, L.E.; Loyola, R. Bird Vulnerability to Climate and Land Use Changes in the Brazilian Cerrado. Biol. Conserv. 2019, 236, 347–355. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ishtiaque, A.; Parajuli, J.; Athukorala, D.; Rabby, Y.W.; Ooba, M. Has the IPCC’s Revised Vulnerability Concept Been Well Adopted? Ambio 2023, 52, 376–389. [Google Scholar] [CrossRef]
- Foden, W.B.; Young, B.E.; Akçakaya, H.R.; Garcia, R.A.; Hoffmann, A.A.; Stein, B.A.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.A.; et al. Climate Change Vulnerability Assessment of Species. WIREs Clim. Change 2019, 10, e551. [Google Scholar] [CrossRef]
- Nguyen, T.T.X.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-Based Assessment of Climate-Change Impacts on Coasts: A Review of Concepts, Methodological Approaches and Vulnerability Indices. Ocean. Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef]
- Timberlake, T.J.; Schultz, C.A. Climate Change Vulnerability Assessment for Forest Management: The Case of the U.S. Forest Service. Forests 2019, 10, 1030. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, A.; Hazra, S.; Ghosh, T.; Safra De Campos, R.; Samanta, S. Linking IPCC AR4 & AR5 Frameworks for Assessing Vulnerability and Risk to Climate Change in the Indian Bengal Delta. Prog. Disaster Sci. 2020, 7, 100110. [Google Scholar] [CrossRef]
- Zebisch, M.; Schneiderbauer, S.; Fritzsche, K.; Bubeck, P.; Kienberger, S.; Kahlenborn, W.; Schwan, S.; Below, T. The Vulnerability Sourcebook and Climate Impact Chains—A Standardised Framework for a Climate Vulnerability and Risk Assessment. Int. J. Clim. Change Strateg. Manag. 2021, 13, 35–59. [Google Scholar] [CrossRef]
- Cheng, W.; Li, Y.; Zuo, W.; Du, G.; Stanny, M. Spatio-Temporal Detection of Agricultural Disaster Vulnerability in the World and Implications for Developing Climate-Resilient Agriculture. Sci. Total Environ. 2024, 928, 172412. [Google Scholar] [CrossRef]
- Oyarzo, C.; Kaulen, S.; Marchant, C.; Rodríguez, P.; Caviedes, J.; Miranda, M.D.; Schlicht, G.; Ibarra, J.T. Vulnerability of Small-Scale Farming Livelihoods under Climate Variability in a Globally Important Archipelago of the Global South. Environ. Sustain. Indic. 2024, 24, 100540. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Brooks, N.; Adger, W.N.; Kelly, P.M. The Determinants of Vulnerability and Adaptive Capacity at the National Level and the Implications for Adaptation. Glob. Environ. Change 2005, 15, 151–163. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; McCarthy, J.J., Canziani, O.F., Leary, N.A., Dokken, D.J., White, K.S., Eds.; Cambridge University Press: Cambridge, UK, 2001; ISBN 0-521-01500-6. [Google Scholar]
- Rana, I.A.; Routray, J.K. Actual Vis-à-Vis Perceived Risk of Flood Prone Urban Communities in Pakistan. Int. J. Disaster Risk Reduct. 2016, 19, 366–378. [Google Scholar] [CrossRef]
- Berry, P.M.; Rounsevell, M.D.A.; Harrison, P.A.; Audsley, E. Assessing the Vulnerability of Agricultural Land Use and Species to Climate Change and the Role of Policy in Facilitating Adaptation. Environ. Sci. Policy 2006, 9, 189–204. [Google Scholar] [CrossRef]
- Downing, T.E. Assessing Socioeconomic Vulnerability to Famine: Frameworks, Concepts, and Applications; FEWS Working Paper; U.S. Agency for International Development: Washington, DC, USA, 1990. [Google Scholar]
- Füssel, H.-M.; Klein, R.J. Climate Change Vulnerability Assessments: An Evolution of Conceptual Thinking. Clim. Change 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Hinkel, J. “Indicators of Vulnerability and Adaptive Capacity”: Towards a Clarification of the Science–Policy Interface. Glob. Environ. Change 2011, 21, 198–208. [Google Scholar] [CrossRef]
- O’Brien, K.; Leichenko, R.; Kelkar, U.; Venema, H.; Aandahl, G.; Tompkins, H.; Javed, A.; Bhadwal, S.; Barg, S.; Nygaard, L.; et al. Mapping Vulnerability to Multiple Stressors: Climate Change and Globalization in India. Glob. Environ. Change 2004, 14, 303–313. [Google Scholar] [CrossRef]
- Moss, R.H.; Brenkert, A.L.; Malone, E.L. Vulnerability to Climate Change: A Quantitative Approach; Pacific Northwest National Laboratories: Richland, WA, USA, 2001. [Google Scholar]
- UN/ISDR. Living with Risk: A Global Review of Disaster Reduction Initiatives; United Nations: Geneva, Switzerland, 2004; ISBN 978-92-1-101064-0. [Google Scholar]
- Vogel, E.; Meyer, R. Climate Change, Climate Extremes, and Global Food Production-Adaptation in the Agricultural Sector. In Resilience: The Science of Adaptation to Climate Change; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–49. ISBN 978-0-12-811891-7. [Google Scholar]
- Moser, S.C. Entering the Period of Consequences: The Explosive US Awakening to the Need for Adaptation. In Climate Change Adaptation in Developed Nations; Ford, J.D., Berrang-Ford, L., Eds.; Advances in Global Change Research; Springer Netherlands: Dordrecht, The Netherlands, 2011; Volume 42, pp. 33–49. ISBN 978-94-007-0566-1. [Google Scholar]
- Vincent, K. Creating an Index of Social Vulnerability to Climate Change in Africa; Working Paper; Tyndall Centre for Climate Change Research: Norwich, UK, 2004. [Google Scholar]
- Birkmann, J. Risk and Vulnerability Indicators at Different Scales: Applicability, Usefulness and Policy Implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Tate, E. Social Vulnerability Indices: A Comparative Assessment Using Uncertainty and Sensitivity Analysis. Nat. Hazards 2012, 63, 325–347. [Google Scholar] [CrossRef]
- Hagenlocher, M.; Hölbling, D.; Kienberger, S.; Vanhuysse, S.; Zeil, P. Spatial Assessment of Social Vulnerability in the Context of Landmines and Explosive Remnants of War in Battambang Province, Cambodia. Int. J. Disaster Risk Reduct. 2016, 15, 148–161. [Google Scholar] [CrossRef]
- Fellmann, T. The Assessment of Climate Change-Related Vulnerability in the Agricultural Sector: Reviewing Conceptual Frameworks. In Proceedings of the Building Resilience for Adaptation to Climate Change in the Agriculture Sector—Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012; Meybeck, A., Lankoski, J., Redfern, S., Azzu, N., Gitz, V., Eds.; FAO: Roma, Italy, 2012; pp. 37–61, ISBN 978-92-5-107373-5. [Google Scholar]
- Allen, K. Vulnerability Reduction and the Community-Based Approach. In Natural Disasters and Development in a Globalizing World; Pelling, M., Ed.; Routledge: London, UK, 2003; pp. 170–185. ISBN 0-415-27958-5. [Google Scholar]
- André, G. Cartographie Du Risque Naturel Dans Le Monde. Etude Comparative Entre Une Approche d’ordre Social et Une Approche d’ordre Économique de La Vulnérabilité. Cybergeo Eur. J. Geogr. 2004, 286, 1–12. [Google Scholar] [CrossRef]
- Adams, R.M. Global Climate Change and Agriculture: An Economic Perspective. Am. J. Agric. Econ. 1989, 71, 1272–1279. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Sehgal, V.K.; Dhakar, R. Geospatial Approach for Assessment of Biophysical Vulnerability to Agricultural Drought and Its Intra-Seasonal Variations. Environ. Monit. Assess. 2016, 188, 197. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Jalan, J.; Suryahadi, A. Assessing Household Vulnerability to Poverty from Cross-Sectional Data: A Methodology and Estimates from Indonesia; Columbia University: New York, NY, USA, 2011. [Google Scholar]
- Christiaensen, L.; Subbarao, K. Towards an Understanding of Household Vulnerability in Rural Kenya. J. Afr. Econ. 2005, 14, 520–558. [Google Scholar] [CrossRef]
- Brooks, N. Vulnerability, Risk and Adaptation: A Conceptual Framework; Working Paper; Tyndall Centre for Climate Change Research: Norwich, UK, 2003. [Google Scholar]
- D’Ercole, R.; Metzger, P. Territorial Vulnerability: A New Approach of Risks in Urban Areas. Cybergeo Eur. J. Geogr. Doss. Vulnérabilités Urbaines Au Sud. 2009, 447, 11–16. [Google Scholar] [CrossRef]
- Kahneman, D.; Frederick, S. Representativeness Revisited: Attribute Substitution in Intuitive Judgment. In Heuristics and Biases: The Psychology of Intuitive Judgment; Gilovich, T., Griffin, D., Kahneman, D., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 49–81. [Google Scholar]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. In Handbook of the Fundamentals of Financial Decision Making; MacLean, L.C., Ziemba, W.T., Eds.; World scientific handbook in financial economics series; World Scientific: Londres, UK, 2013; pp. 99–127. ISBN 978-981-4417-34-1. [Google Scholar]
- Kahneman, D.; Tversky, A. On the Reality of Cognitive Illusions. Psychol. Rev. 1996, 103, 582–591. [Google Scholar] [CrossRef]
- INSEE (France) Recensement 2015: Résultats Sur Un Territoire, Bases de Données et Fichiers Détail. Available online: https://www.insee.fr/fr/information/3561862 (accessed on 12 May 2025).
- Conseil Départemental de l’Hérault Climatologie. Available online: https://odee.herault.fr/index.php/thematiques/climatologie (accessed on 13 May 2018).
- Perrier-Cornet, P. Repenser les Campagnes; Bibliothèque des Territoires; Editions de l’Aube; La Tour d’Aigues; DATAR: Paris, France, 2002; ISBN 978-2-87678-706-3. [Google Scholar]
- Vernières, M. Les inégalités territoriales: Le cas des territoires ruraux. In Proceedings of the Colloque International Inégalités et Développement Dans les Pays Méditerranéens, Istanbul, Turkey, 21–23 May 2009. [Google Scholar]
- Hervieu, B. MediTerra 2008: Les Futurs Agricoles et Alimentaires en Méditerranée; Presses de Sciences Po: Paris, France, 2008; p. 376. [Google Scholar]
- Del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Reseau Action Climat-France. Changement Climatiques: Comprendre et Réagir; Reseau Action Climat-France: Montreuil, France, 2011. [Google Scholar]
- Metayer, N. Life AgriAdapt: Caractérisation de la Vulnérabilité au Changement Climatique des Exploitations Agricoles; ADEME; L’Harmattan: Paris, France, 2019; p. 44. [Google Scholar]
- Loi, D.T.; Huong, L.V.; Tuan, P.A.; Hong Nhung, N.T.; Quynh Huong, T.T.; Hoa Man, B.T. An Assessment of Agricultural Vulnerability in the Context of Global Climate Change: A Case Study in Ha Tinh Province, Vietnam. Sustainability 2022, 14, 1282. [Google Scholar] [CrossRef]
- Berhanu, A.A.; Ayele, Z.B.; Dagnew, D.C.; Melese, T.; Fenta, A.B.; Kassie, K.E. Smallholder Farmers’ Vulnerability to Climate Change and Variability: Evidence from Three Agroecologies in the Upper Blue Nile, Ethiopia. Heliyon 2024, 10, e28277. [Google Scholar] [CrossRef]
- Snaibi, W.; Mezrhab, A.; Laaboudi, M. Evaluation de la vulnérabilité des éleveurs des parcours arides du Maroc à l’égard du changement climatique à l’aide de l’indice de vulnérabilité des moyens de subsistance des ménages ruraux-Cas de la zone des hauts plateaux de l’Oriental. Afr. Mediterr. Agric. J.-Al Awamia 2024, 247–261. [Google Scholar] [CrossRef]
- Das, S.; Majumder, S.; Sharma, K.K. Assessing Integrated Agricultural Livelihood Vulnerability to Climate Change in the Coastal Region of West Bengal: Implication for Spatial Adaptation Planning. Reg. Stud. Mar. Sci. 2023, 57, 102748. [Google Scholar] [CrossRef]
- Derbile, E.K.; Bonye, S.Z.; Yiridomoh, G.Y. Mapping Vulnerability of Smallholder Agriculture in Africa: Vulnerability Assessment of Food Crop Farming and Climate Change Adaptation in Ghana. Environ. Chall. 2022, 8, 100537. [Google Scholar] [CrossRef]
- Hoque, M.Z.; Haque, M.E.; Islam, M.S. Mapping Integrated Vulnerability of Coastal Agricultural Livelihood to Climate Change in Bangladesh: Implications for Spatial Adaptation Planning. Phys. Chem. Earth Parts A/B/C 2022, 125, 103080. [Google Scholar] [CrossRef]
- Krishnan, P.; Ananthan, P.S.; Purvaja, R.; Joyson Joe Jeevamani, J.; Amali Infantina, J.; Srinivasa Rao, C.; Anand, A.; Mahendra, R.S.; Sekar, I.; Kareemulla, K.; et al. Framework for Mapping the Drivers of Coastal Vulnerability and Spatial Decision Making for Climate-Change Adaptation: A Case Study from Maharashtra, India. Ambio 2019, 48, 192–212. [Google Scholar] [CrossRef] [PubMed]
- Seguin, G. ‘Terroirs’ and Pedology of Wine Growing. Experientia 1986, 42, 861–873. [Google Scholar] [CrossRef]
- Meynard, J.-M. L’agroécologie, Un Nouveau Rapport Aux Savoirs et à l’innovation. OCL Oilseeds Fats Crops Lipids 2017, 24, 9. [Google Scholar] [CrossRef]
- Droy, I.; Rasolofo, P. Les Approches de la Vulnérabilité Alimentaire Dans le sud de Madagascar; Document de travail; CED: Pessac, France, 2004. [Google Scholar]
- Cutter, S.L. Social Science Perspectives on Hazards and Vulnerability Science. In Geophysical Hazards: Minimizing Risk, Maximizing Awareness; Beer, T., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2010; pp. 17–30. ISBN 978-90-481-3236-2. [Google Scholar]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Maréchal, G.; Noël, J.; Wallet, F. Les Projets Alimentaires Territoriaux (PAT): Entre Rupture, Transition et Immobilisme? Pour 2018, 234–235, 261–270. [Google Scholar] [CrossRef]
- Owen, G. What Makes Climate Change Adaptation Effective? A Systematic Review of the Literature. Glob. Environ. Change 2020, 62, 102071. [Google Scholar] [CrossRef]
- Butault, J.-P.; Delame, N.; Lerouvillois, P. Activité Extérieure et Revenus Des Ménages Agricoles. Économie Rural. 2005, 75–90. [Google Scholar] [CrossRef]
- Jetté-Nantel, S.; Freshwater, D.; Beaulieu, M.; Katchova, A. Variabilité du Revenu Agricole et Diversification hors Ferme Dans l’agriculture Canadienne; Document de Recherche; Statistiques Canada: Ottawa, ON, Canada, 2011. [Google Scholar]
- Mishra, A.K.; Sandretto, C.L. Stability of Farm Income and the Role of Nonfarm Income in US Agriculture. Rev. Agric. Econ. 2002, 24, 208–221. [Google Scholar] [CrossRef]
- Razafimahatratra, H.M.; Raharison, T.; Bélières, J.-F.; Autfray, P.; Salgado, P.; Rakotofiringa, H.Z. Systèmes de Production, Pratiques, Performances et Moyens d’existence des Exploitations Agricoles du Moyen-Ouest du Vakinankaratra; SPAD: Antananarivo, Madagascar, 2017. [Google Scholar]
- Howden, M.S.; Ash, A.; Barlow, S.; Booth, T.; Charles, S.; Cechet, B.; Crimp, S.; Gifford, R.; Hennessy, K.; Jones, R.; et al. An Overview of the Adaptive Capacity of the Australian Agricultural Sector to Climate Change: Options, Costs and Benefits; CSIRO: Canberra, Australia, 2003. [Google Scholar]
- ADEME Sols et Changement Climatique. Available online: https://www.ademe.fr/expertises/produire-autrement/production-agricole/chiffres-cles-observations/dossier/qualite-sols/sols-changement-climatique (accessed on 15 June 2025).
- Chenu, C.; Chevallier, T. Les Sols Au Coeur Des Effets Du Changement Climatique. Biofutur 2015, 34, 27–28. [Google Scholar]
- Boutin, F.; Payan, J.C. Viticulture et Changement Climatique: Adaptation de La Conduite Du Vignoble Méditerranéen. Innov. Agron. 2012, 25, 193–203. [Google Scholar]
- Weiss, K.; Moser, G.; Germann, C. Perception de l’environnement, Conceptions Du Métier et Pratiques Culturales Des Agriculteurs Face Au Développement Durable. Eur. Rev. Appl. Psychol. 2006, 56, 73–81. [Google Scholar] [CrossRef]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological Practices for Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef]
- CCR (Caisse Centrale de Réassurance, France). Arrêtés de Catastrophe Naturelle. Available online: https://catastrophes-naturelles.ccr.fr/les-arretes (accessed on 12 May 2025).
- Conseil Départemental de l’Hérault Annales Climatologiques et Hydrologiques. Available online: https://odee.herault.fr/index.php/thematiques/climatologie/40-annales-climatologiques-et-hydrologiques (accessed on 10 May 2019).
- Engle, N.L. Adaptive Capacity and Its Assessment. Glob. Environ. Change 2011, 21, 647–656. [Google Scholar] [CrossRef]
- Dubois, J.-L.; Rousseau, S. Reinforcing Households’ Capabilities as a Way to Reduce Vulnerability and Prevent Poverty in Equitable Terms. In The Capability Approach: Concepts, Measures and Applications; Comim, F., Qizilbash, M., Alkire, S., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 421–436. ISBN 978-0-521-86287-5. [Google Scholar]
- Ellis, F. Rural Livelihoods and Diversity in Developing Countries; Oxford University Press: Oxford, UK, 2000; ISBN 978-0-19-829696-6. [Google Scholar]
- Ducos, G.; Barreau, B. Quels Indicateurs Pour Mesurer la Qualité de la Croissance? La note d’analyse; France stratégie: Paris, France, 2014. [Google Scholar]
- Garrabé, M. Modèle à Capitaux Multiples et Analyse Sociale du Cycle de vie des Capacités: Méthodologie Générale; Université Montpellier 1: Montpellier, France, 2012. [Google Scholar]
- Dong, Z.; Pan, Z.; An, P.; Wang, L.; Zhang, J.; He, D.; Han, H.; Pan, X. A Novel Method for Quantitatively Evaluating Agricultural Vulnerability to Climate Change. Ecol. Indic. 2015, 48, 49–54. [Google Scholar] [CrossRef]
- Shukla, R.; Sachdeva, K.; Joshi, P.K. Inherent Vulnerability of Agricultural Communities in Himalaya: A Village-Level Hotspot Analysis in the Uttarakhand State of India. Appl. Geogr. 2016, 74, 182–198. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Genève, Switzerland, 2019. [Google Scholar]
- Dachary-Bernard, J.; Rey-Valette, H.; Rulleau, B. Preferences among Coastal and Inland Residents Relating to Managed Retreat: Influence of Risk Perception in Acceptability of Relocation Strategies. J. Environ. Manag. 2019, 232, 772–780. [Google Scholar] [CrossRef]
- Brooks, N.; Anderson, S.; Burton, I.; Fisher, S.; Rai, N.; Tellam, I. An Operational Framework for Tracking Adaptation and Measuring Development (TAMD); Climate Change Working Paper; IED: London, UK, 2013. [Google Scholar]
- Van Der Wolf, J.; Jassogne, L.; Gram, G.I.L.; Vaast, P. Turning Local Knowledge on Agroforestry into an Online Decision-Support Tool for Tree Selection in Smallholders’ Farms. Exp. Agric. 2019, 55, 50–66. [Google Scholar] [CrossRef]
- Ekins, P.; Dresner, S.; Dahlström, K. The Four Capital Method of Sustainable Development Evaluation. Eur. Environ. 2008, 18, 63–80. [Google Scholar] [CrossRef]
- Banque Mondiale (Washington, USA). In D’où vient la Richesse des Nations? Economica: Paris, France, 2007; ISBN 978-2-7178-5322-3.
- Stiglitz, J.; Sen, A.; Fitoussi, J.-P. Richesse des Nations et Bien-être des Individus: Performances Économiques et Progrès Social; Odile Jacob: Paris, France, 2009; ISBN 2-7381-9381-1. [Google Scholar]
- Noble, I.R.; Huq, S.; Anokhin, Y.A.; Carmin, J.; Goudou, D.; Lansigan, F.P.; Osman-Elasha, B.; Villamizar, A. Adaptation Needs and Options. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 833–868. [Google Scholar]
- Rickards, L.; Howden, S.M. Transformational Adaptation: Agriculture and Climate Change. Crop Pasture Sci. 2012, 63, 240–250. [Google Scholar] [CrossRef]
- Watkiss, P.; Cimato, F. The Economics of Adaptation and Climate-Resilient Development: Lessons from Projects for Key Adaptation Challenges; Centre for Climate Change Economics and Policy: Leeds, UK, 2016. [Google Scholar]
- Rios, A.A.; Espinosa, D.M.; Revollo, D.A. Present and Future of the Water Deposits in Calakmul, Mexico: Analysis of the Behaviour of Inhabitants Facing Climate Change; Working Papers, n. 201470; Latin American and Caribbean Environmental Economics Program: San José, Costa Rica, 2014; 46p. [Google Scholar]
- Guillaumont, P.; Guillaumont-Jeanneney, S.; Wagner, L. Mesurer les Vulnérabilités Pour Allouer l’aide au Développement, en Particulier en Afrique; FERDI: Clermont-Ferrand, France, 2020; ISBN 978-2-9550779-7-9. [Google Scholar]
Formula | References |
---|---|
V = 1/3 (E + S + 1 − AC) | [106] |
V = (E − AC) × S | [107,108] |
V = (E * S)/AC | [66,109,110,111,112] |
V = E + S − AC | [67] |
Main Farmed Crop | Wine Farms | Fruit Tree Farms | Field Crop Farms | Vegetable Farms | Mixed-Crop Farms | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Geography | No. | % | No. | % | No. | % | No. | % | No. | % | No. | % | |
Mountain | 27 | 54% | 4 | 45% | 2 | 22% | 6 | 60% | 5 | 42% | 44 | 49% | |
Plain | 23 | 46% | 5 | 55% | 7 | 78% | 4 | 40% | 7 | 58% | 46 | 51% | |
Total | 50 | 100% | 9 | 100% | 9 | 100% | 10 | 100% | 12 | 100% | 90 | 100% |
Variables | References |
---|---|
Exposure | |
Number of average annual climatic events (flood, spring frost, hail, and drought) over the period 2009–2018 | [31,55] |
Sensitivity | |
Soil type | [37,38,113] |
Trees age (for perennial crops) | (Agricultural cooperative technicians) |
Plot orientation (for perennial crops) | (Agricultural cooperative technicians) |
Crop diversification | [37,41,114] |
Varietal diversification (varieties, rootstocks) | [37,41,114] |
Adaptive capacity linked to human capital | |
Training | [37,115] |
Agricultural experience | [37] |
Age of farmer | [116,117] |
Agricultural Network | [29,33] |
Adaptive capacity linked to economic capital | |
Product marketing | [118,119] |
Off-farm income | [120,121,122] |
Legal status | (Chambre d’agriculture) |
Land status | [123] |
Crop insurance | [49,119,124] |
Adaptive capacity linked to technical capital | |
Soil management | [125,126] |
Irrigation | [119,127] |
Plant management | [114,128] |
Agro-ecological infrastructure | [129] |
Component | Variables | Wine Farms | Fruit Tree Farms | Field Crop Farms | Vegetable Farms | Mixed-Crop Farms | All Farms | |
---|---|---|---|---|---|---|---|---|
Exposure | Drought | 0.766 | 0.733 | 0.778 | 0.690 | 0.717 | 0.749 | |
Floods | 0.134 | 0.211 | 0.189 | 0.190 | 0.083 | 0.147 | ||
Spring frost | 0.300 | 0.289 | 0.311 | 0.370 | 0.233 | 0.299 | ||
Hail | 0.412 | 0.433 | 0.322 | 0.380 | 0.358 | 0.394 | ||
Sensitivity | Soil type | 0.782 | 0.777 | 0.755 | 0.73 | 0.72 | 0.758 | |
Trees age of perennial crops | 0.708 | 0.766 | --- | --- | 0.646 | 0.704 | ||
Plots orientation | 0.562 | 0.267 | --- | --- | 0.277 | 0.423 | ||
Crop diversification | 0.416 | 0.689 | 0.644 | 0.890 | 0.733 | 0.561 | ||
Varietal diversification | 0.758 | 0.8 | 0.733 | 0.940 | 0.744 | 0.765 | ||
Adaptive capacity | Human | Training | 0.546 | 0.544 | 0.422 | 0.450 | 0.408 | 0.504 |
Agricultural experience | 0.844 | 0.867 | 0.778 | 0.870 | 0.808 | 0.838 | ||
Age of the farmer | 0.482 | 0.322 | 0.389 | 0.470 | 0.400 | 0.444 | ||
Agricultural network | 0.720 | 0.722 | 0.622 | 0.740 | 0.650 | 0.703 | ||
Economic | product marketing | 0.846 | 0.867 | 0.778 | 0.890 | 0.833 | 0.844 | |
Off-farm income | 0.688 | 0.733 | 0.822 | 0.770 | 0.542 | 0.696 | ||
Legal status | 0.302 | 0.211 | 0.244 | 0.260 | 0.292 | 0.281 | ||
Land status | 0.606 | 0.700 | 0.200 | 0.550 | 0.583 | 0.566 | ||
Crop insurance | 0.342 | 0.233 | 0.133 | 0.280 | 0.117 | 0.273 | ||
Technical | Soil management | 0.796 | 0.810 | 0.730 | 0.900 | 0.740 | 0.790 | |
Irrigation | 0.542 | 0.720 | 0.166 | 0.880 | 0.616 | 0.575 | ||
Plant management | 0.738 | 0.744 | 0.700 | 0.770 | 0.748 | 0.740 | ||
Agro-ecological infrastructure | 0.412 | 0.400 | 0.333 | 0.510 | 0.308 | 0.388 |
Wine Farms | Fruit Tree Farms | Field Crops Farms | Vegetable Farms | Mixed-Crop Farms | All Farms | |||
---|---|---|---|---|---|---|---|---|
Calculated assessment | Exposure | 0.580 | 0.580 | 0.580 | 0.580 | 0.580 | 0.580 | |
Sensitivity | 0.588 | 0.457 | 0.445 | 0.231 | 0.441 | 0.501 | ||
Human AC | 0.506 | 0.448 | 0.397 | 0.472 | 0.495 | 0.484 | ||
Economic AC | 0.490 | 0.468 | 0.346 | 0.365 | 0.460 | 0.456 | ||
Technical AC | 0.425 | 0.650 | 0.331 | 0.601 | 0.545 | 0.473 | ||
Global AC | 0.474 | 0.522 | 0.358 | 0.479 | 0.500 | 0.471 | ||
Vulnerability | Average | 0.742 | 0.506 | 0.730 | 0.281 | 0.518 | 0.636 | |
Maximum | 1.232 | 0.621 | 0.866 | 0.489 | 0.763 | 1.232 | ||
Minimum | 0.416 | 0.347 | 0.493 | 0.167 | 0.294 | 0.167 | ||
Declared assessment | Exposure | 0.629 | 0.629 | 0.637 | 0.607 | 0.634 | 0.628 | |
Sensitivity | 0.558 | 0.429 | 0.403 | 0.223 | 0.394 | 0.470 | ||
Human AC | 0.519 | 0.451 | 0.403 | 0.463 | 0.489 | 0.490 | ||
Economic AC | 0.541 | 0.558 | 0.444 | 0.433 | 0.538 | 0.521 | ||
Technical AC | 0.451 | 0.656 | 0.376 | 0.619 | 0.561 | 0.498 | ||
Global AC | 0.504 | 0.555 | 0.407 | 0.505 | 0.529 | 0.503 | ||
Vulnerability | Average | 0.712 | 0.487 | 0.646 | 0.263 | 0.474 | 0.601 | |
Maximum | 1.275 | 0.596 | 0.848 | 0.425 | 0.736 | 1.275 | ||
Minimum | 0.386 | 0.392 | 0.402 | 0.178 | 0.319 | 0.178 |
Variables | Class 1 | Class 2 | Class3 |
---|---|---|---|
Average declared vulnerability | 0.333 | 0.612 | 0.919 |
Number of farms | 22 | 51 | 17 |
Percentage | 24% | 57% | 19% |
Vulnerability variables | |||
S (soil type) | 0.350 | 0.428 | 0.670 |
S (varietal diversification) | 0.291 | 0.473 | 0.583 |
S (crop diversification) | 0.256 | 0.693 | 0.810 |
S (trees age of perennial crops) | 0.229 | 0.425 | 0.486 |
S (plot orientation) | 0.241 | 0.466 | 0.742 |
AC (legal status) | 0.331 | 0.380 | 0.165 |
AC (irrigation) | 0.646 | 0.344 | 0.191 |
AC (soil management) | 0.594 | 0.435 | 0.398 |
Other variables | |||
Overall vulnerability score assigned by farmers | 0.527 | 0.631 | 0.688 |
UAA | 13 | 30 | 17 |
Farm types | 80% of vegetable and mixed-crop farms | 61% wine farms | 94% wine farms |
Geographical location | 60% of farms in the mountain | 65% of farms in the plain | 77% of farms in the mountain |
Current adaptation measures | 96% of farmers have taken adaptation measures | 57% of farmers have taken adaptation measures | 24% of farmers have taken adaptation measures |
Labor need | The labor need has increased for 73% of farms | The labor need has increased for 37% of farms | The labor need has increased for 24% of farms |
Crops introduced during the last 10 years | 68% of farms have introduced new crops | 24% of farms have introduced new crops | 24% of farms have introduced new crops |
Crops abandoned during the last 10 years | 59% of farms have abandoned crops | 16% of farms have abandoned crops | 12% of farms have abandoned crops |
Adaptation policies should be favored by public policies | 77% of farmers have chosen policies that promote crop diversification | 69% of farmers have chosen policies that promote varietal diversification and irrigation | 82% of farmers have chosen policies that promote varietal diversification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaatra, A.; Requier-Desjardins, M.; Rey-Valette, H.; Blayac, T.; Belhouchette, H. Assessment of Farm Vulnerability to Climate Change in Southern France. Land 2025, 14, 1388. https://doi.org/10.3390/land14071388
Zaatra A, Requier-Desjardins M, Rey-Valette H, Blayac T, Belhouchette H. Assessment of Farm Vulnerability to Climate Change in Southern France. Land. 2025; 14(7):1388. https://doi.org/10.3390/land14071388
Chicago/Turabian StyleZaatra, Abderraouf, Mélanie Requier-Desjardins, Hélène Rey-Valette, Thierry Blayac, and Hatem Belhouchette. 2025. "Assessment of Farm Vulnerability to Climate Change in Southern France" Land 14, no. 7: 1388. https://doi.org/10.3390/land14071388
APA StyleZaatra, A., Requier-Desjardins, M., Rey-Valette, H., Blayac, T., & Belhouchette, H. (2025). Assessment of Farm Vulnerability to Climate Change in Southern France. Land, 14(7), 1388. https://doi.org/10.3390/land14071388