The Spatiotemporal Evolution, Driving Mechanisms, and Future Climate Scenario-Based Projection of Soil Erosion in the Southwest China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Database
2.3. Methodology
2.3.1. Soil Erosion Assessment
- (1)
- Rainfall erosivity factor (R)
- (2)
- Soil erodibility factor (K)
- (3)
- Slope length and slope steepness factor (LS)
- (4)
- Vegetation cover factor (C)
- (5)
- Soil and water conservation practices factor (P)
2.3.2. XGBoost and SHAP Models
2.3.3. Statistics
3. Results
3.1. Spatiotemporal Variation in Soil Erosion Forcing Factors
3.2. Spatiotemporal Variation in Soil Erosion
3.2.1. Spatial Distribution of Soil Erosion
3.2.2. Spatial and Temporal Trends of Soil Erosion
3.3. Effects of Driving Factors for Soil Erosion
3.3.1. XGBoost Model Setup and Validation
3.3.2. Influence of Climate Factors on Soil Erosion
3.3.3. Influence of Topographical Factors on Soil Erosion
3.3.4. Influence of Anthropogenic Factors on Soil Erosion
3.3.5. The Interactive Effects of Driving Factors
3.4. Soil Erosion Projections
3.4.1. Rainfall Erosivity Factor
3.4.2. Soil Erosion in Different Scenarios
4. Discussion
4.1. Reliability and Accuracy of Estimates
4.2. Response Measures Under Future Scenarios
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Sessay, M.F.; Blaikie, P.; Brookfield, H. Land Degradation and Society; Routledge: New York, NY, USA, 1987. [Google Scholar]
- Obalum, S.E.; Buri, M.M.; Nwite, J.C.; Hermansah, Yoshinori, W.; Igwe, C.A.; Toshiyuki, W. Soil Degradation-Induced Decline in Productivity of Sub-Saharan African Soils: The Prospects of Looking Downwards the Lowlands with the Sawah Ecotechnology. Appl. Environ. Soil Sci. 2012, 2012, 673926. [Google Scholar] [CrossRef]
- Yang, X.M.; Zhang, X.P.; Deng, W.; Fang, H.J. Black soil degradation by rainfall erosion in Jilin, China. Land Degrad. Dev. 2003, 14, 409–420. [Google Scholar] [CrossRef]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Fan, H.; Cai, Q.; Cheng, G.; Cui, M. Comparative study of the soil erosion and control in the three major black soil regions in the world. J. Nat. Resour. 2005, 20, 387–393. [Google Scholar]
- Wang, Y.; Yang, M.Y.; Liu, P.L. Contribution partition of water and wind erosion on cultivated slopes in northeast black soil region of China. J. Nucl. Agric. Sci. 2010, 24, 790–795. [Google Scholar]
- Humphrey, O.S.; Osano, O.; Aura, C.M.; Marriott, A.L.; Dowell, S.M.; Blake, W.H.; Watts, M.J. Evaluating spatio-temporal soil erosion dynamics in the Winam Gulf catchment, Kenya for enhanced decision making in the land-lake interface. Sci. Total Environ. 2022, 815, 151975. [Google Scholar] [CrossRef]
- Baiamonte, G.; Minacapilli, M.; Novara, A.; Gristina, L. Time scale effects and interactions of rainfall erosivity and cover management factors on vineyard soil loss erosion in the semi-arid area of southern Sicily. Water 2019, 11, 978. [Google Scholar] [CrossRef]
- Williams, J.R.; Renard, K.G.; Dyke, P.T. A new method for assessing erosion’s effects on soil productivity. J. Soil Water Conserv. 1983, 38, 381–383. [Google Scholar] [CrossRef]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Matthews, F.; Liakos, L.; Bezak, N.; Diodato, N.; Ballabio, C. Global rainfall erosivity projections for 2050 and 2070. J. Hydrol. 2022, 610, 127865. [Google Scholar] [CrossRef]
- Le Roux, J.J.; Morgenthal, T.L.; Malherbe, J.; Pretorius, D.J.; Sumner, P.D. Water erosion prediction at a national scale for South Africa. Water Sa 2008, 34, 305–314. [Google Scholar] [CrossRef]
- Wei, C.; Dong, X.; Yu, D.; Zhang, T.; Zhao, W.; Ma, Y.; Su, B. Spatio-temporal variations of rainfall erosivity, correlation of climatic indices and influence on human activities in the Huaihe River Basin, China. Catena 2022, 217, 106486. [Google Scholar] [CrossRef]
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of intra-annual and inter-annual variabilities of soil erosion in Crete Island (Greece) by incorporating the Dynamic “Nature” of R and C-Factors in RUSLE modeling. Remote Sens. 2020, 12, 2439. [Google Scholar] [CrossRef]
- Castro, R.M.; dos Santos Alves, W.; de Oliveira Marcionilio, S.M.L.; De Moura, D.M.B.; da Silva Oliveira, D.M. Soil losses related to land use and rainfall seasonality in a watershed in the Brazilian Cerrado. J. South Am. Earth Sci. 2022, 119, 104020. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Dou, H.; Wang, R.; Wang, H.; Jian, W. Rainfall early warning threshold and its spatial distribution of rainfall-induced landslides in China. Rock Mech. Bull. 2023, 2, 100056. [Google Scholar] [CrossRef]
- Johannsen, L.L.; Schmaltz, E.M.; Mitrovits, O.; Klik, A.; Smoliner, W.; Wang, S.; Strauss, P. An update of the spatial and temporal variability of rainfall erosivity (R-factor) for the main agricultural production zones of Austria. Catena 2022, 215, 106305. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Beguería, S.; Nadal-Romero, E.; González-Hidalgo, J.C.; Lana-Renault, N.; Sanjuán, Y. A meta-analysis of soil erosion rates across the world. Geomorphology 2015, 239, 160–173. [Google Scholar] [CrossRef]
- Taye, G.; Poesen, J.; Vanmaercke, M.; Van Wesemael, B.; Martens, L.; Teka, D.; Nyssen, J.; Deckers, J.; Vanacker, V.; Haregeweyn, N. Evolution of the effectiveness of stone bunds and trenches in reducing runoff and soil loss in the semi-arid Ethiopian highlands. Z. Geomorphol. 2015, 59, 477–493. [Google Scholar] [CrossRef]
- Li, Y.H.; He, Y.M.; Yang, Z.S. Analysis on reduced grain yield from agricultural natural disaster in Jinsha River Basin of Yunnan province. J. Mt. Sci. 2002, 20, 43–48. [Google Scholar]
- Li, Y.; Bai, X.; Zhou, Y.; Qin, L.; Tian, X.; Tian, Y.; Li, P. Spatial–Temporal Evolution of Soil Erosion in a Typical Mountainous Karst Basin in SW China, Based on GIS and RUSLE. Arab. J. Sci. Eng. 2016, 41, 209–221. [Google Scholar] [CrossRef]
- Zhao, R.; Zhang, Q.; Tjugito, H.; Cheng, X. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes. Proc. Natl. Acad. Sci. USA 2015, 112, 342–347. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, S.K.; Dubey, A.K.; Ray, R.L.; Mustak, S.; Rawat, K.S. Prediction of soil erosion risk using earth observation data under recent emission scenarios of CMIP6. Geocarto Int. 2022, 37, 7041–7064. [Google Scholar] [CrossRef]
- Chen, L.; Wang, G.; Miao, L.; Gnyawali, K.R.; Li, S.; Amankwah, S.O.Y.; Huang, J.; Lu, J.; Zhan, M. Future drought in CMIP6 projections and the socioeconomic impacts in China. Int. J. Climatol. 2021, 41, 4151–4170. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.E.I.; Chen, L.D.; Yun, Y. Progress of the ecosystem services and management of terraces. Mt. Res. 2016, 34, 374–384. [Google Scholar]
- Zhang, H.; Zhang, R.; Qi, F.; Liu, X.; Niu, Y.; Fan, Z.; Zhang, Q.; Li, J.; Yuan, L.; Song, Y. The CSLE model based soil erosion prediction: Comparisons of sampling density and extrapolation method at the county level. Catena 2018, 165, 465–472. [Google Scholar] [CrossRef]
- Duan, X.; Gu, Z.; Li, Y.; Xu, H. The spatiotemporal patterns of rainfall erosivity in Yunnan Province, southwest China: An analysis of empirical orthogonal functions. Glob. Planet. Change 2016, 144, 82–93. [Google Scholar] [CrossRef]
- Xiwen, L.; Walker, D. The plant geography of Yunnan Province, southwest China. J. Biogeogr. 1986, 13, 367–397. [Google Scholar] [CrossRef]
- Hong, D.J.; Bo, C.Q.; Quan, T.Y.; Qiang, L.J. Dynamic change and spatial characteristics of soil erosion in Yunnan Province. West. For. Sci. 2018, 47, 15–21. [Google Scholar]
- Duan, X.; Bai, Z.; Rong, L.; Li, Y.; Ding, J.; Tao, Y.; Li, J.; Li, J.; Wang, W. Investigation method for regional soil erosion based on the Chinese Soil Loss Equation and high-resolution spatial data: Case study on the mountainous Yunnan Province, China. Catena 2020, 184, 104237. [Google Scholar] [CrossRef]
- Panagos, P.; Karydas, C.G.; Gitas, I.Z.; Montanarella, L. Monthly soil erosion monitoring based on remotely sensed biophysical parameters: A case study in Strymonas river basin towards a functional pan-European service. Int. J. Digit. Earth 2012, 5, 461–487. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Li, X.; Che, T.; Li, X.; Wang, L.; Bao, Q. CASEarth Poles: Big Data for the Three Poles. Bull. Am. Meteorol. Soc. 2020, 101, E1475–E1491. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal Trends and Attribution of Drought across China from 1901–2100. Sustainability 2020, 12, 477. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, S. Spatiotemporal change and attribution of potential evapotranspiration over China from 1901 to 2100. Theor. Appl. Climatol. 2021, 145, 79–94. [Google Scholar] [CrossRef]
- Yoder, D.; Lown, J. The future of RUSLE: Inside the new revised universal soil loss equation. J. Soil Water Conserv. 1995, 50, 484–489. [Google Scholar] [CrossRef]
- Swain, R.; Sahoo, N.K.; Mishra, A. Potential Soil Erosion Mapping and Priority-Based Adaption Strategies Using RUSLE and Geospatial Techniques. J. Hydrol. Eng. 2024, 29, 05024007. [Google Scholar] [CrossRef]
- Tao, H.; Wang, W. Analysis of nitrogen and phosphorus losses in soil erosion process based on GIS: Taking Dingxi city Anding district as an example. J. Green Sci. Technol. 2018, 24, 15–17. [Google Scholar]
- Wischmeier, W.H. Rainfall energy and its relationship to soil loss. Eos Trans. Am. Geophys. Union 1958, 39, 285–291. [Google Scholar]
- Zhang, J.; Gao, G.; Li, Z.; Fu, B.; Gupta, H.V. Identification of climate variables dominating streamflow generation and quantification of streamflow decline in the Loess Plateau, China. Sci. Total Environ. 2020, 722, 137935. [Google Scholar] [CrossRef]
- Williams, J.R.; Jones, C.A.; Kiniry, J.R.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–0511. [Google Scholar] [CrossRef]
- Foster, G.R.; McCool, D.K.; Renard, K.G.; Moldenhauer, W.C. Conversion of the universal soil loss equation to SI metric units. J. Soil Water Conserv. 1981, 36, 355–359. [Google Scholar] [CrossRef]
- Fu, S.H.; Liu, B.Y.; Zhou, G.Y.; Sun, Z.X.; Zhu, X.L. Calculation tool of topographic factors. Sci. Soil Water Conserv. 2015, 13, 105–110. [Google Scholar]
- Renard, K.G. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); US Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1997. [Google Scholar]
- Mccool, D.K.; Brown, L.C.; Foster, G.R.; Mutchler, C.K.; Meyer, L.D. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Liu, B.Y.; Nearing, M.A.; Shi, P.J.; Jia, Z.W. Slope Length Effects on Soil Loss for Steep Slopes. Soil Sci. Soc. Am. J. 2000, 64, 1759–1763. [Google Scholar] [CrossRef]
- Cai, C.; Ding, S.; Shi, Z.; Huang, L.; Zhang, G. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed. J. Soil Water Conserv. 2000, 14, 19–24. [Google Scholar]
- Li, T.; Zheng, L. Soil erosion changes in the Yanhe watershed from 2001 to 2010 based on RUSLE model. J. Nat. Resour. 2012, 27, 1164–1175. [Google Scholar]
- Li, H.; Hao, L.A.; Zhang, X.M.; Wang, C.G.; Zhang, Y.J.; Ma, B. Temporal and Spatial Variation of Soil Erosion in Yarlung Zangbo, Nyangqu and Lhasa Rivers Area of Xizang Autonomous Region. Bull. Soil Water Conserv. 2024, 44, 291–301. [Google Scholar]
- Zhou, L.; Wang, P.; Cao, R. Soil Erosion Driving Factors and Ecological Security Evaluation for Yan’an City from 2000 to 2020. J. Ecol. Rural Environ. 2022, 38, 511–520. [Google Scholar]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Sundararajan, M.; Najmi, A. The many Shapley values for model explanation. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 9269–9278. [Google Scholar]
- Hateffard, F.; Mohammed, S.; Alsafadi, K.; Enaruvbe, G.O.; Heidari, A.; Abdo, H.G.; Rodrigo-Comino, J. CMIP5 climate projections and RUSLE-based soil erosion assessment in the central part of Iran. Sci. Rep. 2021, 11, 7273. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil Erosion, Conservation and Eco-Environment Changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Ganasri, B.P.; Ramesh, H. Assessment of soil erosion by RUSLE model using remote sensing and GIS—A case study of Nethravathi Basin. Geosci. Front. 2016, 7, 953–961. [Google Scholar] [CrossRef]
- Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev. 2016, 163, 94–117. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Xiong, M.; Sun, R.; Chen, L. Effects of soil conservation techniques on water erosion control: A global analysis. Sci. Total Environ. 2018, 645, 753–760. [Google Scholar] [CrossRef]
- Panagos, P.; Meusburger, K.; Alewell, C.; Montanarella, L. Soil erodibility estimation using LUCAS point survey data of Europe. Environ. Model. Softw. 2012, 30, 143–145. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Zhang, Z.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; Liu, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [Google Scholar] [CrossRef]
- Rao, W.; Shen, Z.; Duan, X. Spatiotemporal patterns and drivers of soil erosion in Yunnan, Southwest China: RULSE assessments for recent 30 years and future predictions based on CMIP6. Catena 2023, 220, 106703. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.U.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Shi, P.; Li, P.; Li, Z.; Sun, J.; Wang, D.; Min, Z. Effects of grass vegetation coverage and position on runoff and sediment yields on the slope of Loess Plateau, China. Agric. Water Manag. 2022, 259, 107231. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Le Bissonnais, Y.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Huang, L.; Luo, Y. Spatial and temporal characteristics of abrupt heavy rainfall events over Southwest China during 1981–2017. Int. J. Climatol. 2021, 41, 3286–3299. [Google Scholar] [CrossRef]
- Zhou, P.; Luukkanen, O.; Tokola, T.; Nieminen, J. Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 2008, 75, 319–325. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Meusburger, K.; Alewell, C.; Lugato, E.; Montanarella, L. Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 2015, 48, 38–50. [Google Scholar] [CrossRef]
- Yang, R.; Yang, S.; Chen, L.; Yang, Z.; Xu, L.; Zhang, X.; Liu, G.; Jiao, C.; Bai, R.; Zhang, X. Effect of vegetation restoration on soil erosion control and soil carbon and nitrogen dynamics: A meta-analysis. Soil Tillage Res. 2023, 230, 105705. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
Data | Resolution | Data Source |
---|---|---|
Precipitation [35] | 1000 m | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) (accessed on 19 March 2025). |
Potential evapotranspiration (PET) [36] | 1000 m | CASEarth: Big Earth Data for Three Poles (https://portal.casearth.cn › poles) (accessed on 19 March 2025). |
Average monthly temperature (TMP) [35] | 1000 m | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) (accessed on 19 March 2025). |
Soil data | 1:1 million | National Earth System Science Data Center |
Land use | 30 m | In Earth System Science Data (https://zenodo.org/records/12779975) (accessed on 19 March 2025). |
DEM | 30 m | Geospatial Data Cloud Platform |
NDVI | 1000 m | (http://www.resdc.cn/DOI, https://doi.org/10.12078/2018060601) (accessed on 19 March 2025). |
GDP | 1000 m | (http://www.resdc.cn/DOI, https://doi.org/10.12078/2017121102) |
Population | 1000 m | (http://www.resdc.cn/DOI, https://doi.org/10.12078/2017121101) (accessed on 19 March 2025). |
CMIP6 [37,38,39] | 1000 m | National Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn/zh-hans/data/f3b17306-fd3e-423c-9084-83c41f9072c0) (accessed on 19 March 2025). |
Land Use Type | Cropland | Forest | Shrubland | Grassland | Water | Bare Land | Built-Up Area |
---|---|---|---|---|---|---|---|
p value | 0.6 | 0.3 | 0.5 | 0.4 | 0 | 1 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Zhong, C.; Wang, Y.; Hua, W. The Spatiotemporal Evolution, Driving Mechanisms, and Future Climate Scenario-Based Projection of Soil Erosion in the Southwest China. Land 2025, 14, 1341. https://doi.org/10.3390/land14071341
Huang Y, Zhong C, Wang Y, Hua W. The Spatiotemporal Evolution, Driving Mechanisms, and Future Climate Scenario-Based Projection of Soil Erosion in the Southwest China. Land. 2025; 14(7):1341. https://doi.org/10.3390/land14071341
Chicago/Turabian StyleHuang, Yangfei, Chenjian Zhong, Yuan Wang, and Wenbin Hua. 2025. "The Spatiotemporal Evolution, Driving Mechanisms, and Future Climate Scenario-Based Projection of Soil Erosion in the Southwest China" Land 14, no. 7: 1341. https://doi.org/10.3390/land14071341
APA StyleHuang, Y., Zhong, C., Wang, Y., & Hua, W. (2025). The Spatiotemporal Evolution, Driving Mechanisms, and Future Climate Scenario-Based Projection of Soil Erosion in the Southwest China. Land, 14(7), 1341. https://doi.org/10.3390/land14071341