Reducing Efficiency Loss Caused by Land Investment Introduction Based on Factor-Biased Technological Progress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Review
2.2. Analysis of Frame Construction
2.3. Mathematical Derivation Based on CES Production Function
2.3.1. Reference Production Function
2.3.2. Enterprise Efficiency Loss
2.3.3. Urban Efficiency Loss
2.3.4. Selection of Factor-Biased Technological Progress of Industrial Enterprises
2.4. Metrological Model Settings
3. Results and Discussion
3.1. Reference Regression
3.2. Robustness Test
3.3. Selection of Factor-Biased Technological Progress of Industrial Enterprise
3.3.1. Reducing Enterprise Efficiency Loss
3.3.2. Urban Efficiency Loss Reduction
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
1 | Generally speaking, industrial enterprises include industrial enterprises and productive services. Note that productive services are usually not involved in industrial land issues due to their flexible operation mode. For this reason, only industrial enterprises are addressed in this study. |
2. | Based on the fundamental theorem of inequality and the two-dimensional deformation of Cauchy–Schwarz inequality, it can be concluded that a2 + b2 + c2 ≥ 3abc ≥ 1/3 (a + b + c)2, and then, we have . Meanwhile, because of a + b + c = 1/2 [(a + b) + (b + c) + (a + c)], inequality can be derived as follows: abc ≥ 1/36 [(a + b) + (b + c) + (a + c)]2. The split deformation can be obtained as follows: ≥ 1/36 [(a + b) + (b + c) + (a + c)]. According to the objective of this study, we can assume that PKK = a > 1, PLL = b > 1 and 0 < (1 − distT)MRPTT2 = c < 1, so ; following this, abc > 1/36 [(a + b) + (b + c) + (a + c)] can be drawn. Therefore, we can conclude that . |
3. | According to the multiplier maximum principle, when a = b = c, the value of a*b*c is the largest. |
References
- Liu, W.; Zhang, H. Structural change and technical advance of Chinese economic growth. Econ. Res. J. 2008, 43, 4–15. [Google Scholar]
- Zhu, P.; Yu, F. The impact of economic policy uncertainty on industrial output: The regulatory role of technological progress. Sustainability 2022, 14, 10428. [Google Scholar] [CrossRef]
- Han, C. Structural reform, technological progress and total factor productivity in manufacturing. Sustainability 2023, 15, 432. [Google Scholar] [CrossRef]
- Acemoglu, D. Equilibrum bias of technology. Econometric 2007, 75, 1371–1410. [Google Scholar] [CrossRef]
- Kluge, J.; Lappöhn, S.; Plank, K. Predictors of TFP growth in European countries. Empirica 2023, 50, 109–140. [Google Scholar] [CrossRef]
- Wen, L.; Shen, T.; Huang, Y. A multi-regional CGE model for the optimization of land resource allocation: A simulation of the impact of high-quality development policies in China. Land 2025, 14, 450. [Google Scholar] [CrossRef]
- Zhao, D.; Ma, L.; Qu, T. Marketization level of industrial land in China and its impacting factors from the perspective of resource value manifesting. Resour. Sci. 2016, 38, 217–227. [Google Scholar]
- Li, X.; Huang, Y.; Ma, R. Land resource mismatch and productivity difference of Chinese industrial enterprise. J. Manag. World 2016, 8, 86–96. [Google Scholar]
- Zhang, H.; Yu, Z.; Du, S. The constraint of local economic growth target and manufacturing export technological sophistication. J. World Econ. 2019, 42, 120–142. [Google Scholar]
- Tian, J.; Zhang, H.; Gong, T. Does land investment introduction promote local industrial development? Based on land, enterprises on matching data. China Econ. Q. 2020, 19, 33–60. [Google Scholar]
- Xue, B. Fiscal decentralization, inter-governmental competition and structural deviation of land price. Financ. Econ. 2011, 3, 49–57. [Google Scholar]
- Li, S.; Xia, T. Is it feasible for China’s resource-based cities to achieve sustainable development? An actual resource dependence perspective. Land 2025, 14, 710. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Feng, Y.; Wu, Q. The impact of the regional differentiation of land supply on total factor productivity in China: From the perspective of total factor productivity decomposition. Land 2022, 11, 1859. [Google Scholar] [CrossRef]
- Vandermeer, M.C.; Halleux, J. Evaluation of the spatial and economic effectiveness of industrial land policies in northwest Europe. Eur. Plan. Stud. 2017, 25, 1454–1475. [Google Scholar] [CrossRef]
- Park, J.; Kim, J. Does industrial land sprawl matter in land productivity? A case study of industrial parks of South Korea. J. Clean. Prod. 2022, 334, 130209. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Ou, H. Financial competition, investment-attraction competition and implementation deviation of land binding index control policy. China Popul. Resour. Environ. 2018, 28, 123–131. [Google Scholar]
- Tao, R.; Wang, H. Chinese unfinished transformation of land reform: Challenge and solution. Int. Econ. Rev. 2010, 2, 93–123. [Google Scholar]
- Jin, W.; Zhou, C. Effect of land marketization level and land prices on foreign direct investment in China. Land 2022, 11, 1433. [Google Scholar] [CrossRef]
- Li, T.; Ma, J.; Mo, B. Does the land market have an impact on green total factor productivity? A case study on China. Land 2021, 10, 595. [Google Scholar] [CrossRef]
- Zhao, D.; Lan, J.; Ma, L. The impact of land price marketization on inputted factor and technology choice about Chinese industrial sector. J. Financ. Econ. 2016, 42, 85–96. [Google Scholar]
- Qian, J.; Ji, B. Impact of energy-biased technological progress on inclusive green growth. Sustainability 2022, 14, 16151. [Google Scholar] [CrossRef]
- Ye, J.Q.; Guo, G.X.; Yu, K.H.; Lu, Y.J. Allocation efficiency of public sports resources based on the DEA model in the top 100 economic counties of China in Zhejiang. Sustainability 2023, 15, 9585. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, X.; Meng, W.; He, Y.; Zhang, C. Industrial structure optimization of Wuhan urban agglomeration based on TFP and industrial spatial linkages. Land 2022, 11, 1703. [Google Scholar] [CrossRef]
- Xiao, Z.M.; Peng, H.F.; Pan, Z.Y. Innovation, external technological environment and the total factor productivity of enterprises. Account. Financ. 2021, 62, 3–29. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, J.; Liu, X. Heterogeneous industrial agglomeration, its coordinated development and total factor energy efficiency. Environ. Dev. Sustain. 2023, 25, 5511–5537. [Google Scholar] [CrossRef]
- Li, C.; Luo, M.; Jin, R. Resource misallocation and distribution characteristic of Chinese enterprise scale. Soc. Sci. China 2017, 2, 25–43. [Google Scholar]
- Zhang, L.; Huang, X.; Liu, J. Land investment introduction and enterprise’s behavior: Micro evidence from industrial enterprise with purchased land. Econ. Perspect. 2019, 9, 82–96. [Google Scholar]
- Rafaela, B.; Nicolás, A. Misallocation and manufacturing TFP in Ecuador: Formal, semi-formal and informal firms. J. Econ. Struct. 2019, 8, 16. [Google Scholar]
- Kumari, R.D.T.S.; Tang, S.H.K.; Chen, S.X.; Li, B. Misallocation and productivity slowdown over two decades: Evidence from Sri Lanka. Appl. Econ. 2021, 53, 4417–4435. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.H.; Gong, M.Q. Assessing the effects of land transfer marketization on green total factor productivity from the perspective of resource allocation: Evidence from China. Front. Environ. Sci. 2022, 10, 975282. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, G.; Li, G. Market environment, key industrial policy and enterprise’s productivity differential. J. Manag. World 2019, 35, 114–126. [Google Scholar]
- Ranpati, K.; Shawn, C.; Bei, L.; Sam, T. Can land misallocation be a greater barrier to development than capital? Evidence from manufacturing firms in Sri Lanka. Econ. Model. 2023, 126, 106368. [Google Scholar]
- Xi, M.; Mei, L. Industrial land price, selection effect and industrial efficiency. Econ. Res. J. 2019, 54, 102–118. [Google Scholar]
- Peng, S.; Wang, J.; Sun, H.; Guo, N. How does the spatial misallocation of land resources affect urban industrial transformation and upgrading? evidence from China. Land 2022, 11, 1630. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X.; Skitmore, M. Industrial land price and its impact on urban growth: A Chinese case study. Land Use Policy 2014, 36, 199–209. [Google Scholar] [CrossRef]
- Wang, J.; Han, P. The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River. Econ. Belt 2023, 13, 974. [Google Scholar] [CrossRef]
- Meina, C. Revenue, time horizon, and land allocation in China. Land Use Policy 2017, 62, 101–112. [Google Scholar]
- Kilumelume, M.; Morando, B.; Newman, C.; Rand, J. Tariffs, productivity and resource misallocation. World Bank Econ. Rev. 2025, lhaf010. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, F.; Li, K. Impact of market misallocations on green TFP: Evidence from countries along the belt and road. Environ. Sci. Pollut. Res. 2019, 26, 35034–35048. [Google Scholar] [CrossRef]
- Wei, X.; Wang, H.; Wang, H. The relationship among factor substitution, technological progress and intensive construction of land-using. Resour. Sci. 2014, 36, 1356–1364. [Google Scholar]
- Xu, Y.; Li, P. Factor price-distortion and direction of Chinese technological progress. Forum Sci. Technol. China 2017, 8, 12–19. [Google Scholar]
- Acemoglu, D.; Gancia, G.; Zilibotti, F. Off shorting and directed technical change. Am. Econ. J. 2015, 7, 84–122. [Google Scholar]
- Lei, L.; Xu, C. Biased technological progress, biased factor allocation and TFP growth in China. Stat. Res. 2015, 32, 10–16. [Google Scholar]
- Wang, Z.; Zhao, X.G.; Zhou, Y. Biased technological progress and total factor productivity growth: From the perspective of China’s renewable energy industry. Renew. Sustain. Energy Rev. 2021, 146, 11136. [Google Scholar]
- Lagomarsino, E. Which nesting structure for the CES? A new selection approach based on input separability. Econ. Model. 2021, 102, 105562. [Google Scholar] [CrossRef]
- Winford, H.; Masanjala, C.P. The Solow model with CES technology: Nonlinearities and parameter heterogeneity. J. Appl. Econom. 2004, 19, 171–201. [Google Scholar]
- Hang, J.; Guo, M.; Niu, Q. Resource misallocation, capacity utilization and productivity. China Econ. Q. 2021, 21, 93–112. [Google Scholar]
- Wen, L.; Hou, T.; Zhang, L. A comparison and application of moderator and mediator. Acta Psychol. Sinca 2005, 2, 268–274. [Google Scholar]
- Wang, Q.; Dong, Y.; Song, F. Study on TFP of Chinese economy and its influencing factors. Stat. Decis. 2022, 3, 97–101. [Google Scholar]
- Zhang, J.; Wu, Y.; Zhang, P. The estimation of Chinese provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Shan, J. Reestimating the capital stock of China: 1952–2006. J. Quant. Tech. Econ. 2008, 25, 17–31. [Google Scholar]
- Liu, W.; Yan, X. The crowding in/out effects of FDI against the background of local governments’ land investment introduction. J. Financ. Econ. 2016, 42, 17–29. [Google Scholar]
- Gao, Y.; Wang, Q.; Yu, S. Financial geography structure and short-term loan and long-term investment of enterprise. J. Shanxi Univ. Financ. Econ. 2022, 44, 43–57. [Google Scholar]
- Chen, T.; Kung, K. Does land revenue windfall create a political resource curse? Evidence from China. J. Dev. Econ. 2016, 123, 86–106. [Google Scholar] [CrossRef]
- Cao, J. Land financialization, resource misallocation and total factor productivity of enterprises. Chin. Rev. Financ. Stud. 2024, 16, 71–85+155. [Google Scholar]
- Zhang, S.; Yu, Y. Land transfer, resource misallocation and total factor productivity. J. Financ. Econ. 2019, 45, 73–85. [Google Scholar]
- Peng, S.; Li, M.; Wang, J. The total factor productivity loss effect and formation mechanism of land resource misallocation. China Land Sci. 2022, 36, 55–65. [Google Scholar]
- Cheng, K.; Yu, J. Mismatch of urban land supply in China: Characteristic facts and its impact on total factor productivity. China Land Sci. 2022, 36, 43–54. [Google Scholar]
Element Combination | Decision Condition | Decision on Factor-Biased Technological Progress |
---|---|---|
capital, labor, and land | all cases | preference for land-biased |
capital and labor | the price of capital is relatively high | preference for labor-biased |
the price of labor is relatively high | preference for capital-biased | |
the quantity of capital is relatively high | preference for labor-biased | |
the quantity of labor is relatively high | preference for capital-biased |
Variable Symbol | Sample Capacity | Mean Value | Standard Deviation | Minimum Value | Maximum Value |
---|---|---|---|---|---|
tfprit | 3692 | 0.2745 | 0.2234 | 0.0028 | 0.7937 |
techchit | 3692 | 1.0734 | 0.5753 | 0.0700 | 3.8510 |
sechit | 3692 | 1.2751 | 2.0650 | 0.0120 | 12.0750 |
tfprjt | 3692 | 0.1298 | 0.8187 | 0.0091 | 0.5496 |
techchjt | 3692 | 2.2607 | 4.4634 | 0.0140 | 8.5190 |
sechjt | 3692 | 1.5446 | 1.7618 | 0.003 | 12.6310 |
pd | 3692 | 0.0406 | 0.1228 | −0.0760 | 0.2074 |
indu | 3692 | 380.8280 | 546.4619 | 0.0262 | 20,846.2100 |
fix | 3692 | 4,209,949 | 6,571,492 | 205,014 | 91,918,073 |
labor | 3692 | 19.4349 | 31.5502 | 0.8218 | 429.13 |
loan | 3692 | 0.1026 | 0.2284 | 0.0035 | 1.2299 |
pay | 3692 | 3.1272 | 1.8027 | 0.9523 | 32.0626 |
pgdp | 3692 | 4.1881 | 34.9104 | 0.2767 | 642.1762 |
stru | 3692 | 29.3975 | 14.0814 | 8.5800 | 56.4600 |
tech | 3692 | 14.1030 | 13.0259 | 10.5237 | 16.2729 |
fore | 3692 | 16.8510 | 19.5265 | 2.0000 | 30.8256 |
infr | 3692 | 11.4432 | 50.2219 | 0.0599 | 200 |
Variable | Model (1) | Model (2) | Model (3) | |||
---|---|---|---|---|---|---|
lntfprit | lntfprjt | lntfprit | lntfprjt | lntfprit | lntfprjt | |
lntfpri(t − 1) | 0.189 ** | 0.163 *** | 0.155 * | |||
(3.29) | (1.67) | (3.295) | ||||
lntfprj(t − 1) | 0.252 *** | 0.207 *** | 0.101 *** | |||
(4.367) | (2.953) | (2.47) | ||||
pdit | −0.154 ** | −0.029 * | −0.217 * | 0.084 ** | −0.033 ** | −0.259 * |
(−1.716) | (−2.737) | (−2.558) | (1.309) | (−2.489) | (−5.177) | |
pdi(t −2) | −0.114 *** | −0.001 ** | −0.318 * | −0.031 | ||
(−1.329) | (−0.002) | (−2.457) | (−4.629) | |||
pgdpit | −0.387 *** | −0.072 ** | ||||
(−2.406) | (−3.186) | |||||
struit | −0.329 ** | 0.157 ** | ||||
(−2.185) | (2.458) | |||||
techit | 0.439 * | 0.002 ** | ||||
(2.247) | (0.005) | |||||
foreit | 0.168 ** | 0.073 * | ||||
(1.109) | (3.446) | |||||
infrit | 0.327 *** | 0.144 *** | ||||
(1.553) | (2.67) | |||||
cons | 0.274 | 0.513 | 0.092 | 0.499 | 0.658 | 0.421 |
AR(2) | 0.049 | 0.167 | 0.118 | 0.197 | 0.124 | 0.392 |
Sargan P | 0.365 | 0.218 | 0.659 | 0.335 | 0.427 | 0.593 |
Hansen P | 0.591 | 0.324 | 0.211 | 0.468 | 0.536 | 0.418 |
N | 3692 | 3692 | 3692 | 3692 | 3692 | 3692 |
Variable | Model (4) | Model (5) | ||
---|---|---|---|---|
Lntfprit (LP) | Lntfprjt (LP) | lntfprit (DEA) | Lntfprjt (DEA) | |
lntfpri(t − 1) | 0.194 ** | 0.036 * | ||
(3.757) | (2.279) | |||
lntfprj(t − 1) | 0.086 *** | 0.031 *** | ||
(2.973) | (1.984) | |||
pdit | −0.147 *** | −0.005 * | ||
(−2.216) | (−0.667) | |||
The average of geographical slope × national urban CPI with one-phase lag | ||||
0.215 | −0.043 ** | |||
(4.379) | (−1.722) | |||
Control variable | YES | YES | YES | YES |
Cons | 0.653 | −0.316 | 0.715 | 1.272 |
AR (2) | 0.151 | 0.247 | 0.161 | 0.114 |
Sargan P | 0.289 | 0.375 | 0.079 | 0.182 |
Hansen P | 0.159 | 0.394 | 0.233 | 0.216 |
N | 3692 | 3692 | 3692 | 3692 |
Explanatory Variable | Model (6) | Model (7) | Explanatory Variable | Model (8) | Model (9) | Explanatory Variable | Model (10) | Model (11) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
techchit | techchit | sechit | sechit | techchit | techchit | sechit | sechit | techchit | techchit | sechit | sechit | |||
pdit | −0.024 ** | −0.174 *** | pdit | 0.154 ** | −0.213 ** | pdit | 0.386 ** | −0.014 *** | ||||||
(−2.376) | (−0.366) | (2.023) | (−2.177) | (3.742) | (−1.727) | |||||||||
lninduit | 0.119 | −0.043 ** | laborit | 0.039 | −0.089 * | lnfixit | 0.006 | −0.058 * | ||||||
(4.057) | (−1.995) | (3.627) | (−3.164) | (0.001) | (−2.904) | |||||||||
pdit | −0.387 * | −0.242 * | pdit | −0.001 | −0.376 ** | pdit | 0.151 * | −0.039 ** | ||||||
(−0.006) | (−2.351) | (−1.463) | (−2.441) | (3.796) | (−5.635) | |||||||||
lninduit | −0.135 * | −0.007 | laborit | −0.128 ** | −0.149 * | lnfixit | 0.671 ** | −0.020 * | ||||||
(−2.319) | (−0.001) | (−1.774) | (−1.557) | (1.042) | (−2.483) | |||||||||
lninduit × pdit | −0.118 * | −0.239 ** | laborit × pdit | −0.061 * | −0.038 ** | lnfixit × pdit | −0.027 *** | −0.003 * | ||||||
(−1.627) | (−1.018) | (−2.024) | (−2.993) | (−0.010) | (−1.926) | |||||||||
Explanatory variable | model (12) | model (13) | Explanatory variable | model (14) | model (15) | |||||||||
techchit | techchit | sechit | sechit | techchit | techchit | sechit | sechit | |||||||
pdit | 0.449 * | −0.063 ** | pdit | −0.089 *** | −0.320 * | |||||||||
(3.956) | (−2.755) | (−1.283) | (−1.255) | |||||||||||
payit | 0.002 ** | −0.018 * | loanit | −0.349 *** | −0.001 *** | |||||||||
(0.001) | (−1.493) | (−0.158) | (−0.004) | |||||||||||
pdit | −0.001 | −0.142 ** | pdit | −0.117 ** | −0.445 ** | |||||||||
(−0.005) | (−4.889) | (−3.953) | (−3.686) | |||||||||||
payit | −0.03 * | −0.123 ** | loanit | −0.005 * | −0.027 *** | |||||||||
(−0.154) | (−1.956) | (−2.493) | (−1.625) | |||||||||||
payit × pdit | −0.004 * | −0.002 ** | loanit × pdit | −0.016 * | −0.001 * | |||||||||
(−0.199) | (−0.006) | (−1.487) | (−0.020) |
Explanatory Variable | Model (16) | Model (17) | Explanatory Variable | Model (18) | Model (19) | Explanatory Variable | Model (20) | Model (21) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
techchjt | techchjt | sechjt | sechjt | techchjt | techchjt | sechjt | sechjt | techchjt | techchjt | sechjt | sechjt | |||
pdit | 0.166 ** | 0.337 ** | pdit | 0.179 ** | 0.568 ** | pdit | 0.293 ** | 1.136 * | ||||||
(0.351) | (1.924) | (1.836) | (1.537) | (1.809) | (1.228) | |||||||||
lninduit | 0.119 * | 0.043 | laborit | 1.523 | 1.356 * | lnfixit | 0.124 | 0.159 | ||||||
(4.057) | (1.995) | (0.612) | (2.774) | (1.776) | (0.332) | |||||||||
pdit | −0.056 * | 0.001 * | pdit | 0.269 * | 0.184 * | pdit | 0.391 | 0.983 ** | ||||||
(−0.458) | (3.672) | (1.173) | (0.320) | (1.247) | (1.412) | |||||||||
lninduit | 0.294 * | 1.439 ** | laborit | 0.443 | 0.003 * | lnfixit | 0.168 | 0.136 * | ||||||
(1.763) | (0.754) | (1.197) | (0.001) | (2.872) | (1.582) | |||||||||
lninduit × pdit | −0.072 ** | 0.157 ** | laborit× pdit | 0.035 | −0.612 ** | lnfixit × pdit | 0.121 * | 0.247 | ||||||
(−0.238) | (1.489) | (0.182) | (−1.397) | (0.158) | (3.379) | |||||||||
Explanatory variable | model (22) | model (23) | Explanatory variable | model (24) | model (25) | |||||||||
techchjt | techchjt | sechjt | sechjt | techchjt | techchjt | sechjt | sechjt | |||||||
pdit | 0.934 * | 0.157 | pdit | 8.559 | 3.368 ** | |||||||||
(2.378) | (1.264) | (27.407) | (11.179) | |||||||||||
payit | 1.536 * | 1.037 * | loanit | 4.633 ** | 3.722 * | |||||||||
(1.759) | (1.659) | (6.162) | (4.241) | |||||||||||
pdit | 0.139 * | 0.382 ** | pdit | 4.141 * | 2.413 | |||||||||
(1.515) | (1.791) | (4.873) | (9.747) | |||||||||||
payit | 0.086 * | 0.345 * | loanit | 3.298 | 5.356 * | |||||||||
(0.352) | (2.947) | (11.350) | (2.896) | |||||||||||
payit × pdit | 0.728 * | 0.013 * | loanit × pdit | 1.254 ** | 2.348 * | |||||||||
(0.573) | (0.001) | (1.138) | (4.371) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Zhou, L. Reducing Efficiency Loss Caused by Land Investment Introduction Based on Factor-Biased Technological Progress. Land 2025, 14, 1319. https://doi.org/10.3390/land14071319
Zhang N, Zhou L. Reducing Efficiency Loss Caused by Land Investment Introduction Based on Factor-Biased Technological Progress. Land. 2025; 14(7):1319. https://doi.org/10.3390/land14071319
Chicago/Turabian StyleZhang, Ning, and Linyun Zhou. 2025. "Reducing Efficiency Loss Caused by Land Investment Introduction Based on Factor-Biased Technological Progress" Land 14, no. 7: 1319. https://doi.org/10.3390/land14071319
APA StyleZhang, N., & Zhou, L. (2025). Reducing Efficiency Loss Caused by Land Investment Introduction Based on Factor-Biased Technological Progress. Land, 14(7), 1319. https://doi.org/10.3390/land14071319