Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Data Analysis
2.4. Statistical Analysis
3. Results and Analysis
3.1. Effects of Phosphate Fertilizer Application on Yield
3.2. Effects of Phosphate Fertilizer Application on Wheat Biomass Yield and Thousand-Grain Weight
3.3. Effects of Phosphate Fertilizer Application on Soil Quality Water Content
3.4. Effects of Phosphate Fertilizer Application on Soil Nutrients
3.5. Effects of Phosphate Fertilizer Application on Plant Nutrients
3.6. Effects of Phosphate Fertilizer Application on Production Efficiency
3.7. Path Analysis of Factors Affecting Yield
4. Discussion
4.1. The Optimal Phosphorus Application Rate for Wheat Cultivation on Saline–Alkali Soils
4.2. Pathways of the Impact of Phosphorus Application on Wheat Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. 2022 Global Report on Food Crises. 2022. Available online: https://www.fao.org/3/cb9997en/cb9997en (accessed on 13 May 2025).
- Xia, J.B.; Ren, R.R.; Zhang, S.Y.; Wang, Y.H.; Fang, Y. Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China. Geoderma 2019, 349, 25–35. [Google Scholar] [CrossRef]
- Liu, S.; Yang, M.; Cheng, F.; Coxixo, A.; Wu, X.; Zhang, Y. Factors driving the relationships between vegetation and soil properties in the Yellow River Delta, China. Catena 2018, 165, 279–285. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Bu, X.X.; Xie, X.W.; Wu, C.X.; Liu, M.Q.; Xu, Y.M. Optimizing Phosphatic Fertilizer Drip Timing to Improve Cotton Yield in Saline–Alkali Soil and Mitigate Phosphorus–Calcium Binding Risks. Agronomy 2025, 15, 138. [Google Scholar] [CrossRef]
- Xie, H.; Li, J.; Zhang, Y.; Xu, X.; Wang, L.; Ouyang, Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. Sci. Total Environ. 2021, 797, 149038. [Google Scholar] [CrossRef]
- Eynard, A.; Lal, R.; Wiebe, K. Crop Response in Salt-Affected Soils. J. Sustain. Agric. 2005, 27, 5–50. [Google Scholar] [CrossRef]
- Huang, X.M.; Xu, X.P.; Zhu, Q.C.; Zhang, Y.T. Optimizing water and nitrogen inputs for sustainable wheat yields and minimal environmental impacts. Agric. Syst. 2024, 220, 104061. [Google Scholar] [CrossRef]
- Huang, M.Y.; Zhang, Z.Y.; Zhai, Y.M.; Lu, P.R.; Zhu, C.L. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Hou, P.; Li, B.W.; Cao, E.K.; Liu, Z.H.; Li, Y.; Sun, Z.Q.; Xiao, Y.; Ma, C.J. Optimizing Nitrogen and Phosphorus Fertilizer Application for Wheat Yield on Alkali Soils: Mechanisms and Effects. Agronomy 2025, 15, 734. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Q.; Li, Z.; Tian, C.; Qiao, Y.; Du, K.; Cheng, H.; Chen, G.; Li, X.; Li, F. Soil salinity weakening and soil quality enhancement after long-term reclamation of different croplands in the Yellow River Delta. Sustainability 2023, 15, 1173. [Google Scholar] [CrossRef]
- He, K.; Xu, Y.; He, G.; Zhao, X.; Wang, C.; Li, S.; Zhou, G.; Hu, R. Combined application of acidic biochar and fertilizer synergistically enhances Miscanthus productivity in coastal saline-alkaline soil. Sci. Total Environ. 2023, 893, 164811. [Google Scholar] [CrossRef] [PubMed]
- El-Syed, N.M.M.; Helmy, A.M.; Fouda, S.E.E.; Nabil, M.M.; Abdullah, T.A.; Alhag, S.K.; Al-Shuraym, L.A.; Al Syaad, K.M.; Ayyoub, A.; Mahmood, M.; et al. Biochar with organic and inorganic fertilizers improves defenses, nitrogen use efficiency, and yield of maize plants subjected to water deficit in an alkaline soil. Sustainability 2023, 15, 12223. [Google Scholar] [CrossRef]
- Zhang, T.; Wan, W.; Sun, Z.; Li, H. Phosphorus uptake and rhizosphere properties of alfalfa in response to phosphorus fertilizer types in sandy soil and saline-alkali soil. Front. Plant Sci. 2024, 15, 1377626. [Google Scholar] [CrossRef] [PubMed]
- Tunturk, M.; Tunturk, R.; Yasar, F. Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress. Afr. J. Biotechnol. 2008, 7, 1650–1654. [Google Scholar] [CrossRef]
- Wang, H.; Ren, H.; Han, K.; He, Q.; Zhang, L.; Zhao, Y.; Liu, Y.; Zhang, J.; Zhao, B.; Ren, B. Sustainable improvement strategies for summer maize yield, nitrogen use efficiency and greenhouse gas emission intensity in the North China Plain. Eur. J. Agron. 2023, 143, 126712. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D. Long-term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, X.; Li, X. The response strategies to saline-alkali stress in wheat: Soil improvement, agronomic management, salt-tolerant variety breeding, and biochemical regulation. Geogr. Res. Bull. 2025, 4, 179–182. [Google Scholar] [CrossRef]
- Kim, G.W.; Lim, J.Y.; Islam Bhuiyan, M.S.; Das, S.; Khan, M.I.; Kim, P.J. Investigating the arable land that is the main contributor to global warming between paddy and upland vegetable crops under excessive nitrogen fertilization. J. Clean. Prod. 2022, 346, 131197. [Google Scholar] [CrossRef]
- Li, T.L.; Xie, Y.H.; Hong, J.P.; Feng, Q.; Sun, C.H.; Wang, Z.W. Effects of phosphorus application rates on winter wheat yield and phosphorus use efficiency in drylands of South Shanxi Province. Chin. J. Eco-Agric. 2013, 21, 658–665. [Google Scholar] [CrossRef]
- Jiang, Z.Q.; Feng, C.N.; Huang, L.L.; Guo, W.S.; Zhu, X.K.; Peng, Y.X. Effects of phosphorus application on dry matter production and phosphorus uptake in wheat (Triticum aestivum L.). Soil Sci. Plant Nutr. 2006, 12, 628–634. [Google Scholar] [CrossRef]
- Bremner, J.M. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Yan, S.; Wu, Y.; Fan, J.; Zhang, F.; Zheng, J.; Qiang, S.; Guo, J.; Xiang, Y.; Zou, H.; Wu, L. Dynamic change and accumulation of grain macronutrient (N, P and K) concentrations in winter wheat under different drip fertigation regimes. Field Crops Res. 2020, 250, 107767. [Google Scholar] [CrossRef]
- Ma, C.J.; Wu, W.B.; Hou, P.; Wang, Y.; Li, B.W.; Yuan, H.B.; Liu, L.N.; Wang, X.J.; Sun, Z.Q.; Li, Y. Effect of combined nitrogen and phosphorus fertilization on summer maize yield and soil fertility in coastal saline-alkali land. Agric. Water Manag. 2025, 309, 109277. [Google Scholar] [CrossRef]
- Meng, F.G.; Zhao, L.D.; Li, W.L.; Zhao, C.X. Optimizing nitrogen application for enhanced yield and quality of strong-gluten wheat: A case study of zhongmai 578 in the north china plain. Agronomy 2024, 14, 301. [Google Scholar] [CrossRef]
- Byrt, C.S.; Munns, R.; Gilliham, R.A.B.M.; Wege, S. Root cell wall solutions for crop plants in saline soils. Plant Sci. 2018, 269, 47–55. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Lampurlanes, J.; Fernandez, F.G.; Cantero-Martinez, C. Nitrogen fertilization strategies for improved Mediterranean rainfed wheat and barley performance and water and nitrogen use efficiency. Eur. J. Agron. 2021, 124, 126238. [Google Scholar] [CrossRef]
- Talbi-Zribi, O.; Abdelly, C.; Debez, A. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.). Plant Biol. 2011, 13, 872–880. [Google Scholar] [CrossRef]
- Wang, N.; Wu, J.J.; Gu, Y.H.; Jiang, K.T.; Ma, X.Y. Factors influencing the spatiotemporal variability in the irrigation requirements of winter wheat in the north China plain under Climate Change. Agronomy 2022, 12, 1987. [Google Scholar] [CrossRef]
- Liu, Y.J.; Chen, Q.M.; Tan, Q.H. Responses of wheat yields and water use efficiency to climate change and nitrogen fertilization in the North China plain. Food Sec. 2019, 11, 1231–1242. [Google Scholar] [CrossRef]
- Ma, C.J.; Yuan, H.; Shi, N.; Sun, Z.; Liu, S.; Wang, X.; Li, B.; Li, S.; Liu, Z. Effects of Phosphate Application Rate on Grain Yield and Nutrition Use of Summer Maize under the Coastal Saline-Alkali Land. Agronomy 2023, 13, 2668. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, W.; Gao, W.; Cui, H.; Xu, X.; Jiang, W.; Liu, S. Content patterns of maize endogenous hormones and grain yield influenced by field phosphorus application. Agronomy 2023, 13, 1911. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Jia, C.L.; Ren, B.Z.; Liu, P.; Zhao, B.; Zhang, J.W. Effects of combined application of nitrogen and phosphorus on yield and leaf senescence physiological characteristics in summer maize. Acta Agron. Sin. 2023, 49, 1616–1629. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Garg, A.K.; Kabba, B.S. Phosphorus accumulation, leaching and residual effects on crop yields from long-term applications in the subtropics. Soil Use Manag. 2007, 23, 417–427. [Google Scholar] [CrossRef]
- Cecilia, C.I.; Fabrizio, D.I.A.; Rosa, G.A. Phosphorus downward movement in soil highly charged with cattle manure. Environ. Earth Sci. 2016, 75, 5687. [Google Scholar] [CrossRef]
- Djodjic, F.; Borling, K.; Bergstrom, L. Phosphorus leaching in relation to soil type and soil phosphorus content. J. Environ. 2004, 33, 678–684. [Google Scholar] [CrossRef]
- Luo, X.; Mazer, S.J.; Guo, H.; Zhang, N.; Weiner, J.; Hu, S. Nitrogen: Phosphorous supply ratio and allometry in five alpine plant species. Ecol. Evol. 2016, 6, 8881–8892. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, D.; Liu, M.; Hafeez, M.B.; Wen, P.; Wang, X.; Wang, R.; Zhang, X.; Li, J. Optimized fertilizer recommendation method for nitrate residue control in a wheat–maize double cropping system in dryland farming. Field Crops Res. 2021, 271, 108258. [Google Scholar] [CrossRef]
- Dai, J.; Wang, Z.; Li, M.; He, G.; Li, Q.; Cao, H.; Wang, S.; Gao, Y.; Hui, X. Winter wheat grain yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the Loess Plateau of China. J. Field Crops Res. 2016, 196, 180–190. [Google Scholar] [CrossRef]
- Wen, Z.; Shen, J.; Blackwell, M.; Li, H.; Zhao, B.; Yuan, H. Combined applications of nitrogen and phosphorus fertilizers with manure increase maize yield and nutrient uptake via stimulating root growth in a long-term experiment. Pedosphere 2016, 26, 62–73. [Google Scholar] [CrossRef]
- Galindo, F.S.; Strock, J.S.; Pagliari, P.H. Nutrient accumulation affected by corn stover management associated with nitrogen and phosphorus fertilization. Agriculture 2021, 11, 1118. [Google Scholar] [CrossRef]
- Schlegel, A.J.; Havlin, J.L. Corn yield and grain nutrient uptake from 50 years of nitrogen and phosphorus fertilization. Agron. J. 2017, 109, 335–342. [Google Scholar] [CrossRef]
- Ashley, K.; Cordell, D.; Mavinic, D. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 2011, 84, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Lu, G.; Ayaz, M.; Zhang, H.; Wang, R.; Lv, F.; Yang, X.; Sun, B.; Zhang, S. Phosphorus efficiency, soil phosphorus dynamics and critical phosphorus level under long-term fertilization for single and double cropping systems. Agric. Ecosyst. Environ. 2018, 256, 1–11. [Google Scholar] [CrossRef]
Soil Depth (cm) | Conductivity (mS/cm) | pH | Organic Matter (g/kg) | Alkaline–Hydrolyzable Nitrogen (mg/kg) | Available Phosphorus (mg/kg) | Quick-Acting Potassium (mg/kg) |
---|---|---|---|---|---|---|
0–20 | 0.21 | 8.16 | 9.63 | 50.72 | 10.36 | 152 |
20–40 | 0.47 | 8.07 | 6.83 | 56.17 | 5.96 | 122 |
40–60 | 0.59 | 8.01 | 3.68 | 23.29 | 5.79 | 59 |
GNU | GPU | GKU | SNU | SPU | SKU | |
---|---|---|---|---|---|---|
Treatment | 10.03 ** | 13.44 ** | 3.14 * | 31.36 ** | 6.59 ** | 9.72 ** |
Year | 18.86 ** | 67.92 ** | 20.25 ** | 1.67 ns | 10.23 ** | 57.66 ** |
Treatment × year | 0.44 ns | 2.28 * | 0.65 ns | 0.84 ns | 1.43 ns | 1.36 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Song, P.; Liu, C.; Liu, L.; Wang, X.; Sun, Z.; Xiao, Y.; Gao, X.; Li, Y. Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China. Land 2025, 14, 1241. https://doi.org/10.3390/land14061241
Ma C, Song P, Liu C, Liu L, Wang X, Sun Z, Xiao Y, Gao X, Li Y. Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China. Land. 2025; 14(6):1241. https://doi.org/10.3390/land14061241
Chicago/Turabian StyleMa, Changjian, Peng Song, Chang Liu, Lining Liu, Xuejun Wang, Zeqiang Sun, Yang Xiao, Xinhao Gao, and Yan Li. 2025. "Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China" Land 14, no. 6: 1241. https://doi.org/10.3390/land14061241
APA StyleMa, C., Song, P., Liu, C., Liu, L., Wang, X., Sun, Z., Xiao, Y., Gao, X., & Li, Y. (2025). Optimizing Phosphorus Fertilization for Enhanced Yield and Nutrient Efficiency of Wheat (Triticum aestivum L.) on Saline–Alkali Soils in the Yellow River Delta, China. Land, 14(6), 1241. https://doi.org/10.3390/land14061241