Examining Municipal Procurement and Cooperation Networks in Smart Land Use Planning: The Yangtze River Delta Case
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Latent Dirichlet Allocation Topic Model Analysis
2.3.2. Social Network Analysis
2.3.3. Multiple Regression Quadratic Assignment Procedure
3. SLUP Procurement Project Characteristics and Their Spatial Distribution
3.1. SLUP Procurement Project Characteristics
3.2. Spatial Distribution Patterns
4. Intercity Cooperation Networks and Influencing Factors in SLUP
4.1. Characteristics of Cooperation Networks
4.2. Factors Influencing Partner Selection in Cooperation Networks
4.2.1. Proximity and Homogeneity
4.2.2. MRQAP Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, X.; Li, F.; de Vries, W.T. Smart Land Use Planning: New Theories, New Tools and New Practice. Land 2023, 12, 1315. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Land 2020, 12, 2495. [Google Scholar] [CrossRef]
- Li, Z.; Chen, B.; Wu, S.; Su, M.; Chen, J.M.; Xu, B. Deep Learning for Urban Land Use Category Classification: A Review and Experimental Assessment. Remote Sens. Environ. 2024, 311, 114290. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine Learning in Modelling Land-Use and Land Cover-Change (LULCC): Current Status, Challenges and Prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [CrossRef]
- Pham, Q.B.; Ali, S.A.; Parvin, F.; Van On, V.; Sidek, L.M.; Đurin, B.; Cetl, V.; Šamanović, S.; Minh, N.N. Multi-Spectral Remote Sensing and GIS-Based Analysis for Decadal Land Use Land Cover Changes and Future Prediction Using Random Forest Tree and Artificial Neural Network. Adv. Space Res. 2024, 74, 17–47. [Google Scholar] [CrossRef]
- Peng, M.; Liu, Y.; Khan, A.; Ahmed, B.; Sarker, S.K.; Ghadi, Y.Y.; Bhatti, U.A.; Al-Razgan, M.; Ali, Y.A. Crop Monitoring Using Remote Sensing Land Use and Land Change Data: Comparative Analysis of Deep Learning Methods Using Pre-Trained CNN Models. Big Data Res. 2024, 36, 100448. [Google Scholar] [CrossRef]
- Aslam, R.W.; Naz, I.; Quddoos, A.; Quddusi, M.R. Assessing Climatic Impacts on Land Use and Land Cover Dynamics in Peshawar, Khyber Pakhtunkhwa, Pakistan: A Remote Sensing and GIS Approach. GeoJournal 2024, 89, 202. [Google Scholar] [CrossRef]
- Zhuo, Z.; Ye, J.; Wang, Y.; Chen, H.; Liang, B. Smart Cities, Smarter Land Use? Unveiling the Efficiency Gains from China’s Digital Urban Transformation. Ecol. Indic. 2025, 171, 113151. [Google Scholar] [CrossRef]
- Masoumi, Z.; van Genderen, J. Artificial Intelligence for Sustainable Development of Smart Cities and Urban Land-Use Management. Geo-spat. Info. Sci. 2024, 27, 1212–1236. [Google Scholar] [CrossRef]
- Kalfas, D.; Kalogiannidis, S.; Chatzitheodoridis, F.; Toska, E. Urbanization and Land Use Planning for Achieving the Sustainable Development Goals (SDGs): A Case Study of Greece. Urban Sci. 2023, 7, 43. [Google Scholar] [CrossRef]
- Chaturvedi, V.; de Vries, W.T. Machine Learning Algorithms for Urban Land Use Planning: A Review. Urban Sci. 2021, 5, 68. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Q.; Zhang, X.; Hu, Z.; Chen, J.; Zhong, C.; Li, H. CUGUV: A Benchmark Dataset for Promoting Large-Scale Urban Village Mapping with Deep Learning Models. Sci. Data 2025, 12, 390. [Google Scholar] [CrossRef]
- Batty, M. Digital Twins in City Planning. Nat. Comput. Sci. 2024, 4, 192–199. [Google Scholar] [CrossRef]
- Ameyaw, P.D.; de Vries, W.T. Blockchain Technology Adaptation for Land Administration Services: The Importance of Socio-Cultural Elements. Land Use Policy 2023, 125, 106485. [Google Scholar] [CrossRef]
- Marsal-Llacuna, M.-L.; López-Ibáñez, M.-B. Smart Urban Planning: Designing Urban Land Use from Urban Time Use. J. Urban Technol. 2014, 21, 39–56. [Google Scholar] [CrossRef]
- Jia, C.; Feng, S.; Chu, H.; Huang, W. The Heterogeneous Effects of Urban Form on CO2 Emissions: An Empirical Analysis of 255 Cities in China. Land 2023, 12, 981. [Google Scholar] [CrossRef]
- Ameyaw, P.D.; de Vries, W.T. Toward Smart Land Management: Land Acquisition and the Associated Challenges in Ghana. A Look into a Blockchain Digital Land Registry for Prospects. Land 2021, 10, 239. [Google Scholar] [CrossRef]
- Yu, T.; Huang, X.; Jia, S.; Cui, X. Unveiling the Spatio-Temporal Evolution and Key Drivers for Urban Green High-Quality Development: A Comparative Analysis of China’s Five Major Urban Agglomerations. Land 2023, 12, 1962. [Google Scholar] [CrossRef]
- Kamrowska-Załuska, D. Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities. Land 2021, 10, 1209. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, L.; Wei, X.; Zhang, X. The Impact of Government Digital Transformation on Land Use Efficiency: Evidence from China. Land 2024, 13, 2080. [Google Scholar] [CrossRef]
- Wu, M.; Yan, B.; Huang, Y.; Sarker, M.N.I. Big Data-Driven Urban Management: Potential for Urban Sustainability. Land 2022, 11, 680. [Google Scholar] [CrossRef]
- Lu, S.; Wang, H. How Political Connections Exploit Loopholes in Procurement Institutions for Government Contracts: Evidence from China. Governance 2022, 36, 1205–1224. [Google Scholar] [CrossRef]
- Tang, W.; Wang, Y.; Wu, J. Local Favoritism in China’s Public Procurement: Information Frictions or Incentive Distortion? J. Urban Econ. 2025, 145, 103716. [Google Scholar] [CrossRef]
- Casady, C.B.; Petersen, O.H.; Brogaard, L. Public Procurement Failure: The Role of Transaction Costs and Government Capacity in Procurement Cancellations. Public Manag. Rev. 2023, 1–28. [Google Scholar] [CrossRef]
- Patrucco, A.S.; Kauppi, K.; Di Mauro, C.; Schotanus, F. Enhancing Strategic Public Procurement: A Public Service Logic Perspective. Public Manag. Rev. 2024, 1–21. [Google Scholar] [CrossRef]
- Konashevych, O. Constraints and Benefits of the Blockchain Use for Real Estate and Property Rights. J. Prop. Plan. Environ. Law 2020, 12, 109–127. [Google Scholar] [CrossRef]
- Putri, R.A. Development of Digital Registration Information System in Kelurahan to Improve Administration Efficiency and Transparency. Inf. Technol. Syst. 2024, 1, 92–99. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.; Zhang, S. Smart Initiatives for Land Resource Management: Perspectives and Practices from China. J. Urban Technol. 2023, 30, 3–21. [Google Scholar] [CrossRef]
- Cao, C.; Dragićević, S.; Li, S. Land-Use Change Detection with Convolutional Neural Network Methods. Environments 2019, 6, 25. [Google Scholar] [CrossRef]
- Jiménez-Espada, M.; Martínez García, F.M.; González-Escobar, R. Sustainability Indicators and GIS as Land-Use Planning Instrument Tools for Urban Model Assessment. ISPRS Int. J. Geo-Inf. 2023, 12, 42. [Google Scholar] [CrossRef]
- Zhuo, Y.; Jing, X.; Wang, X.; Li, G.; Xu, Z.; Chen, Y.; Wang, X. The Rise and Fall of Land Use Mix: Review and Prospects. Land 2022, 11, 2198. [Google Scholar] [CrossRef]
- Ejiaku, S. Technology Adoption: Issues and Challenges in Information Technology Adoption in Emerging Economies. J. Int. Technol. Inf. Manag. 2014, 23, 5. [Google Scholar] [CrossRef]
- Arduini, D.; Belotti, F.; Denni, M.; Giungato, G.; Zanfei, A. Technology Adoption and Innovation in Public Services: The Case of E-Government in Italy. Inf. Econ. Policy 2010, 22, 257–275. [Google Scholar] [CrossRef]
- Mu, R.; Wu, P.; Haershan, M. Pre-Contractual Relational Governance for Public–Private Partnerships: How Can Ex-Ante Relational Governance Help Formal Contracting in Smart City Outsourcing Projects? Int. Rev. Adm. Sci. 2023, 89, 112–128. [Google Scholar] [CrossRef]
- Gil-Garcia, J.R.; Zhang, J.; Puron-Cid, G. Conceptualizing Smartness in Government: An Integrative and Multi-Dimensional View. Gov. Inf. Q. 2016, 33, 524–534. [Google Scholar] [CrossRef]
- Zhang, R.; Lin, J.; Sun, D. The Role of Institutions and Markets in Shaping Intercity Investment Networks in China. Cities 2024, 153, 105221. [Google Scholar] [CrossRef]
- Shi, S.; Wong, S.K.; Zheng, C. Network Capital and Urban Development: An Inter-Urban Capital Flow Network Analysis. Reg. Stud. 2022, 56, 406–419. [Google Scholar] [CrossRef]
- Capello, R. The City Network Paradigm: Measuring Urban Network Externalities. Urban Stud. 2000, 37, 1925–1945. [Google Scholar] [CrossRef]
- Castells, M. The Rise of the Network Society, 3rd ed.; John Wiley & Sons: Chichester, UK, 2010; pp. 407–453. [Google Scholar]
- Taylor, P.; Derudder, B. World City Network: A Global Urban Analysis; Routledge: New York, NY, USA, 2015; pp. 7–27. [Google Scholar]
- Coe, N.M.; Dicken, P.; Hess, M.; Yeung, H.W. Making Connections: Global Production Networks and World City Networks. Glob. Netw. 2010, 10, 138–149. [Google Scholar] [CrossRef]
- Mignoni, J.; Bittencourt, B.A.; da Silva, S.B.; Zen, A.C. Orchestrators of Innovation Networks in the City Level: The Case of Pacto Alegre. Innov. Manag. Rev. 2023, 20, 194–210. [Google Scholar] [CrossRef]
- Gebauer, A.; Nam, C.W.; Parsche, R. Regional Technology Policy and Factors Shaping Local Innovation Networks in Small German Cities. Eur. Plan. Stud. 2005, 13, 661–683. [Google Scholar] [CrossRef]
- Leydesdorff, L.; Rafols, I. Local Emergence and Global Diffusion of Research Technologies: An Exploration of Patterns of Network Formation. J. Am. Soc. Inf. Sci. 2011, 62, 846–860. [Google Scholar] [CrossRef]
- De Freitas, S.; Mayer, I.; Arnab, S.; Marshall, I. Industrial and Academic Collaboration: Hybrid Models for Research and Innovation Diffusion. J. High. Educ. Policy Manag. 2014, 36, 2–14. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Feiock, R.C. Toward a Multiplex Network Theory of Interlocal Service Contracting. Public Adm. Rev. 2021, 81, 911–924. [Google Scholar] [CrossRef]
- Feiock, R.C.; Scholz, J.T. (Eds.) Self-Organizing Federalism: Collaborative Mechanisms to Mitigate Institutional Collective Action Dilemmas; Cambridge University Press: Cambridge, UK, 2009; pp. 3–33. [Google Scholar]
- Andrew, S.A.; Short, J.E.; Jung, K.; Arlikatti, S. Intergovernmental Cooperation in the Provision of Public Safety: Monitoring Mechanisms Embedded in Interlocal Agreements. Public Adm. Rev. 2015, 75, 401–410. [Google Scholar] [CrossRef]
- LeRoux, K.; Brandenburger, P.W.; Pandey, S.K. Interlocal Service Cooperation in U.S. Cities: A Social Network Explanation. Public Adm. Rev. 2010, 70, 268–278. [Google Scholar] [CrossRef]
- Shen, R. Regional Governance and Multiplex Networks in Environmental Sustainability: An Exponential Random Graph Model Analysis in the Chinese Local Government Context. Urban Aff. Rev. 2024, 60, 571–613. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, J.; Dai, J.; Wang, D.; Ma, C.; Xu, Y.; Chen, Y. Study on the Spatiotemporal Evolution Characteristics and Influencing Factors on Green Building Development of City Clusters in the Yangtze River Delta Region in China. Sustainability 2023, 15, 9457. [Google Scholar] [CrossRef]
- Tao, Z.; Zhi, Z.; Shangkun, L. Digital Economy, Entrepreneurship, and High Quality Economic Development: Empirical Evidence from Urban China. Front. Econ. China 2022, 17, 393. [Google Scholar]
- Central Government Procurement Network Home Page. Available online: http://www.ccgp.gov.cn (accessed on 13 May 2025).
- Tianyancha Home Page. Available online: http://www.tianyancha.com (accessed on 13 May 2025).
- Chauhan, U.; Shah, A. Topic Modeling Using Latent Dirichlet Allocation: A Survey. ACM Comput. Surv. 2022, 54, 1–35. [Google Scholar] [CrossRef]
- Scott, J. What Is Social Network Analysis? Bloomsbury Academic: London, UK, 2012; pp. 31–57. [Google Scholar]
- Krackhardt, D. Predicting with Networks: Nonparametric Multiple Regression Analysis of Dyadic Data. Soc. Netw. 1988, 10, 359–381. [Google Scholar] [CrossRef]
- Feiock, R.C. Metropolitan Governance and Institutional Collective Action. Urban Aff. Rev. 2009, 44, 356–377. [Google Scholar] [CrossRef]
- Chen, B.; Ma, J.; Feiock, R.; Suo, L. Factors Influencing Participation in Bilateral Interprovincial Agreements: Evidence from China’s Pan Pearl River Delta. Urban Aff. Rev. 2019, 55, 923–949. [Google Scholar] [CrossRef]
- Tavares, A.F.; Camões, P.J. New Forms of Local Governance: A Theoretical and Empirical Analysis of Municipal Corporations in Portugal. Public Manag. Rev. 2010, 12, 587–608. [Google Scholar] [CrossRef]
- Feiock, R.C. The Institutional Collective Action Framework. Policy Stud. J. 2013, 41, 397–425. [Google Scholar] [CrossRef]
- Feiock, R.C.; Lee, I.W.; Park, H.J. Administrators’ and Elected Officials’ Collaboration Networks: Selecting Partners to Reduce Risk in Economic Development. Public Adm. Rev. 2012, 72, S58–S68. [Google Scholar] [CrossRef]
- Yi, H.; Suo, L.; Shen, R.; Zhang, J.; Ramaswami, A.; Feiock, R.C. Regional Governance and Institutional Collective Action for Environmental Sustainability. Public Adm. Rev. 2018, 78, 556–566. [Google Scholar] [CrossRef]
- Yi, H.; Liu, W.; Ma, L. Designed Networks and the Emergence of Self-Organizing Interlocal Learning Network: Evidence from Chinese Cities. Public Adm. 2024, 102, 21–39. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Wu, Y.; Wang, X.; Zhang, W. The Population Flow under Regional Cooperation of “City-Helps-City”: The Case of Mountain-Sea Project in Zhejiang. Land 2022, 11, 1816. [Google Scholar] [CrossRef]
- Zhu, J.; Grigoriadis, T.N. Chinese Dialects, Culture & Economic Performance. China Econ. Rev. 2022, 73, 101783. [Google Scholar] [CrossRef]
Theme | References | Brief Summary |
---|---|---|
Production Networks | [34] | Networks that explore economic value chains and capital flows between enterprises. |
Infrastructure Networks | [35,36] | Networks examining how transportation systems (aviation, railways) influence urban development. |
Innovation Networks | [37,38] | Networks analyzing academic collaboration and technology diffusion pathways. |
Local Government Networks | [39,40,41] | Collaborative structures involving local governments and diverse actors addressing cross-jurisdictional issues, sharing policy knowledge, and aligning regional development strategies. |
Group | Definition | Sub-Topics & Key Terms |
---|---|---|
Real Estate Management | Uses digital tools to record property rights, handle registrations, track transactions, and keep archives in order. | Topic 1: real estate/registration/maps/coordination Topic 11: real estate registration/archives/system upgrades |
Land Resource Protection | Watches over land and the environment with sensors, 3-D models, and surveys to spot fires, erosion, or other risks and keep land records up to date. | Topic 2: monitoring/forest/fire prevention Topic 7: land resources/3D/supervision Topic 10: land/survey/database |
Land Use Planning | Pulls different spatial plans into one shared map so regions can make long-term, well-coordinated decisions about land and infrastructure. | Topic 4: integration/unified planning/infrastructure Topic 5: one map/spatial planning/information systems Topic 6: planning/natural resources/14th Five-Year Plan |
Geographic Information Services | Runs the mapping platforms and online geodata services the other groups rely on, and keeps that data secure and easy to share. | Topic 3: data/mapping/geographic information Topic 8: service projects/land/internet Topic 9: integration/data security/server |
Network | Nodes | Edges | Avg Weighted Degree | Density | Avg Clustering Coefficient | Centralization |
---|---|---|---|---|---|---|
Overall | 41 | 180 | 1360.77 | 0.22 | 0.031 | 0.65 |
Land Use Planning | 41 | 113 | 418.98 | 0.14 | 0.053 | 0.45 |
Land Resource Protection | 41 | 97 | 359.53 | 0.12 | 0.0199 | 0.47 |
Geo-information Services | 41 | 87 | 330.10 | 0.11 | 0.0347 | 0.43 |
Real Estate Management | 41 | 85 | 252.16 | 0.10 | 0.074 | 0.48 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|
−0.086 (0.034) | −0.089 (0.010) | −0.048 (0.011) | −0.078 (0.009) | −0.077 (0.006) | |
Scale homogeneity | |||||
0.171 * (0.029) | 0.167 ** (0.007) | 0.123 (0.010) | 0.142 * (0.008) | 0.134 (0.006) | |
−0.012 (0.113) | −0.157 * (0.030) | 0.070 (0.039) | −0.006 (0.032) | 0.048 (0.022) | |
−0.346 *** (1.187) | −0.263 *** (0.291) | −0.310 *** (0.416) | −0.256 *** (0.319) | −0.319 *** (0.227) | |
−0.005 (0.001) | −0.004 (0.000) | 0.024 (0.000) | −0.040 (0.000) | −0.005 (0.000) | |
−0.195 ** (0.033) | −0.161 ** (0.008) | −0.165 ** (0.011) | −0.149 ** (0.009) | −0.170 ** (0.006) | |
0.114 ** (6.817) | 0.043 (1.667) | 0.091 * (2.319) | 0.110 ** (1.979) | 0.155 *** (1.386) | |
Institutional homogeneity | |||||
−0.118 *** (7.491) | −0.062 * (2.225) | −0.100 *** (2.753) | −0.118 *** (2.302) | −0.113 *** (1.464) | |
0.009 (34.168) | 0.015 (11.465) | 0.003 (13.890) | 0.007 (10.825) | 0.008 (7.063) | |
Cultural homogeneity | |||||
−0.020 (12.522) | −0.004 (3.612) | −0.004 (4.248) | −0.041 (3.628) | −0.023 (2.377) | |
Intercept | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
R² | 0.102 | 0.094 | 0.057 | 0.069 | 0.086 |
Policy Recommendation | Objective | Proposed Action |
---|---|---|
Define technical standards clearly | Improve SLUP targeting and implementation efficiency | Clearly define technical applications and requirements across different functional domains in SLUP policies and projects. |
Enhance regional equity | Reduce technical and resource disparities among cities | Establish robust technical sharing and cooperation mechanisms between core and peripheral cities. |
Promote institutional unification and standardization | Reduce cross-regional cooperation barriers; optimize resource allocation | Actively promote policy and institutional unification and standardization processes within regions. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Xu, Y. Examining Municipal Procurement and Cooperation Networks in Smart Land Use Planning: The Yangtze River Delta Case. Land 2025, 14, 1139. https://doi.org/10.3390/land14061139
Lin G, Xu Y. Examining Municipal Procurement and Cooperation Networks in Smart Land Use Planning: The Yangtze River Delta Case. Land. 2025; 14(6):1139. https://doi.org/10.3390/land14061139
Chicago/Turabian StyleLin, Gangjian, and Yuanshuo Xu. 2025. "Examining Municipal Procurement and Cooperation Networks in Smart Land Use Planning: The Yangtze River Delta Case" Land 14, no. 6: 1139. https://doi.org/10.3390/land14061139
APA StyleLin, G., & Xu, Y. (2025). Examining Municipal Procurement and Cooperation Networks in Smart Land Use Planning: The Yangtze River Delta Case. Land, 14(6), 1139. https://doi.org/10.3390/land14061139