Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Description of the Plots
2.3. Sampling Strategy
2.4. Physicochemical Analysis
2.5. Organic Carbon Stock Calculation (OCS)
2.6. Biological Soil Analysis
2.6.1. DNA Extraction and Polymerase Chain Reaction (PCR) Amplification
2.6.2. Sequencing of the 16S rRNA Gene
2.6.3. Statistical Analyses
3. Results
3.1. Temporal Changes in Soil Physicochemical Properties
3.2. Organic Carbon Variations
3.3. Composition and Structure of Bacterial Microflora
Identification of Operational Taxonomic Units (OTUs)
4. Discussion
4.1. Organic Carbon Dynamics and Soil Physicochemical Properties
4.2. Organic Carbon Stock Variations
4.3. Variation in Soil Bacterial Biomass and Diversity
4.4. The Role of Actinobacteria and Firmicutes in Soil Organic Carbon Dynamics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
16S rRNA | 16S ribosomal RNA (gene used for bacterial studies) |
BD | Bulk density |
C/N | Carbon-to nitrogen ratio |
CaCO3 | Calcium carbonate |
CEC | Cation exchange capacity |
DNA | Deoxyribonucleic acid |
EC | Electrical conductivity (measure of soil salinity) |
GC% | Guanine-cytosine content (DNA base composition) |
INRAA | National Institute of Agronomic Research of Algeria |
IRT | Inhibitor Removal Technology (DNeasy® PowerSoil® kit) |
NGS | Next-generation sequencing |
NPK | Nitrogen-phosphorus-potassium fertilizer |
OC | Organic carbon |
OCS | Organic carbon stock |
OM | Organic matter |
OTU | Operational taxonomic unit |
PA | Amended plot (improved management practices) |
PC | Conventional plot (mineral fertilization) |
PCR | Polymerase chain reaction |
PE | Paired-end sequencing |
PT | Control plot (uncultivated since 1942) |
QC | Quality control |
Q20/Q30 | Sequencing quality scores (1/100 or 1/1000 error rate) |
SOC | Soil organic carbon |
SSUrRNA | Small subunit ribosomal RNA (taxonomic annotation database) |
UPGMA | Unweighted pair group method with arithmetic mean (clustering method) |
References
- Garcia, C.; Moreno, J.L.; Hernandez, T.; Bastida, F. The Biology of Arid Soils; Steven, B., Ed.; De Gruyter: Berlin, Germany, 2017; pp. 15–30. ISBN 9783110419047. [Google Scholar]
- Mirzabaev, A.; Stringer, L.C.; Benjaminsen, T.A.; Gonzalez, P.; Harris, R.; Jafari, M.; Stevens, N.; Tirado, C.M.; Zakieldeen, S. Cross-Chapter Paper 3: Deserts, Semiarid Areas and Desertification. Clim. Chang. 2022, 2195–2231. [Google Scholar]
- Jia, Q.; Li, M.; Dou, X. Climate Change Affects Crop Production Potential in Semi-Arid Regions: A Case Study in Dingxi, Northwest China, in Recent 30 Years. Sustainability 2022, 14, 3578. [Google Scholar] [CrossRef]
- Lal, R. Carbon Sequestration in Dryland Ecosystems. Environ. Manag. 2004, 33, 528–544. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Rao, C.S.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Chapter One—Soil Organic Carbon Dynamics: Impact of Land Use Changes and Management Practices: A Review. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 156, pp. 1–107. ISBN 0065-2113. [Google Scholar]
- Brahim, N.; Ibrahim, H.; Mlih, R.; Bouajila, A.; Karbout, N.; Bol, R. Soil OC and N Stocks in the Saline Soil of Tunisian Gataaya Oasis Eight Years after Application of Manure and Compost. Land 2022, 11, 442. [Google Scholar] [CrossRef]
- Amelung, W.; Bossio, D.; de Vries, W.; Kögel-Knabner, I.; Lehmann, J.; Amundson, R.; Bol, R.; Collins, C.; Lal, R.; Leifeld, J.; et al. Towards a global-scale soil climate mitigation strategy. Nat. Commun. 2020, 11, 5427. [Google Scholar] [CrossRef] [PubMed]
- Tisdall, J.M. Formation of Soil Aggregates and Accumulation of Soil Organic Matter. In Structure and Organic Matter Storage in Agricultural Soils; CRC Press: Boca Raton, FL, USA, 2020; pp. 57–96. [Google Scholar]
- Murphy, B.W. Impact of Soil Organic Matter on Soil Properties—A Review with Emphasis on Australian Soils. Soil Res. 2015, 53, 605–635. [Google Scholar] [CrossRef]
- Foster, R.C. Microenvironments of Soil Microorganisms. Biol. Fertil. Soils 1988, 6, 189–203. [Google Scholar] [CrossRef]
- Mohammadi, K.; Heidari, G.; Khalesro, S.; Sohrabi, Y. Soil Management, Microorganisms and Organic Matter Interactions: A Review. Afr. J. Biotechnol. 2011, 10, 19840. [Google Scholar]
- Kaviya, N.; Upadhayay, V.K.; Singh, J.; Khan, A.; Panwar, M.; Singh, A.V. Role of Microorganisms in Soil Genesis and Functions. In Mycorrhizosphere Pedogenesis; Springer: Berlin/Heidelberg, Germany, 2019; pp. 25–52. [Google Scholar]
- Ramond, J.-B.; Jordaan, K.; Díez, B.; Heinzelmann, S.M.; Cowan, D.A. Microbial Biogeochemical Cycling of Nitrogen in Arid Ecosystems. Microbiol. Mol. Biol. Rev. 2022, 86, e00109–e00121. [Google Scholar] [CrossRef]
- Fisk, L.M.; Barton, L.; Maccarone, L.D.; Jenkins, S.N.; Murphy, D.V. Seasonal Dynamics of Ammonia-Oxidizing Bacteria but Not Archaea Influence Soil Nitrogen Cycling in a Semi-Arid Agricultural Soil. Sci. Rep. 2022, 12, 7299. [Google Scholar] [CrossRef]
- Smith, J.L.; Halvorson, J.J.; Bolton, H., Jr. Spatial Relationships of Soil Microbial Biomass and C and N Mineralization in a Semi-Arid Shrub-Steppe Ecosystem. Soil Biol. Biochem. 1994, 26, 1151–1159. [Google Scholar] [CrossRef]
- Khatoon, H.; Solanki, P.; Narayan, M.; Tewari, L.; Rai, J.; Hina Khatoon, C. Role of Microbes in Organic Carbon Decomposition and Maintenance of Soil Ecosystem. Int. J. Chem. Stud. 2017, 5, 1648–1656. [Google Scholar]
- Raza, T.; Qadir, M.F.; Khan, K.S.; Eash, N.S.; Yousuf, M.; Chatterjee, S.; Manzoor, R.; ur Rehman, S.; Oetting, J.N. Unrevealing the Potential of Microbes in Decomposition of Organic Matter and Release of Carbon in the Ecosystem. J. Environ. Manag. 2023, 344, 118529. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The Macromolecular Organic Composition of Plant and Microbial Residues as Inputs to Soil Organic Matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Mlih, R.K.; Gocke, M.I.; Bol, R.; Berns, A.E.; Fuhrmann, I.; Brahim, N. Soil Organic Matter Composition in Coastal and Continental Date Palm Systems: Insights from Tunisian Oases. Pedosphere 2019, 29, 444–456. [Google Scholar] [CrossRef]
- Pan, Y.; Kang, P.; Qu, X.; Zhang, H.; Li, X. Response of the Soil Bacterial Community to Seasonal Variations and Land Reclamation in a Desert Grassland. Ecol. Indic. 2024, 165, 112227. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. Reclamation of Arid and Semi-Arid Soils: The Role of Plant Growth-Promoting Archaea and Bacteria. Curr. Plant Biol. 2021, 25, 100173. [Google Scholar] [CrossRef]
- Moussa, A.S.; Van Rensburg, L.; Kellner, K.; Bationo, A. Soil Microbial Biomass in Semi-Arid Communal Sandy Rangelands in the Western Bophirima District, South Africa. Appl. Ecol. Environ. Res. 2007, 5, 43–56. [Google Scholar] [CrossRef]
- Pasternak, Z.; Al-Ashhab, A.; Gatica, J.; Gafny, R.; Avraham, S.; Minz, D.; Gillor, O.; Jurkevitch, E. Spatial and Temporal Biogeography of Soil Microbial Communities in Arid and Semiarid Regions. PLoS ONE 2013, 8, e69705. [Google Scholar] [CrossRef]
- Abdul Rahman, N.S.N.; Abdul Hamid, N.W.; Nadarajah, K. Effects of Abiotic Stress on Soil Microbiome. Int. J. Mol. Sci. 2021, 22, 9036. [Google Scholar] [CrossRef]
- Lüneberg, K.; Schneider, D.; Siebe, C.; Daniel, R. Drylands Soil Bacterial Community Is Affected by Land Use Change and Different Irrigation Practices in the Mezquital Valley, Mexico. Sci. Rep. 2018, 8, 1413. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.-C.; Piceno, Y.M.; Heuer, H.; Weinert, N.; Dohrmann, A.B.; Carrillo, A.; Andersen, G.L.; Castellanos, T.; Tebbe, C.C.; Smalla, K. Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem. PLoS ONE 2013, 8, e59497. [Google Scholar] [CrossRef]
- García-Orenes, F.; Morugán-Coronado, A.; Zornoza, R.; Scow, K. Changes in Soil Microbial Community Structure Influenced by Agricultural Management Practices in a Mediterranean Agro-Ecosystem. PLoS ONE 2013, 8, e80522. [Google Scholar] [CrossRef] [PubMed]
- Szoboszlay, M.; Dohrmann, A.B.; Poeplau, C.; Don, A.; Tebbe, C.C. Impact of Land-Use Change and Soil Organic Carbon Quality on Microbial Diversity in Soils across Europe. FEMS Microbiol. Ecol. 2017, 93, fix146. [Google Scholar] [CrossRef]
- van der Bom, F.; Nunes, I.; Raymond, N.S.; Hansen, V.; Bonnichsen, L.; Magid, J.; Nybroe, O.; Jensen, L.S. Long-Term Fertilisation Form, Level and Duration Affect the Diversity, Structure and Functioning of Soil Microbial Communities in the Field. Soil Biol. Biochem. 2018, 122, 91–103. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Resistance, Resilience, and Redundancy in Microbial Communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef] [PubMed]
- Wardle, D. A Comparative Assessment or Factors Which Influence Microbial Biomass Carbon and Nitrogen Levels in Soil. Biol. Rev. Camb. Philos. Soc. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-Term Effects of Mineral Fertilizers on Soil Microorganisms—A Review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Shi, X.; Fan, J.; Zhang, J.; Shen, Y. Enhanced Phosphorus Removal in Intermittently Aerated Constructed Wetlands Filled with Various Construction Wastes. Environ. Sci. Pollut. Res. 2017, 24, 22524–22534. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Cappelli, S.L.; Shrestha, R.; Gerin, S.; Lohila, A.K.; Heinonsalo, J.; Nelson, D.B.; Kahmen, A.; Duan, P.; Sebag, D.; et al. Plant Diversity Drives Positive Microbial Associations in the Rhizosphere Enhancing Carbon Use Efficiency in Agricultural Soils. Nat. Commun. 2024, 15, 8065. [Google Scholar] [CrossRef]
- Wu, T.; Milner, H.; Díaz-Pérez, J.C.; Ji, P. Effects of Soil Management Practices on Soil Microbial Communities and Development of Southern Blight in Vegetable Production. Appl. Soil Ecol. 2015, 91, 58–67. [Google Scholar] [CrossRef]
- Krauss, M.; Berner, A.; Perrochet, F.; Frei, R.; Niggli, U.; Mäder, P. Enhanced Soil Quality with Reduced Tillage and Solid Manures in Organic Farming—A Synthesis of 15 Years. Sci. Rep. 2020, 10, 4403. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Hussain, I.; Ghaffar, A.; Rahman, M.H.U.; Saleem, M.Z.; Yonas, M.W.; Hussnain, H.; Ikram, R.M.; Arslan, M. Organic Amendments and Conservation Tillage Improve Cotton Productivity and Soil Health Indices under Arid Climate. Sci. Rep. 2022, 12, 14072. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wu, C.; Gao, W. Effects of Short-Term Fallow Managements on Soil Microbial Properties: A Case Study in China. Appl. Soil Ecol. 2018, 125, 128–137. [Google Scholar] [CrossRef]
- Afaf, N.; Zohra, I.; Faiza, B.Z.; Abdelkader, B. Diversity of Arbuscular Mycorrhizal Fungi in Two Perturbed Ecosystems (Dune and Saline Soil) in West Algeria. Int. J. Agric. Crop Sci. 2015, 8, 380. [Google Scholar]
- Karabi, M.; Hamdi, A.B.; Zenkhri, S. Microbial Diversity and Organic Matter Fractions under Two Arid Soils in Algerian Sahara. In Proceedings of the AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2016; Volume 1758. [Google Scholar]
- Bencherif, K.; Boutekrabt, A.; Fontaine, J.; Laruelle, F.; Dalpè, Y.; Sahraoui, A.L.-H. Impact of Soil Salinity on Arbuscular Mycorrhizal Fungi Biodiversity and Microflora Biomass Associated with Tamarix Articulata Vahll Rhizosphere in Arid and Semi-Arid Algerian Areas. Sci. Total Environ. 2015, 533, 488–494. [Google Scholar] [CrossRef]
- Menasria, T. Biodiversité Microbienne Dans les Milieux Extrêmes Salés du Nord-Est Algérien. Ph.D. Thesis, Université de Batna, Batna, Algeria, 2020. [Google Scholar]
- Bellague, D.; M’Hammedi-Bouzina, M.; Abdelguerfi, A. Measuring the Performance of Perennial Alfalfa with Drought Tolerance Indices. Chil. J. Agric. Res. 2016, 76, 273–284. [Google Scholar] [CrossRef]
- Chedjerat, A. Comportement de Seize Cultivars de Luzerne Pérenne (Médicago sativa L.) Conduits en Pluvial et en Irrigué Dans les Conditions du Bas Chélif. Ph.D. Thesis, Ecole Nationale Supérieure Agronomique, Algiers, Algeria, 2017. [Google Scholar]
- Douaoui, A.; Hartani, T.; Lakehal, M. La Salinisation Dans La Plaine Du Bas-Cheliff: Acquis et Perspectives. In Proceedings of the Economies d’eau en Systèmes IRrigués au Maghreb, Marrakech, Maroc, 29–31 May 2006. Deuxième atelier Régional du Projet SIRMA. [Google Scholar]
- Pietikäinen, J.; Pettersson, M.; Bååth, E. Comparison of Temperature Effects on Soil Respiration and Bacterial and Fungal Growth Rates. FEMS Microbiol. Ecol. 2005, 52, 49–58. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-Size Analysis. In Methods of Soil Analysis. Part 4: Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar] [CrossRef]
- Rhoades, J.D. Salinity: Electrical Conductivity and Total Dissolved Solids. In Methods of Soil Analysis: Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 417–435. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk Density. In Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Gillman, G.P.; Sinclair, D.F.; Beech, T.A. Recovery of Organic Carbon by the Walkley and Black Procedure in Highly Weathered Soils. Commun. Soil Sci. Plant Anal. 1986, 17, 885–892. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; Volume 14, ISBN 0891188258. [Google Scholar]
- Drouineau, G. Dosage Rapide Du Calcaire Actif Du Sol: Nouvelles Données Sur La Separation et La Nature Des Fractions Calcaires. Ann. Agron 1942, 12, 441–450. [Google Scholar]
- Bremner, J.M. Total Nitrogen. In Methods of Soil Analysis; Agronomy Monographs; Wiley: Hoboken, NJ, USA, 1965; pp. 1149–1178. ISBN 9780891182047. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Nash, V.E. Potassium Release Characteristics of Some Soils of the Mississippi Coastal Plain as Revealed by Various Extracting Agents. Soil Sci. 1971, 111, 313–317. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation Exchange Capacity. In Methods of Soil Analysis: Part 2—Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 149–157. [Google Scholar] [CrossRef]
- Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Soil Organic Carbon: The Hidden Potential; CABI: Wallingford, UK, 2017; ISBN 9251096813. [Google Scholar]
- Poeplau, C. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems: Guidelines for Assessment; Version 1-Advanced Copy; FAO: Rome, Italy, 2019. [Google Scholar]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-Filtering Vastly Improves Diversity Estimates from Illumina Amplicon Sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E. Chimeric 16S RRNA Sequence Formation and Detection in Sanger and 454-Pyrosequenced PCR Amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME Improves Sensitivity and Speed of Chimera Detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Six, J.; Feller, C.; Denef, K.; Ogle, S.; de Moraes Sa, J.C.; Albrecht, A. Soil Organic Matter, Biota and Aggregation in Temperate and Tropical Soils-Effects of No-Tillage. Agronomie 2002, 22, 755–775. [Google Scholar] [CrossRef]
- Juarez, S. Régulations Biotiques et Abiotiques de La Décomposition des Matières Organiques des Sols. Ph.D. Thesis, AgroParisTech, Paris, France, 2013. [Google Scholar]
- Dignac, M.-F.; Derrien, D.; Barré, P.; Barot, S.; Cécillon, L.; Chenu, C.; Chevallier, T.; Freschet, G.T.; Garnier, P.; Guenet, B. Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review. Agron. Sustain. Dev. 2017, 37, 14. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The Role of Organic Amendments in Soil Reclamation: A Review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Macedo, M.O.; Resende, A.S.; Garcia, P.C.; Boddey, R.M.; Jantalia, C.P.; Urquiaga, S.; Campello, E.F.C.; Franco, A.A. Changes in Soil C and N Stocks and Nutrient Dynamics 13 Years after Recovery of Degraded Land Using Leguminous Nitrogen-Fixing Trees. For. Ecol. Manag. 2008, 255, 1516–1524. [Google Scholar] [CrossRef]
- Chivenge, P.; Vanlauwe, B.; Gentile, R.; Six, J. Organic Resource Quality Influences Short- Term Aggregate Dynamics and Soil Organic Carbon and Nitrogen Accumulation. Soil Biol. Biochem. 2011, 43, 657–666. [Google Scholar] [CrossRef]
- Mancer, H.; Bettiche, F.; Chaib, W.; Dekki, N.; Benaoun, S.; Rechachi, M.Z. Influence de La Salinité Des Eaux d’irrigation Sur La Minéralisation Du Carbone Organique Dans Le Sol. J. Algérien Des Régions Arid. 2020, 14, 48–55. [Google Scholar]
- Blevins, R.L.; Smith, M.S.; Thomas, G.W. Changes in Soil Properties under No-Tillage. In No-Tillage Agriculture: Principles and Practices; Springer: Boston, MA, USA, 1984; pp. 190–230. [Google Scholar]
- Hill, R.L. Long-term Conventional and No-tillage Effects on Selected Soil Physical Properties. Soil Sci. Soc. Am. J. 1990, 54, 161–166. [Google Scholar] [CrossRef]
- Feller, C.; Fritsch, E.; Poss, R.; Valentin, C. Effet de La Texture Sur Le Stockage et La Dynamique Des Matières Organiques Dans Quelques Sols Ferrugineux et Ferrallitiques (Afrique de l’Ouest, En Particulier). Cah. ORSTOM 1991, 26, 25–36. [Google Scholar]
- Jobbágy, E.G.; Jackson, R.B. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-Mediated Stabilisation of Soil Organic Carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Schimel, J.; Balser, T.C.; Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 2007, 88, 1386–1394. [Google Scholar] [CrossRef] [PubMed]
- Six, J.; Frey, S.D.; Thiet, R.K.; Batten, K.M. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Rath, K.M.; Rousk, J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: A review. Soil Biol. Biochem. 2015, 81, 108–123. [Google Scholar] [CrossRef]
- Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 2011, 9, 119–130. [Google Scholar] [CrossRef]
- Lopez, S. Déterminisme de la Diversité Bactérienne Rhizosphérique des Hyperaccumulateurs de Nickel. Ph.D. Thesis, Université de Lorraine, Nancy, France, 2018. [Google Scholar]
- Hatimi, A.; Tahrouch, S. Caractérisations Chimique, Botanique et Microbiologique Du Sol Des Dunes Littorales Du Souss-Massa. Biomatec Echo 2007, 2, 85–97. [Google Scholar]
- Makhalanyane, T.P.; Valverde, A.; Gunnigle, E.; Frossard, A.; Ramond, J.-B.; Cowan, D.A. Microbial Ecology of Hot Desert Edaphic Systems. FEMS Microbiol. Rev. 2015, 39, 203–221. [Google Scholar] [CrossRef]
- Wang, Y. The Bacterial Communities of Sand-like Surface Soils of the San Rafael Swell (Utah, USA) and the Desert of Maine (USA). Ph.D. Thesis, Université Paris-Saclay, Paris, France, 2015. [Google Scholar]
- Purbalisa, W.; Hendrayanti, D.; Yusuf, W.A. Biodiversity, Roles, and Potency of Bacteria in Agricultural Land. J. Presipitasi: Media Komun. Dan Pengemb. Tek. Lingkungan 2022, 19, 520–531. [Google Scholar]
- Yang, T.; Lupwayi, N.; Marc, S.-A.; Siddique, K.H.M.; Bainard, L.D. Anthropogenic Drivers of Soil Microbial Communities and Impacts on Soil Biological Functions in Agroecosystems. Glob. Ecol. Conserv. 2021, 27, e01521. [Google Scholar] [CrossRef]
- Lienhard, P.; Terrat, S.; Prévost-Bouré, N.C.; Nowak, V.; Régnier, T.; Sayphoummie, S.; Panyasiri, K.; Tivet, F.; Mathieu, O.; Levêque, J. Pyrosequencing Evidences the Impact of Cropping on Soil Bacterial and Fungal Diversity in Laos Tropical Grassland. Agron. Sustain. Dev. 2014, 34, 525–533. [Google Scholar] [CrossRef]
- Ling, L.; Fu, Y.; Jeewani, P.H.; Tang, C.; Pan, S.; Reid, B.J.; Gunina, A.; Li, Y.; Li, Y.; Cai, Y. Organic Matter Chemistry and Bacterial Community Structure Regulate Decomposition Processes in Post-Fire Forest Soils. Soil Biol. Biochem. 2021, 160, 108311. [Google Scholar] [CrossRef]
- Mhete, M.; Eze, P.N.; Rahube, T.O.; Akinyemi, F.O. Soil Properties Influence Bacterial Abundance and Diversity under Different Land-Use Regimes in Semi-Arid Environments. Sci. Afr. 2020, 7, e00246. [Google Scholar] [CrossRef]
- Jung, M.-Y.; Well, R.; Min, D.; Giesemann, A.; Park, S.-J.; Kim, J.-G.; Kim, S.-J.; Rhee, S.-K. Isotopic Signatures of N2O Produced by Ammonia-Oxidizing Archaea from Soils. ISME J. 2014, 8, 1115–1125. [Google Scholar] [CrossRef]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, A. Nitrososphaera Viennensis, an Ammonia Oxidizing Archaeon from Soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef]
- Pester, M.; Schleper, C.; Wagner, M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Curr. Opin. Microbiol. 2011, 14, 300–306. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization of Organic Matter by Soil Minerals: Implications for C-Saturation of Soils. Plant Soil. 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Ventura, M.; Canchaya, C.; Tauch, A.; Chandra, G.; Fitzgerald, G.F.; Chater, K.F.; van Sinderen, D. Genomics of Actinobacteria: Tracing the evolutionary history of an ancient phylum. Microbiol. Mol. Biol. Rev. 2007, 71, 495–548. [Google Scholar] [CrossRef]
- Lauber, C.L.; Strickland, M.S.; Bradford, M.A.; Fierer, N. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol. Biochem. 2008, 40, 2407–2415. [Google Scholar] [CrossRef]
- Evans, S.E.; Wallenstein, M.D. Soil microbial community response to drying and rewetting stress: Does historical precipitation regime matter? Biogeochemistry 2012, 109, 101–116. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A History of Research on the Link between (Micro)Aggregates, Soil Biota, and Soil Organic Matter Dynamics. Soil Tillage Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO Soils Bulletin 80; FAO: Rome, Italy, 2005; Available online: https://www.fao.org/3/a0100e/a0100e.pdf (accessed on 12 May 2025).
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef]
Plot | Treatments Applied During the Study | Prior Management (Before 2021) | Crop 2021–2022 | Vegetationcover | Particle Size | Bulk Density (g/cm3) | CaCO3 (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
Clay (%) | Fine Silt (%) | Coarse Silt (%) | Sand (%) | |||||||
PA | Plowing + NPK (15-15-15) 100 kg/plot | Algerian-Chinese project (3 years): NPK + cattle manure + sand + gypsum + ferrous sulfate | Rainfed soft wheat (Triticum aestivum L.) | – | 41 | 28 | 4 | 27 | 1.3 | 22 |
Clayey soil | ||||||||||
PC | Plowing + NPK (15-15-15) 100 kg/plot | NPK (15-15-15) 100 kg/plot | Rainfed soft wheat (Triticum aestivum L.) | – | 63 | 28 | 5 | 4 | 1.4 | 20 |
Clayey soil | ||||||||||
PT | None (uncultivated fallow since 1942) | No agronomic intervention | None | Suaeda fruticosa | 61 | 30 | 2 | 7 | 1.4 | 21 |
Clayey soil |
Stage (Days) | Date | Growth Stage | Season | Sampling Purpose |
---|---|---|---|---|
T(0) | 14 September 2021 | Before sowing | Dry | Physicochemical + bacterial analysis |
T(15) | 29 December 2021 | Germination/emergence | Wet | Physicochemical analysis |
T(70) | 23 February 2022 | Tillering | Wet | Physicochemical analysis |
T(104) | 29 March 2022 | Bolting/heading | Wet | Physicochemical + bacterial analysis |
T(147) | 11 May 2022 | Maturation | Dry | Physicochemical analysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekhit, N.; Faraoun, F.; Bennabi, F.; Ayache, A.; Toumi, F.; Mlih, R.; Lovynska, V.; Bol, R. Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions. Land 2025, 14, 1126. https://doi.org/10.3390/land14051126
Bekhit N, Faraoun F, Bennabi F, Ayache A, Toumi F, Mlih R, Lovynska V, Bol R. Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions. Land. 2025; 14(5):1126. https://doi.org/10.3390/land14051126
Chicago/Turabian StyleBekhit, Nadia, Fatiha Faraoun, Faiza Bennabi, Abbassia Ayache, Fawzia Toumi, Rawan Mlih, Viktoriia Lovynska, and Roland Bol. 2025. "Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions" Land 14, no. 5: 1126. https://doi.org/10.3390/land14051126
APA StyleBekhit, N., Faraoun, F., Bennabi, F., Ayache, A., Toumi, F., Mlih, R., Lovynska, V., & Bol, R. (2025). Impact of Management Practices on Soil Organic Carbon Content and Microbial Diversity Under Semi-Arid Conditions. Land, 14(5), 1126. https://doi.org/10.3390/land14051126