A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment
Abstract
1. Introduction
- Where and how has water hyacinth been used as a soil amendment?
- How have water hyacinth-based soil amendments ameliorated soils via the alteration of soil structure, nutrient availability, and soil microbe assemblages?
2. Methods
(“water hyacinth” OR “Eichhornia crassipes”) AND “Soil” AND (“amendment” OR “conditioner” OR “improvement” OR “structure” OR “texture” OR “porosity” OR “nutrients” OR “microb*”) AND “agricultur*”
3. Characteristics and Agronomic Use of Water Hyacinth-Based Amendments
3.1. Nutrient Composition and Properties
3.2. Application Methods
3.2.1. Mulch and Direct Application
3.2.2. Compost and Vermicompost
- A.
- Comparative Studies of Compost and Vermicompost
- B.
- WH Compost: Soil and Crop Responses
- C.
- WH Vermicompost: Formulation and Performance
3.2.3. Biochar
Property | Low Temperature (300–400 °C) | High Temperature (550–750 °C) | Other Biochars (Wood, Rice Straw, Chicken Manure) |
---|---|---|---|
C/N Ratio | Low | Very Low | Typically higher, slower nutrient cycling |
Nitrogen Content (%) | High | Low | Lower than WH biochar, except chicken manure biochar |
Cation Exchange Capacity | High | Moderate | Moderate, less effective for nutrient retention |
pH | Neutral to Alkaline | Neutral | Varies, often lower than WH biochar for liming |
Water-Holding Capacity | Very High | High | Moderate, typically higher in WH biochar |
Surface Area (m2/g) | Moderate | High | Varies, usually lower than high-temperature WH biochar |
Phosphorus (P) | Moderate to High | Low to Moderate | Generally lower than WH biochar |
Potassium (K) | Low to Moderate | Moderate | Moderate, similar to WH biochar |
Calcium (Ca) | Moderate | High | Often lower than WH biochar, especially at higher temperatures |
Electrical Conductivity | Moderate | Moderate to High | Varies, generally lower than WH biochar |
3.2.4. Extracts and Isolates
Element/Property | Dried Biomass [52] | Dried Biomass [61] | Biochar 300 °C [51] | Biochar 300 °C [61] | Biochar 400 °C [52] | Biochar 450 °C [60] | Biochar 600 °C [51] | Biochar 650 °C [54] |
---|---|---|---|---|---|---|---|---|
Volatile Matter (VM %) | 74.70 | - | - | - | 20.05 | 59.70 | - | - |
Fixed Carbon (%) | 8.03 | 11.6 | - | 18.70 | - | 17.10 | - | 42.48 |
Carbon (C, %) | - | - | 42.78 | - | - | 34.80 | 66.35 | 43.37 |
Nitrogen (N, %) | 0.78 | 1.0 | - | 0.69 | 1.38 | 0.72 | - | 2.72 |
Phosphorus (P, g kg−1) | 5.48 | 11.0 | 2.65 | 8.80 | 10.67 | - | 1.07 | - |
Potassium (K, g kg−1) | 1.46 | 0.11 | 3.82 | 0.12 | 5.2 | - | 6.22 | - |
Sulfur (S, %) | 4.63 | 0.3 | 0.09 | 0.34 | 6.62 | - | 0.14 | 0.16 |
Sodium (Na, g kg−1) | 1.1 | - | 3.43 | - | 1.97 | - | 0.39 | - |
Calcium (Ca, g kg−1) | 10.33 | - | 6.28 | - | 31.67 | - | 8.29 | - |
Magnesium (Mg, g kg−1) | 6.4 | 0.07 | 3.97 | 0.07 | 25.50 | - | 0.67 | - |
Zinc (Zn, g kg−1) | 42.01 | 0.0004 | - | 0.0003 | 184.45 | - | - | 9.11 |
Oxygen (O, %) | - | - | 22.08 | - | - | 40.60 | 10.16 | 37.82 |
Chlorine (Cl, %) | - | - | 7.87 | - | - | - | 6.09 | - |
Aluminium (Al, %) | - | - | 0.04 | - | - | - | 0 | - |
Silicon (Si, %) | - | - | 0.15 | - | - | - | 0.14 | - |
Rhodium (Rh, %) | - | - | 0.33 | - | - | - | 0.13 | - |
Boron (B, %) | - | - | 3.44 | - | - | - | 0 | - |
Tellurium (Te, %) | - | - | 0.31 | - | - | - | 0 | - |
Manganese (Mn, %) | - | 0.016 | 0 | - | - | - | 0.37 | - |
pH | - | 6.10 | - | 8.11 | 8.06 | 10.40 | - | - |
Electrical Conductivity (EC, dS m−1) | - | 13.20 | - | 18.70 | 13.03 | 27.70 | - | - |
Cation Exchange Capacity (CEC) | - | - | - | - | 35.56 | 34.20 | - | - |
Arsenic (As, mg kg−1) | - | - | - | - | - | - | - | 2.29 |
Cadmium (Cd, mg kg−1) | - | 0.10 | - | 0.08 | - | - | - | ND |
Chromium (Cr, mg kg−1) | - | ND | - | ND | - | - | - | 10.77 |
Copper (Cu, mg kg−1) | - | 0.30 | - | 0.20 | - | - | - | 2.41 |
Lead (Pb, mg kg−1) | - | 0.30 | - | 0.30 | - | - | - | 1.48 |
Mercury (Hg, mg kg−1) | - | - | - | - | - | - | - | ND |
Nickel (Ni, mg kg−1) | - | 0.30 | - | 0.50 | - | - | - | 22.45 |
Selenium (Se, mg kg−1) | - | - | - | - | - | - | - | ND |
Amendment Type | Agronomic Benefits | Known Risks or Limitations | Field Validation | Food Safety Concerns | Optimal Use Contexts |
---|---|---|---|---|---|
Mulch | Improves moisture retention, reduces soil temperature, suppresses some pests (e.g., nematodes), increases biomass in leafy vegetables | Bulky to transport and apply; variable effects depending on mulch composition; limited nutrient supply | Rare, mostly pot or greenhouse trials | Low risk, but composition often untested | High-rainfall or irrigated systems; short-cycle vegetables |
Compost | Increases soil organic carbon, microbial activity, and NPK availability; improves crop yield in field trials (maize, rice, tomato) | Nutrient release may lag in cool climates; composting process and quality often underreported | Moderate, some field-scale studies | Often missing heavy metal data; potential contamination from polluted waterways | Suitable where organic inputs are prioritised; integrated nutrient management |
Biochar | Enhances CEC, pH buffering, water retention, and nutrient retention; stabilises carbon | High-temperature biochar may release nutrients slowly; production is energy-intensive | Limited, few long-term trials | Some biochars exceed thresholds for Zn, Cr, or Ni | Acidic or sandy soils; degraded land; water-limited zones |
Foliar Extract | Increases tomato yield and biomass; low-cost input | Allelopathic effects on other crops/weeds; nutrient concentrations vary | Greenhouse only | Root removal reduces metal risk; full profiles rarely provided | Supplement in horticulture; organic foliar input |
Vermi-compost | Enhances microbial biomass, supports worm reproduction, improves soil fertility | Inconsistent performance depending on WH blend; traceability of compost feedstocks lacking | Limited, pot trials dominate | Potential for metal transfer if WH sourced from contaminated sites | High-value cropping where soil biology is key |
4. Limitations and Feasibility
5. Synthesis and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WH | Water Hyacinth |
CEC | Cation Exchange Capacity |
NPK | Nitrogen, Phosphorus, Potassium |
LCA | Life Cycle Assessment |
TOC | Total Organic Carbon |
TKN | Total Kjeldahl Nitrogen |
P | Phosphorus |
K | Potassium |
Fe | Iron |
Cu | Copper |
Zn | Zinc |
Mn | Manganese |
CD | Cow Dung |
FIS | Fine Inert Soil |
PH | Parthenium |
CIF | Crack Intensity Factor |
VWC | Volumetric Water Content |
ANN | Artificial Neural Network |
GHG | Greenhouse Gas |
EC | Electrical Conductivity |
FYM | Farmyard Manure |
GE | Glyricidia and Eupatorium |
SR | Sesbania rostrata (Dhaincha) |
WH | Water Hyacinth |
CEC | Cation Exchange Capacity |
NPK | Nitrogen, Phosphorus, Potassium |
LCA | Life Cycle Assessment |
TOC | Total Organic Carbon |
References
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a Sustainable Water and Soil Saving Practice in Agriculture: A Review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil amendments for sustainable agriculture: Microbial organic fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H.; Sharma, A.K. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014, 34, 607–622. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Advancing the science and practice of ecological nutrient management for smallholder farmers. Front. Sustain. Food Syst. 2022, 6, 921216. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldívar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Tiefenbacher, A.; Sandén, T.; Haslmayr, H.-P.; Miloczki, J.; Wenzel, W.; Spiegel, H. Optimizing Carbon Sequestration in Croplands: A Synthesis. Agronomy 2021, 11, 882. [Google Scholar] [CrossRef]
- Shen, B.; Zheng, L.; Zheng, X.; Yang, Y.; Xiao, D.; Wang, Y.; Sheng, Z.; Ai, B. Insights from meta-analysis on carbon to nitrogen ratios in aerobic composting of agricultural residues. Bioresour. Technol. 2024, 413, 131416. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Lv, J. Evaluation of the applicability of organic amendments from microbially driven carbon and nitrogen transformations. Sci. Total Environ. 2022, 817, 153020. [Google Scholar] [CrossRef] [PubMed]
- Abba, A.; Sankarannair, S. Global impact of water hyacinth (Eichhornia crassipes) on rural communities and mitigation strategies: A systematic review. Environ. Sci. Pollut. Res. 2024, 31, 43616–43632. [Google Scholar] [CrossRef] [PubMed]
- Kumari, K.; Swain, A.A.; Kumar, M.; Bauddh, K. Utilization of Eichhornia crassipes biomass for production of biochar and its feasibility in agroecosystems: A review. Environ. Sustain. 2021, 4, 285–297. [Google Scholar] [CrossRef]
- Ben Bakrim, W.; Ezzariai, A.; Karouach, F.; Sobeh, M.; Kibret, M.; Hafidi, M.; Kouisni, L.; Yasri, A. Eichhornia crassipes (Mart.) Solms: A Comprehensive Review of Its Chemical Composition, Traditional Use, and Value-Added Products. Front. Pharmacol. 2022, 13, 842511. [Google Scholar] [CrossRef]
- Yan, S.-H.; Song, W.; Guo, J.-Y. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems—A review. Crit. Rev. Biotechnol. 2017, 37, 218–228. [Google Scholar] [CrossRef]
- Djihouessi, M.B.; Olokotum, M.; Chabi, L.C.; Mouftaou, F.; Aina, M.P. Paradigm shifts for sustainable management of water hyacinth in tropical ecosystems: A review and overview of current challenges. Environ. Chall. 2023, 11, 100705. [Google Scholar] [CrossRef]
- Gunnarsson, C.C.; Petersen, C.M. Water hyacinths as a resource in agriculture and energy production: A literature review. Waste Manag. 2007, 27, 117–129. [Google Scholar] [CrossRef]
- Karhu, K.; Kalu, S.; Seppänen, A.; Kitzler, B.; Virtanen, E. Potential of biochar soil amendments to reduce N leaching in boreal field conditions estimated using the resin bag method. Agric. Ecosyst. Environ. 2021, 316, 107452. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, B.; Zhang, Y.; Hu, T.; Lin, Z.; Liu, G.; Wang, X.; Ma, J.; Wang, H.; Jin, H.; et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective. Glob. Change Biol. 2019, 25, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Herawati, A.; Mujiyo; Syamsiyah, J.; Baldan, S.K.; Arifin, I. Application of soil amendments as a strategy for water holding capacity in sandy soils. IOP Conf. Ser. Earth Environ. Sci. 2021, 724, 012014. [Google Scholar] [CrossRef]
- Turmel, M.-S.; Speratti, A.; Baudron, F.; Verhulst, N.; Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 2015, 134, 6–16. [Google Scholar] [CrossRef]
- Schröder, J.J.; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; et al. The elusive role of soil quality in nutrient cycling: A review. Soil Use Manag. 2016, 32, 476–486. [Google Scholar] [CrossRef]
- Timsina, J. Can Organic Sources of Nutrients Increase Crop Yields to Meet Global Food Demand? Agronomy 2018, 8, 214. [Google Scholar] [CrossRef]
- Cesarano, G.; De Filippis, F.; La Storia, A.; Scala, F.; Bonanomi, G. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl. Soil Ecol. 2017, 120, 254–264. [Google Scholar] [CrossRef]
- De Corato, U. Governance of soil amendment to enhance suppression to soil-borne plant pathogens from a long-term perspective. Appl. Soil Ecol. 2023, 182, 104721. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Ramos, T.M.; Jay-Russell, M.T.; Millner, P.D.; Shade, J.; Misiewicz, T.; Sorge, U.S.; Hutchinson, M.; Lilley, J.; Pires, A.F.A. Assessment of Biological Soil Amendments of Animal Origin Use, Research Needs, and Extension Opportunities in Organic Production. Front. Sustain. Food Syst. 2019, 3, 73. [Google Scholar] [CrossRef]
- Banerjee, S.; van der Heijden, M.G.A. Soil microbiomes and one health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 3323. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, 10-1128. [Google Scholar] [CrossRef]
- van Bruggen, A.H.C.; Goss, E.M.; Havelaar, A.; van Diepeningen, A.D.; Finckh, M.R.; Morris, J.G. One Health—Cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci. Total Environ. 2019, 664, 927–937. [Google Scholar] [CrossRef]
- Singh, C.K.; Sodhi, K.K.; Singh, D.K. Understanding the bacterial community structure associated with the Eichhornia crassipes rootzone. Mol. Biol. Rep. 2023, 51, 35. [Google Scholar] [CrossRef]
- Patra, R.K.; Behera, D.; Mohapatra, K.K.; Sethi, D.; Mandal, M.; Patra, A.K.; Ravindran, B. Juxtaposing the quality of compost and vermicompost produced from organic wastes amended with cow dung. Environ. Res. 2022, 214, 114119. [Google Scholar] [CrossRef] [PubMed]
- Shyam, S.; Das, T.; Kumar, G.V.P. Co-composting invasive aquatic macrophytes and pond sediment holds the potential for environmental amelioration: Selecting the right shade of grey. Acta Ecol. Sin. 2022, 42, 17–23. [Google Scholar] [CrossRef]
- Goswami, L.; Nath, A.; Sutradhar, S.; Bhattacharya, S.S.; Kalamdhad, A.; Vellingiri, K.; Kim, K.H. Application of drum compost and vermicompost to improve soil health, growth, and yield parameters for tomato and cabbage plants. J. Environ. Manag. 2017, 200, 243–252. [Google Scholar] [CrossRef]
- Hernández-Fernández, L.; Vázquez, J.G.; Hernández, L.; Campbell, R.; Martínez, J.; Hajari, E.; Zayas, R.G.D.; Zevallos-Bravo, B.E.; Acosta, Y.; Lorenzo, J.C. Use of Euclidean distance to evaluate Pistia stratiotes and Eichhornia crassipes as organic fertilizer amendments in Capsicum annuum. Acta Physiol. Plant. 2024, 46, 6. [Google Scholar] [CrossRef]
- Majee, S.; Halder, G.; Mandal, T. Formulating nitrogen-phosphorous-potassium enriched organic manure from solid waste: A novel approach of waste valorization. Process Saf. Environ. Prot. 2019, 132, 160–168. [Google Scholar] [CrossRef]
- Khan, A.; Mfarrej, M.F.B.; Tariq, M.; Asif, M.; Nadeem, H.; Siddiqui, M.A.; Hashem, M.; Alamri, S.; Ahmad, F. Supplementing Pochonia chlamydosporia with botanicals for management of Meloidogyne incognita infesting chickpea. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2022, 72, 164–175. [Google Scholar] [CrossRef]
- Iriany, A.; Hasanah, F.; Roeswitawati, D.; Bela, M.F. Biodegradable mulch as microclimate modification effort for improving the growth of horenso; Spinacia oleracea L. Glob. J. Environ. Sci. Manag. 2021, 7, 185–196. [Google Scholar] [CrossRef]
- Ramdas, M.G.; Manjunath, B.L.; Pratap, S.N.; Ramesh, R.; Verma, R.R.; Marutrao, L.A.; Ruenna, D.; Natasha, B.; Rahul, K. Effect of organic and inorganic sources of nutrients on soil microbial activity and soil organic carbon build-up under rice in west coast of India. Arch. Agron. Soil Sci. 2017, 63, 414–426. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Manjunath, B.L.; Morajkar, S.; Desai, A.; Das, B.; Paramesh, V. Long-Term Effect of Various Organic and Inorganic Nutrient Sources on Rice Yield and Soil Quality in West Coast India Using Suitable Indexing Techniques. Commun. Soil Sci. Plant Anal. 2021, 52, 1819–1833. [Google Scholar] [CrossRef]
- Mondol, A.; Chowdhury, M.A.H.; Ahmed, S.; Alam, M.K. Nitrogen Dynamics from Conventional Organic Manures as Influenced by Different Temperature Regimes in Subtropical Conditions. Nitrogen 2024, 5, 746–762. [Google Scholar] [CrossRef]
- Bhatti, S.M.; Kandhro, M.A.; Bughio, Z.U.R.; Rajpar, I.; Shah, J.A.; Lund, M.M.; Maitlo, A.A.; Bughio, H.U.R. Relative performance of various composts and NPK fertilizer on upgrowth and quality of fodder maize. Int. J. Recycl. Org. Waste Agric. 2021, 10, 449–458. [Google Scholar] [CrossRef]
- Ibrahim, S.A. Influence of GIDI organic fertilizer on the yield of corn. Int. J. Recycl. Org. Waste Agric. 2024, 13, 8. [Google Scholar] [CrossRef]
- Yadav, A.; Garg, V.K. Nutrient Recycling from Industrial Solid Wastes and Weeds by Vermiprocessing Using Earthworms. Pedosphere 2013, 23, 668–677. [Google Scholar] [CrossRef]
- Mahanta, K.; Jha, D.K.; Rajkhowa, D.J.; Manoj, K. Microbial enrichment of vermicompost prepared from different plant biomasses and their effect on rice (Oryza sativa L.) growth and soil fertility. Biol. Agric. Hortic. 2012, 28, 241–250. [Google Scholar] [CrossRef]
- Gezahegn, A.; Selassie, Y.G.; Agegnehu, G.; Addisu, S.; Mihretie, F.A.; Kohira, Y.; Sato, S. Pyrolysis temperature changes the physicochemical characteristics of water hyacinth-based biochar as a potential soil amendment. Biomass Convers. Biorefinery 2025, 15, 3737–3752. [Google Scholar] [CrossRef]
- Bao, X.; Li, M.Q.; Niu, R.J.; Lu, J.L.; Panigrahi, S.; Garg, A.; Berretta, C. Hygroscopic Water Retention and Physio-Chemical Properties of Three In-House Produced Biochars from Different Feedstock Types: Implications on Substrate Amendment in Green Infrastructure. Water 2021, 13, 2613. [Google Scholar] [CrossRef]
- Khatun, M.; Hossain, M.; Joardar, J.C. Quantifying the acceptance and adoption dynamics of biochar and co-biochar as a sustainable soil amendment. Plant Sci. Today 2024, 11, 307–317. [Google Scholar] [CrossRef]
- Jutakanoke, R.; Intaravicha, N.; Charoensuksai, P.; Mhuantong, W.; Boonnorat, J.; Sichaem, J.; Phongsopitanun, W.; Chakritbudsabong, W.; Rungarunlert, S. Alleviation of soil acidification and modification of soil bacterial community by biochar derived from water hyacinth Eichhornia crassipes. Sci. Rep. 2023, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Wang, Y.Y.; Tai, M.H.; Lin, A.; Owyong, S.; Li, X.; Leong, K.; Yusof, M.L.M.; Ghosh, S.; Wang, C.H. Integrated applications of water hyacinth biochar: A circular economy case study. J. Clean. Prod. 2022, 378, 8. [Google Scholar] [CrossRef]
- Huang, Q.; Zhu, Y.; Wu, F.; Zhang, Y. Parent and alkylated polycyclic aromatic hydrocarbons in surface sediments of mangrove wetlands across Taiwan Strait, China: Characteristics, sources and ecological risk assessment. Chemosphere 2021, 265, 129168. [Google Scholar] [CrossRef]
- Mei, G.X.; Kumar, H.; Huang, H.; Cai, W.L.; Reddy, N.G.; Chen, P.N.; Garg, A.; Ganeshan, S.P. Desiccation Cracks Mitigation Using Biomass Derived Carbon Produced from Aquatic Species in South China Sea. Waste Biomass Valorization 2021, 12, 1493–1505. [Google Scholar] [CrossRef]
- Garg, A.; Huang, H.; Kushvaha, V.; Madhushri, P.; Kamchoom, V.; Wani, I.; Koshy, N.; Zhu, H.H. Mechanism of biochar soil pore-gas-water interaction: Gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. 2020, 68, 207–217. [Google Scholar] [CrossRef]
- Bordoloi, S.; Garg, A.; Sreedeep, S.; Lin, P.; Mei, G. Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour. Technol. 2018, 263, 665–677. [Google Scholar] [CrossRef]
- Gopal, P.; Ratnam, R.; Farooq, M.; Garg, A.; Gogoi, N. Influence of Biochar Obtained from Invasive Weed on Infiltration Rate and Cracking of Soils: An Integrated Experimental and Artificial Intelligence Approach. In Proceedings of the 8th International Congress on Environmental Geotechnics (ICEG), Hangzhou, China, 28 October–1 November 2018; pp. 351–358. [Google Scholar]
- Lewoyehu, M.; Kohira, Y.; Fentie, D.; Addisu, S.; Sato, S. Water Hyacinth Biochar: A Sustainable Approach for Enhancing Soil Resistance to Acidification Stress and Nutrient Dynamics in an Acidic Nitisol of the Northwest Highlands of Ethiopia. Sustainability 2024, 16, 5537. [Google Scholar] [CrossRef]
- Kassa, Y.; Amare, A.; Nega, T.; Alem, T.; Gedefaw, M.; Chala, B.; Freyer, B.; Waldmann, B.; Fentie, T.; Mulu, T.; et al. Water hyacinth conversion to biochar for soil nutrient enhancement in improving agricultural product. Sci. Rep. 2025, 15, 17. [Google Scholar] [CrossRef]
- Rop, K.; Mbui, D.; Njomo, N.; Karuku, G.N.; Michira, I.; Ajayi, R.F. Biodegradable water hyacinth cellulose-graft-poly(ammonium acrylate-co-acrylic acid) polymer hydrogel for potential agricultural application. Heliyon 2019, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Elgala, A.M.; Abd-Elrahman, S.H.; Saudy, H.S.; Nossier, M.I. Exploiting Eichhornia crassipes Shoots Extract as a Natural Source of Nutrients for Producing Healthy Tomato Plants. Gesunde Pflanz. 2022, 74, 457–465. [Google Scholar] [CrossRef]
- Kato-Noguchi, H.; Moriyasu, M.; Ohno, O.; Suenaga, K. Growth limiting effects on various terrestrial plant species by an allelopathic substance, loliolide, from water hyacinth. Aquat. Bot. 2014, 117, 56–61. [Google Scholar] [CrossRef]
- Stehouwer, R.; Cooperband, L.; Rynk, R.; Biala, J.; Bonhotal, J.; Antler, S.; Lewandowski, T.; Nichols, H. Chapter 15—Compost characteristics and quality. In The Composting Handbook; Rynk, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 737–775. [Google Scholar]
- Kong, Y.; Zhang, J.; Zhang, X.; Gao, X.; Yin, J.; Wang, G.; Li, J.; Li, G.; Cui, Z.; Yuan, J. Applicability and limitation of compost maturity evaluation indicators: A review. Chem. Eng. J. 2024, 489, 151386. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Sæbø, A.; Ferrini, F. The use of compost in urban green areas—A review for practical application. Urban For. Urban Green. 2006, 4, 159–169. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Palese, A.M.; Di Meo, V.; Pastore, V.; D’Adamo, C.; Celano, G. Composting: The way for a sustainable agriculture. Appl. Soil Ecol. 2018, 123, 744–750. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching practices for reducing soil water erosion: A review. Earth-Sci. Rev. 2016, 161, 191–203. [Google Scholar] [CrossRef]
- Huang, H.; Reddy, N.G.; Huang, X.L.; Chen, P.N.; Wang, P.Y.; Zhang, Y.T.; Huang, Y.X.; Lin, P.; Garg, A. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci. Rep. 2021, 11, 19. [Google Scholar] [CrossRef]
- Serafini, L.F.; Arrobas, M.; Rodrigues, M.Â.; Feliciano, M.; Miguens, F.; Oliveira, V.; Santos, D.; Tuesta, J.L.D.D.; Gonçalves, A. The Composting of Water Hyacinth: A Life Cycle Assessment Perspective. Waste Biomass Valorization 2025, 16, 507–523. [Google Scholar] [CrossRef]
- Serafini, L.F.; Feliciano, M.; Rodrigues, M.A.; Gonçalves, A. Systematic Review and Meta-Analysis on the Use of LCA to Assess the Environmental Impacts of the Composting Process. Sustainability 2023, 15, 1394. [Google Scholar] [CrossRef]
Factor | WH [36] | Comp [36] | Vcomp [36] | WH [37] | Comp [37] | Drum [38] | Vcomp [38] |
---|---|---|---|---|---|---|---|
TOC (%) | - | - | - | 2.6 | 6.88 | 3.8 | 4.6 |
TKN (%) | 1.75 | 1.91 | 1.99 | 1.23 | 0.5 | 0.38 | 0.76 |
Total P (%) | 0.29 | 0.32 | 0.37 | 0.1 | 0.14 | 0.15 | 0.25 |
Total K (%) | 1.61 | 1.77 | 1.83 | 2.69 | 0.06 | 0.2 | 0.3 |
C:N Ratio | 31 | 16 | 14 | 2.11 | 14.6 | - | - |
C:P Ratio | 190 | 97 | 76 | - | - | - | - |
Fe (mg/kg) | 7203 | 10,080 | 10,385 | - | - | 363 | 14 |
Cu (mg/kg) | 14 | 30 | 35 | - | - | 78.1 | 5.6 |
Zn (mg/kg) | 62 | 105 | 113 | - | - | 73.4 | 12.2 |
Mn (mg/kg) | 1002 | 1526 | 1697 | - | - | 56.6 | 7.5 |
CEC | 76 | 105 | 118 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canning, A. A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment. Land 2025, 14, 1116. https://doi.org/10.3390/land14051116
Canning A. A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment. Land. 2025; 14(5):1116. https://doi.org/10.3390/land14051116
Chicago/Turabian StyleCanning, Adam. 2025. "A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment" Land 14, no. 5: 1116. https://doi.org/10.3390/land14051116
APA StyleCanning, A. (2025). A Review on Harnessing the Invasive Water Hyacinth (Eichhornia crassipes) for Use as an Agricultural Soil Amendment. Land, 14(5), 1116. https://doi.org/10.3390/land14051116