Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia
Abstract
:1. Introduction
2. Data and Method
2.1. Measurement of the Grass-to-Livestock Balance Index
2.2. Invest Model
2.3. Livestock Carbon Emission Calculation
2.4. Data Sources
3. Result
3.1. Temporal and Spatial Changes in the Carrying Capacity and Balance Index of Grass and Livestock in Inner Mongolia
3.2. Carbon Sequestration Capacity of Inner Mongolia’s Grasslands and Spatiotemporal Dynamics of Carbon Emissions from Animal Husbandry
3.3. Changes in the Carrying Capacity of Inner Mongolia’s Grassland Ecosystems: Perspectives from Biomass and Carbon Emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Non-CO2 Greenhouse Gas Types | Emission Link | Types of Meat | Emission Factors |
---|---|---|---|
Methane emission factor | Animal manure management | Pork | 1.12 |
Beef | 1.02 | ||
Sheep | 0.16 | ||
Poultry | 0.01 | ||
Animal enteric fermentation | Pork | 1 | |
Beef | 52.9 | ||
Sheep | 8.2 | ||
Poultry | - | ||
Nitrous oxide emission factor | Animal manure management | Pork | 0.27 |
Beef | 0.91 | ||
Sheep | 0.06 | ||
Poultry | 0.01 |
Cabove | Cblew | Csoil | Cdead | |
---|---|---|---|---|
Cultivated land | 5.7 | 80.7 | 108.4 | 13 |
Forest | 42.4 | 115.9 | 236.9 | 13 |
Grassland | 35.3 | 86.5 | 99.9 | 2 |
Water | 0 | 0 | 0 | 0 |
Construction land | 1.2 | 0 | 0 | 0 |
Unused land | 9.1 | 0 | 21.6 | 0 |
References
- Richter, F.; Jan, P.; El Benni, N.; Lüscher, A.; Buchmann, N.; Klaus, V.H. A guide to assess and value ecosystem services of grasslands. Ecosyst. Serv. 2021, 52, 101376. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland Degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Sirimarco, X.; Barral, M.P.; Villarino, S.H.; Laterra, P. Water regulation by grasslands: A global Meta-analysis. Ecohydrology 2018, 11, e1934. [Google Scholar] [CrossRef]
- Lyons, K.G.; Török, P.; Hermann, J.-M.; Kiehl, K.; Kirmer, A.; Kollmann, J.; Overbeck, G.E.; Tischew, S.; Allen, E.B.; Bakker, J.D.; et al. Challenges and opportunities for grassland restoration: A global perspective of best practices in the era of climate change. Glob. Ecol. Conserv. 2023, 46, e02612. [Google Scholar] [CrossRef]
- Soussana, J.; Lüscher, A. Temperate grasslands and global atmospheric change: A Review. Grass Forage Sci. 2007, 62, 127–134. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Fang, X.; Wu, J. Causes of overgrazing in Inner Mongolian grasslands: Searching for deep leverage points of intervention. Ecol. Soc. 2022, 27, 8. [Google Scholar] [CrossRef]
- Michalk, D.L.; Kemp, D.R.; Badgery, W.B.; Wu, J.; Zhang, Y.; Thomassin, P.J. Sustainability and future food security—A global perspective for livestock production. Land Degrad. Dev. 2019, 30, 561–573. [Google Scholar] [CrossRef]
- Richter, F.J.; Suter, M.; Lüscher, A.; Buchmann, N.; El Benni, N.; Conz, R.F.; Hartmann, M.; Jan, P.; Klaus, V.H. Effects of management practices on the Ecosystem-service multifunctionality of temperate Grasslands. Nat. Commun. 2024, 15, 3829. [Google Scholar] [CrossRef]
- Li, Q.; Chen, D.; Zhao, L.; Yang, X.; Xu, S.; Zhao, X. More than a century of Grain for Green Program is expected to restore soil carbon stock on alpine grassland revealed by field 13C pulse labeling. Sci. Total Environ. 2016, 550, 17–26. [Google Scholar] [CrossRef]
- Chen, Y.; Ju, W.; Groisman, P.; Li, J.; Propastin, P.; Xu, X.; Zhou, W.; Ruan, H. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian Steppe. Environ. Res. Lett. 2017, 12, 115005. [Google Scholar] [CrossRef]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Soil organic carbon stock and fractional distribution in upland grasslands. Geoderma 2018, 314, 175–183. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Li, K.; Liu, Y.; Ochir, A.; Davaasuren, D. Assessment of grazing livestock balance on the Eastern Mongolian Plateau based on remote sensing monitoring and grassland carrying capacity evaluation. Sci. Rep. 2024, 14, 32151. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Wang, C.; Yu, K.; Liu, G.; Wu, S.; Wang, J.; Niu, S.; Zou, J.; Liu, S. Enhanced CO uptake is marginally offset by altered fluxes of Non-CO greenhouse gases in global forests and grasslands under N Deposition. Glob. Change Biol. 2023, 29, 5829–5849. [Google Scholar] [CrossRef] [PubMed]
- Ni, J. Carbon Storage in Terrestrial Ecosystems of China: Estimates at Different Spatial Resolutions and Their Responses to Climate Change. Clim. Change 2001, 49, 339–358. [Google Scholar] [CrossRef]
- Ma, A.; He, N.; Yu, G.; Wen, D.; Peng, S. Carbon storage in Chinese grassland ecosystems: Influence of different integrative Methods. Sci. Rep. 2016, 6, 21378. [Google Scholar] [CrossRef]
- Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; Available online: https://www.fao.org/4/i3461e/i3461e00.htm (accessed on 1 May 2025).
- Herrero, M.; Havlík, P.; Valin, H.; Notenbaert, A.; Rufino, M.C.; Thornton, P.K.; Blümmel, M.; Weiss, F.; Grace, D.; Obersteiner, M. Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl. Acad. Sci. USA 2013, 110, 20888–20893. [Google Scholar] [CrossRef]
- Zhuang, M.; Gong, B.Z.R.; Zhang, J.; Li, W. Greenhouse gas emissions from grassland animal husbandry: Current status, problems and future Perspectives. Acta Ecol. Sin. 2021, 41, 9970–9977. [Google Scholar]
- Yalcinkaya, S. Spatiotemporal analysis and mitigation potential of GHG emissions from the livestock sector in Turkey. Environ. Impact Assess. Rev. 2024, 105, 107441. [Google Scholar] [CrossRef]
- Kumari, S.; Dahiya, R.P.; Naik, S.N.; Hiloidhari, M.; Thakur, I.S.; Sharawat, I.; Kumari, N. Projection of methane emissions from livestock through enteric fermentation: A case study from India. Environ. Dev. 2016, 20, 31–44. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, X.; Yang, F.; Sun, Y.; Wang, Q.; Ren, F.; Nie, L.; Aodemu; Feng, W. Analysis of Greenhouse Gas Emissions Characteristics and Emissions Reduction Measures of Animal Husbandry in Inner Mongolia. Processes 2023, 11, 2335. [Google Scholar] [CrossRef]
- Fuentes-Ponce, M.H.; Gutiérrez-Díaz, J.; Flores-Macías, A.; González-Ortega, E.; Mendoza, A.P.; Sánchez, L.M.R.; Novotny, I.; Espíndola, I.P.M. Direct and indirect greenhouse gas emissions under conventional, organic, and conservation agriculture. Agric. Ecosyst. Environ. 2022, 340, 108148. [Google Scholar] [CrossRef]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.S.; Li, W.; et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural Grasslands. Nat. Commun. 2021, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- McSherry, M.E.; Ritchie, M.E. Effects of grazing on grassland soil carbon: A global Review. Glob. Change Biol. 2013, 19, 1347–1357. [Google Scholar] [CrossRef]
- Ganjegunte, G.K.; Vance, G.F.; Preston, C.M.; Schuman, G.E.; Ingram, L.J.; Stahl, P.D.; Welker, J.M. Soil Organic Carbon Composition in a Northern Mixed-Grass Prairie: Effects of Grazing. Soil Sci. Soc. Am. J. 2005, 69, 1746–1756. [Google Scholar] [CrossRef]
- Horn, J.; Isselstein, J. How do we feed grazing livestock in the future? A case for knowledge-driven grazing systems. Grass Forage Sci. 2022, 77, 153–166. [Google Scholar] [CrossRef]
- Caetano, M.; Wilkes, M.J.; Pitchford, W.S.; Lee, S.J.; Hynd, P.I. Efficacy of methane-reducing supplements in beef cattle rations. Anim. Prod. Sci. 2016, 56, 276–281. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Li, X.; Tian, M.; Wang, H.; Wang, H.; Yu, J. Development of an ecological security evaluation method based on the ecological footprint and application to a typical steppe region in China. Ecol. Indic. 2014, 39, 153–159. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Semmens, D.J.; Winthrop, R. Comparing approaches to spatially explicit ecosystem service modeling: A case study from the San Pedro River, Arizona. Ecosyst. Serv. 2013, 5, 40–50. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Y.; Liu, Q.; Li, F.Y. How willing are herders to participate in carbon sequestration and mitigation? An inner Mongolian grassland case. Sustainability 2018, 10, 2808. [Google Scholar] [CrossRef]
- He, B.; Tuya, W.; Qinchaoketu, S.; Nanzad, L.; Yong, M.; Kesi, T.; Sun, C. Climate change characteristics of typical grassland in the Mongolian Plateau from 1978 to 2020. Sustainability 2022, 14, 16529. [Google Scholar] [CrossRef]
- Su, R.; Yu, T.; Dayananda, B.; Bu, R.; Su, J.; Fan, Q. Impact of climate change on primary production of Inner Mongolian grasslands. Glob. Ecol. Conserv. 2020, 22, e00928. [Google Scholar] [CrossRef]
- Jiao, J.; Li, S.; Wang, W.; Qi, L.; Degen, A.A.; Bai, Y.; Shang, Z. Land parcellation reduced spatial redundancy resulting in grassland degradation. People Nat. 2024, 6, 2528–2542. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Z.; Wen, Q.; Ma, L.; Guo, J.; Chen, A.; Yang, X. Dynamic monitoring of aboveground biomass in Inner Mongolia grasslands over the past 23 years using GEE and analysis of its driving forces. J. Environ. Manag. 2024, 354, 120415. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, P.; Li, X.; Liu, X.; Chen, Y.; Shen, Q.; Zhuang, H. Dynamics of China’s Forest Carbon Storage: The First 30 m Annual Aboveground Biomass Mapping from 1985 to 2023. Earth Syst. Sci. Data Discuss. 2025, 1–34. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, J.; Fang, J. Above- and belowground net-primary productivity: A field-based global database of grasslands. Ecology 2023, 104, e3904. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Wang, D.; Mao, G.; Yang, A.; Jiao, Y.; Zhang, K. Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia. Land 2025, 14, 1092. https://doi.org/10.3390/land14051092
Liu B, Wang D, Mao G, Yang A, Jiao Y, Zhang K. Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia. Land. 2025; 14(5):1092. https://doi.org/10.3390/land14051092
Chicago/Turabian StyleLiu, Bingxuan, Dacheng Wang, Guozhu Mao, Aixia Yang, Yue Jiao, and Kaichen Zhang. 2025. "Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia" Land 14, no. 5: 1092. https://doi.org/10.3390/land14051092
APA StyleLiu, B., Wang, D., Mao, G., Yang, A., Jiao, Y., & Zhang, K. (2025). Spatial Evolution of Grassland Ecological Carrying Capacity and Low-Carbon Development Pathways for Animal Husbandry in Inner Mongolia. Land, 14(5), 1092. https://doi.org/10.3390/land14051092