Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site: Vegetation and Climate
2.2. Sampling Soils
2.3. Laboratory Analyses
2.4. Geo- and Statistical Analyses
3. Results and Discussion
3.1. Soil Macromorphology
3.2. Landscape Characteristics and the Soil Relation
3.3. Physicochemical Properties: Soil Profiles
3.4. Physicochemical Properties: Topsoil
3.5. Multivariate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buol, S.; Southard, R.; Graham, R.; McDaniel, P. Soil Genesis and Classification; John Wiley Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bouma, J.; Batjes, N.; Groot, J.R. Exploring land quality effects on world food supply. Geoderma 1998, 86, 43–59. [Google Scholar] [CrossRef]
- Burbano-Orjuela, H. El suelo y su relación con los servicios ecosistémicos y la seguridad alimentaria. Rev. De Cienc. Agrícolas 2016, 33, 117–124. [Google Scholar] [CrossRef]
- Brevik, E.; Slaughter, L.; Singh, B.; Steffan, J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and human health: Current status and future needs. Air Soil Water Res. 2020, 13, 1178622120934441. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef]
- Brevik, E.; Cerdà, A.; Mataix, J.; Pereg, L.; Quinton, J.; Six, J.; Van Oost, K. The interdisciplinary nature of SOIL. Soil 2015, 1, 117–129. [Google Scholar] [CrossRef]
- Gutiérrez, C.; Fernández, C.; Escuer, M.; Campo, R.; Rodríguez, M.; Carbonell, G.; Martín, J. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity. Environ. Pollut. 2016, 213, 184–194. [Google Scholar] [CrossRef]
- Elramady, H.; Brevik, E.; Elsakhawy, T.; Omara, A.; Amer, M.; Abowaly, M.; Prokisch, J. Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci. 2022, 62, 101–122. [Google Scholar] [CrossRef]
- Hartemink, A.; McBratney, A. A soil science renaissance. Geoderma 2008, 148, 123–129. [Google Scholar] [CrossRef]
- McBratney, A.; Field, D.; Koch, A. The dimensions of soil security. Geoderma 2014, 213, 203–213. [Google Scholar] [CrossRef]
- Unidad de Planificación Rural Agropecuaria (UPRA) Sistema de Información para la Planificación Rural Agropecuaria, S.I.P.R.A. Planificación Nacional. Frontera Agrícola. República De Colombia. 2025. Available online: https://sipra.upra.gov.co/nacional (accessed on 2 March 2025).
- Ministerio de Ambiente y Desarrollo Sostenible (MADS). Política para la Gestión Sostenible del Suelo; Grupo de Divulgación de Conocimiento Y Cultura Ambiental—Centro de Documentación: Bogotá, DC, Colombia, 2016; 94p, ISBN 978-958-8901-24-4. Available online: https://archivo.minambiente.gov.co/images/AsuntosambientalesySectorialyUrbana/pdf/suelo/Pol%C3%ADtica_para_la_gesti%C3%B3n_sostenible_del_suelo_FINAL.pdf (accessed on 15 November 2024).
- Zinck, J.; Metternicht, G.; Bocco, G.; Del Valle, H. Geopedology: An Integration of Geomorphology and Pedology for Soils and Landscape Studies; Springer International Publishing: Cham, Switzerland, 2016; 556p. [Google Scholar]
- Minasny, B.; Akoeb, E.N.; Sabrina, T.; Wadoux, A.; McBratney, A. History and interpetation of early soil and organic matter investigations in Deli, Sumatra, Indonesia. Catena 2020, 195, 104909. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Ali, D.; Hussain, A.; Begum, F.; Lin, C.; Ali, S.; Ahsan, W.A.; Hussain, A.; Hussain, F. Assessing the impact of land use and land cover changes on soil properties and carbon sequestration in the upper Himalayan Region of Gilgit, Pakistan. Sustain. Chem. One World 2025, 5, 100038. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating land degradation and desertification: The land-use planning quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef]
- Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. J. Indian Soc. Remote Sens. 2022, 50, 1615–1640. [Google Scholar] [CrossRef]
- Oumenskou, H.; El Baghdadi, M.; Barakat, A.; Aquit, M.; Ennaji, W.; Karroum, L.; Aadraoui, M. Multivariate statistical analysis for spatial evaluation of physicochemical properties of agricultural soils from Beni-Amir irrigated perimeter, Tadla plain, Morocco. Geol. Ecol. Landsc. 2019, 3, 83–94. [Google Scholar] [CrossRef]
- Departamento Nacional de Planeación (DNP). Visión de Desarrollo Territorial Departamental Visión Arauca 2032: Geoestratégica, Innovadora y Nuestra; Departamento Nacional de Planeación (DNP): Bogotá, Colombia, 2011; ISSN 2256-1854. [Google Scholar]
- Trujillo, F.; Anzola, F. (Eds.) Biodiversidad en El Departamento de Arauca. Gobernación de Arauca, Fundación Omacha Y Fundación Ecollano. 2019, Bogotá 384 Páginas (PDF) Vegetación Del Departamento de Arauca. Available online: https://www.researchgate.net/publication/352057426_Vegetacion_del_Departamento_de_Arauca (accessed on 9 May 2025).
- Rangel-Ch, J.O.; Celis, V. Suelos del Territorio Sabanas y Humedales de Arauca, Colombia. Colombia Diversidad Biótica XX: Suelos Sabanas y Humedales de Arauca; Universidad Nacional de Colombia: Bogotá, Colombia, 2019; pp. 171–197. [Google Scholar]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, L.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Prüssmann, J.; Rincón, S.; Tavera, H.; Suárez, C. Estructura Ecológica Principal de la Orinoquia Colombiana–Actualización Metodológica Mapa Sulu; Federal Ministry for the Environment Bature Conservation, Building and Nuclear Safety: Cali, Colombia, 2020; p. 88. ISBN 978-958-52986-5-1. [Google Scholar]
- Instituto Geografico Agustin Codazzi (IGAC). Estudio General de Suelos y Zonificación de Tierras Arauca: Escala 1,100,000; Instituto Geografico Agustin Codazzi (IGAC): Bogotá, Colombia, 2017. [Google Scholar]
- Instituto Geografico Agustin Codazzi (IGAC). Zonificación Climática Para Levantamiento de Suelos; Instituto Geografico Agustin Codazzi (IGAC): Bogotá, Colombia, 2021. [Google Scholar]
- FAO. Guidelines for Soil Description, 4th ed.; FAO/UNESCO: Rome, Italy, 2006. [Google Scholar]
- Anne, A. Sur le dosage rapid du carbone organique de sols. Ann. Agro 1945, 2, 161–172. [Google Scholar]
- Nelson, D.W.; Sommers, L. Total nitrogen analysis of soil and plant tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- Bray, R.; Kurtz, L. Determination of Total Organic and Available Forms of Phosphorus in Soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Bouyoucos, G. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron. J. 1951, 43, 434–438. [Google Scholar] [CrossRef]
- Thomas, G. Exchangeable cations. In Methods of Soil Analysis Part 2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 159–165. [Google Scholar]
- Venables, W.; Smith, D. An Introduction to R; R. Core Team: Auckland, New Zealand, 2022. [Google Scholar]
- IUSSWorking Group, W.R.B. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015. World Soil Resources Report 106. FAO: Rome, Italy, 2015. [Google Scholar]
- Soil Survey Staff. Key to Soil Taxonomy, 12th ed.; USDA-Natural Resources; Conservation Service: Washington DC, USA, 2014. [Google Scholar]
- Wilding, L.P. Spatial variability: Its documentation, accommodation and implication to soil survey. In Soil Spatial VariabilityNielsen; Nielsen, D.R., Bouma, J., Eds.; Pudoc: Wagenigen, The Netherlands, 1985; pp. 166–189. [Google Scholar]
- Kumar, S.; Suyal, D.; Yadav, A.; Shouche, Y.; Goel, R. Microbial diversity and soil physiochemical characteristic of higher altitude. PLoS ONE 2019, 14, e0213844. [Google Scholar] [CrossRef] [PubMed]
- Gebeyaw, T. Assessment of soil fertility variation in different land uses and management practices in maybar watershed, south wollo zone, North Ethiopia. Int. J. Environ. Bioremediat. Biodegrad. 2015, 1, 15–22. [Google Scholar]
- Laekemariam, F.; Kibret, K.; Shiferaw, H. Potassium (K)-to-magnesium (Mg) ratio, its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of Southern Ethiopia. Agric. Food Secur. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Michael, P.S. Role of organic fertilizers in the management of nutrient deficiency, acidity, and toxicity in acid soils—A review. J. Glob. Agric. Ecol. 2021, 12, 19–30. [Google Scholar]
- Trujillo-González, J.; Mahecha-Pulido, J.; Torres-Mora, M.; Brevik, E.; Keesstra, S.; Jiménez-Ballesta, R. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture 2017, 7, 52. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2109, 5794869. [Google Scholar] [CrossRef]
- Chemada, M.; Kibret, K.; Fite, T. Influence of different land use types and soil depths on selected soil properties related to soil fertility in warandhab area, Horo guduru wallaga zone, Oromiya, Ethiopia. Int. J. Environ. Sci. Nat. Resour. 2017, 4, 555634. [Google Scholar]
- Trujillo, J.; Torres, M.; Ballesta, R.; Brevik, E. Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia. Environ. Earth Sci. 2022, 81, 108. [Google Scholar] [CrossRef]
- Bronick, C.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Kome, G.; Enang, R.; Tabi, F.; Yerima, B. Influence of clay minerals on some soil fertility attributes: A review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef]
- Karbout, N.; Brahim, N.; Mlih, R.; Moussa, M.; Bousnina, H.; Weihermuller, L.; Bol, R. Bentonite clay combined with organic amendments to enhance soil fertility in oasis agrosystem. Arab. J. Geosci. 2021, 14, 1–10. [Google Scholar] [CrossRef]
- Dai, W.; Huang, Y. Relation of soil organic matter concentration to climate and altitude in zonal soils of China. Catena 2006, 65, 87–94. [Google Scholar] [CrossRef]
- Li, X.; McCarty, G.; Du, L.; Lee, S. Use of topographic models for mapping soil properties and processes. Soil Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Marín, G.; Rueda, G.; Menjivar, J. Evaluation of physicochemical properties in agricultural soils on the flat and piedmont areas of Valle del Cauca, Colombia with emphasis on degradation. Environ. Earth Sci. 2023, 82, 157. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M.; Ayoubi, S.; Srinivasarao, C.; Wani, S.P. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agric. Ecosyst. Environ. 2009, 134, 178–189. [Google Scholar] [CrossRef]
- Fernández-Delgado Juárez, M.; Gómez-Brandón, M.; Knapp, A.; Stöhr, D.; Insam, H. Chemical and microbiological properties of alpine forest soils: Effects of pelletized ashes in a short-term trial. For. Ecol. Manag. 2015, 357, 42–49. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Rahman, M.; Lee, S.-H.; Ji, H.; Kabir, A.; Jones, C.; Lee, K.W. Importance of mineral nutrition for mitigating aluminum toxicity in plants on acidic soils: Current status and opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef]
- Fageria, N.; Baligar, V. Ameliorating soil acidity of tropical oxisols by liming for sustainable crop production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Rawal, A.; Chakraborty, S.; Li, B.; Lewis, K.; Godoy, M.; Paulette, L.; Weindorf, D.C. Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer. Geoderma 2019, 338, 375–382. [Google Scholar] [CrossRef]
- Michael, P.S. The importance of sustainable management of acid soils in the humid tropics under climate change and the future research directions. Ecofeminism Clim. Change 2023, 4, 39–50. Available online: https://bit.ly/3FeaE3K (accessed on 12 May 2025). [CrossRef]
- Ferreira, S.J.F.; Luizão, F.J.; Miranda, S.Á.F.; Silva, M.D.S.R.D.; Vital, A.R.T. Nutrients in soil solution in an upland forest submitted to selective logging in central Amazonia. Acta Amaz. 2006, 36, 59–68. [Google Scholar] [CrossRef]
Landscapes | Area (ha) | Percentage Representation of the Region | Annual Average Precipitation (mm) | Annual Average Temperature (°C) | Lithology/Sediments | Relief Type | Slope (%) | Altitude (m.s.n.m.) |
---|---|---|---|---|---|---|---|---|
Alluvial plain | 1,103,867 | 46.4 | 1599 | 31.0 | Alluvial deposits | Terrace | <3 | 200 to 500 |
Alluvial plains with dunes | 603,868 | 25.4 | 1583 | 30.4 | Alluvial deposits | Sand fields | <3 | 100 to 200 |
Mountain | 279,884 | 11.7 | 2111 | 13.4 | Quartz sandstones | Hogbacks and ridges | 12 to more 75> | 1500 to 4500 |
Alluvial valley | 184,490 | 7.8 | 1643 | 30.9 | Alluvial deposits | Floodplains | <3 | 150 to 500 |
Foothill | 178,336 | 7.5 | 2039 | 25.3 | Fluvio-glacial sediments | Alluvial fans | 3 to 25 | 500 to 1000 |
Hills | 26,475 | 1.11 | 1359 | 22.1 | Tertiary clays and sandstones | Hills and knolls | 12 to 50 | 500 to 1000 |
Profile | Landscapes | Location (Coordinates) | Rock Factor | Topography | Drainage | Morphology | Soil Type IUSS Group/Soil Taxonomy |
---|---|---|---|---|---|---|---|
1 | Mountain | 6.1550139 latitude; −72.248375 longitude | Sedimentary Rock | Strongly steep | Well-drained | A-R | Lithic Cambisol Lithic Udorthents |
2 | 6.2257222 latitude; −71.982 longitude | Arcillolita | Steep | Well-drained | Ap-Bw-C | Dystric Acrisol (Dystric, Novic) Oxic Dystrudepts | |
3 | Foothills | 6.4353056 latitude; −71.8096944 longitude | Silt and clay sediments | Slightly steep | Well-drained | A-Bw-C | Haplic Cambisol (Dystric) Typic Dystrudepts |
4 | 6.2357389 latitude; −71.9319917 longitude | Silt and clay sediments | Slightly steep | Well-drained | A-C | Haplic Arenosol (Dystric) Typic Udipsamments | |
5 | Hills | 6.3097222 latitude; −71.8218056 longitude | Sandy sediments | Slightly steep | Poorly-drained | A-C | Fluvic Gleysol (Epigleyic) Typic Fluvaquents |
6 | 6.3183667 latitude; −71.7843306 longitude | Claystone | Steep | Well-drained | Ap-Bw-Bo-C | Haplic Ferralsol (Dystric) Typic Hapludox | |
7 | Alluvial plain | 6.5394722 latitude; −71.4946389 longitude | Silt and clay sediments | Flat or almost flat | Poorly-drained | Ap-Bw-Bo-Cg | Plinthic Ferralsol (Dystric) Plinthic Haplaquox |
8 | 7.0282194 latitude; −71.3927944 longitude | Silt and clay sediments | Flat or almost flat | Poorly-drained | Ap-Bw1-Bw2 | Eutric Gleysol (Fluvic) Fluvaquentic Eutrudepts | |
9 | Alluvial plains with dunes | 6.7058056 latitude; −70.3989722 longitude | Silt and clay sediments | Flat or almost flat | Poorly-drained | Ap-Bw-Bg1-Bg2 | Dystric Gleysol (Endogleyic) Typic Endoaquepts |
10 | 6.8048889 latitude; −70.46375 longitude | Silt and clay sediments | Flat or almost flat | Poorly-drained | Ap-Bg-Cg | Histic Gleysol (Dystric) Typic Humaquepts | |
11 | Alluvial valley | 6.9528333 latitude; −71.7748056 longitude | Sandy sediments | Flat or almost flat | Poorly-drained | A-Bw1-Bw2-C | Gleyic Cambisol (Endogleyic) Aquic Dystrudepts |
12 | 6.6602222 latitude; −71.5619444 longitude | Silt and clay sediments | Flat or almost flat | Poorly-drained | A-Bg-Cg1-Cg2 | Fluvic Gleysol (Dystric) Fluventic Endoaquepts |
Landscapes | (Mountain) | (Foothills) | (Hills) | (Alluvial Plain) | (Alluvial Plains with Dunes) | (Alluvial Valley) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Profile/Morphology | Acrisol | Cambisol | Ferralsol | Cambisol | Gleysol | Gleysol | ||||||||||||||||
Ap | Bw | C | A | Bw | C | Ap | Bw | Bo | C | Ap | Bw1 | Bw2 | Ap | Bw | Bg1 | Bg2 | A | Bg | Cg1 | Cg2 | ||
Coordinates GD | 6.225722 latitude; −71.982 longitude | 6.4353056 latitude; −71.8096944 longitude | 6.3183667 latitude; −71.7843306 longitude | 7.0282194 latitude; −71.3927944 longitude | 6.7058056 latitude; −70.3989722 longitude | 6.6602222 latitude; −71.5619444 longitude | ||||||||||||||||
Depth (cm) | 0–14 | 14–33 | 33–50 | 0–20 | 20–42 | 42–75 | 0–22 | 22–42 | 42–90 | 90–135 | 0–12 | 12–38 | 38–74 | 0–15 | 15–40 | 40–71 | 71–120 | 0–13 | 13–26 | 26–68 | 68–110 | |
Sand (%) | 84.3 | 58 | 80.3 | 91.2 | 81.0 | 81.2 | 57.8 | 53.6 | 49.8 | 49.5 | 14.2 | 25.0 | 14.9 | 44.3 | 44.0 | 50.3 | 42.3 | 47.2 | 23.0 | 99.2 | 99 | |
Silt (%) | 9.7 | 24.0 | 9.7 | 8.8 | 11.0 | 18.8 | 24.1 | 24.2 | 28.1 | 24.2 | 59.2 | 54.7 | 62.8 | 44.5 | 42.0 | 34.5 | 38.5 | 32.0 | 40.0 | 0.0 | 0.0 | |
Clay (%) | 6.0 | 18 | 10.0 | 0.0 | 8.0 | 0.0 | 18.1 | 22.2 | 22.1 | 26.3 | 26.6 | 20.3 | 22.3 | 11.2 | 13.0 | 15.2 | 19.2 | 20.8 | 37.0 | 0.8 | 1.0 | |
Texture | LS | SL | LS | S | LS | LS | SL | SCL | L | SCL | ZL | ZL | ZL | L | L | L | L | L | CL | S | S | |
OM (%) | 2.85 | 2.17 | 1.02 | 1.49 | 1.04 | 0.33 | 1.5 | 0.7 | 0.2 | 0.1 | 3.4 | 0.5 | 0.4 | 2.45 | 0.78 | 0.29 | 0.28 | 5.34 | 1.86 | 0.28 | 0.28 | |
Organic carbon (%) | 1.46 | 1.12 | 0.52 | 0.76 | 0.53 | 0.17 | 0.8 | 0.35 | 0.1 | 0.06 | 1.8 | 0.28 | 0.2 | 1.26 | 0.40 | 0.15 | 0.14 | 2.74 | 0.95 | 0.14 | 0.14 | |
P (mg/kg−1) | 2.10 | 2.07 | 5.0 | 2.07 | 2.07 | 2.07 | 6.60 | 3.7 | 1.5 | 5.4 | 11.4 | 7.0 | 6.8 | 42.97 | 48.20 | 2.07 | 27.97 | 78.75 | 86.76 | 66.40 | 74.42 | |
Exchangeable acidity saturation (%) | 83.62 | 83.82 | 81.31 | 39.15 | 62.36 | 59.41 | 86.2 | 94.0 | 95.7 | 96.6 | 0.0 | 4.8 | 0.0 | 21.79 | 69.68 | 78.53 | 82.95 | 4.1 | 31.1 | 0.0 | 0.0 | |
pH (water 1:1) | 4.5 | 4.7 | 5.0 | 5.1 | 4.9 | 4.9 | 4.2 | 4.3 | 4.3 | 4.3 | 6.0 | 5.5 | 5.6 | 4.6 | 4.7 | 4.6 | 4.5 | 5.4 | 4.9 | 6.1 | 6.0 | |
Al (cmol kg−1) | 5.82 | 5.75 | 3.96 | 0.74 | 1.64 | 1.20 | 2.0 | 3.0 | 2.0 | 2.8 | 0.0 | 0.27 | 0.0 | 0.73 | 1.93 | 2.45 | 3.26 | 0.73 | 3.16 | 0.0 | 0.0 | |
Cation Exchange Complex (cmol kg−1) | Ca2+ | 0.29 | 0.29 | 0.29 | 0.34 | 0.30 | 0.29 | 0.2 | 0.1 | 0.0 | 0.0 | 11.2 | 3.4 | 3.0 | 1.78 | 0.34 | 0.29 | 0.29 | 14.12 | 5.04 | 0.95 | 0.91 |
Mg2+ | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.1 | 0.01 | 0.0 | 0.02 | 3.0 | 1.8 | 2.2 | 0.54 | 0.20 | 0.18 | 0.18 | 2.35 | 1.48 | 0.41 | 0.32 | |
K+ | 0.55 | 0.52 | 0.32 | 0.51 | 0.39 | 0.23 | 0.1 | 0.04 | 0.0 | 0.03 | 0.1 | 0.05 | 0.1 | 0.18 | 0.18 | 0.08 | 0.08 | 0.49 | 0.36 | 0.16 | 0.14 | |
Na+ | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.0 | 0.02 | 0.0 | 0.04 | 0.1 | 0.04 | 0.0 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | |
Base saturation (%) | 7.66 | 9.19 | 11.61 | 25.39 | 29.29 | 24.12 | 7.0 | 4.6 | 3.9 | 2.8 | 83.7 | 74.6 | 66.7 | 33.94 | 20.74 | 12.74 | 12.36 | 71.58 | 44.93 | 50.46 | 45.85 |
Landscapes | Altitude (m) | Sand (%) | Clay (%) | Silt (%) | pH | OM (%) | P (mg kg−1) | Ca2+ | Mg2+ | K+ | CEC (cmol(+) kg−1) | % Exchangeable Acidity Saturation | Al (cmol(+) kg−1) | % Base Saturation | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mountain | Me | 996.4 | 62.4 | 16.8 | 20.8 | 4.,3 | 4.6 | 3.5 | 0.4 | 0.2 | 0.2 | 5.1 | 70.7 | 3.4 | 10.4 |
SD | 875.3 | 19.6 | 14.3 | 7.3 | 0.4 | 6.7 | 3.2 | 0.7 | 0.2 | 0.2 | 5.3 | 21.0 | 3.4 | 10.7 | |
CV% | 87.8 | 31.5 | 84.7 | 35.2 | 8.6 | 146.1 | 89.5 | 175.2 | 99.0 | 87.6 | 103.0 | 29.7 | 101.5 | 102.9 | |
Max | 3400.0 | 96.3 | 53.3 | 32.5 | 5.0 | 33.4 | 15.6 | 3.6 | 0.9 | 0.7 | 22.5 | 96.2 | 15.3 | 48.1 | |
Min | 180.0 | 18.0 | 2.0 | 1.7 | 3.7 | 0.7 | 0.5 | 0.0 | 0.0 | 0.0 | 0.3 | 34.0 | 0.1 | 1.2 | |
N | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | 25 | |
Foothills | Me | 337.5 | 69.3 | 12.2 | 18.4 | 4.5 | 1.4 | 6.7 | 0.6 | 0.3 | 0.1 | 2.9 | 56.3 | 1.2 | 22.4 |
SD | 132.2 | 19.9 | 8.6 | 12.2 | 0.4 | 0.7 | 11.3 | 0.7 | 0.4 | 0.2 | 2.7 | 21.7 | 0.5 | 12.3 | |
CV% | 39.2 | 28.8 | 70.6 | 66.0 | 7.8 | 46.7 | 168.6 | 119.3 | 144.2 | 122.8 | 94.3 | 38.6 | 44.5 | 54.9 | |
Max | 550.0 | 94.8 | 30.5 | 44.7 | 5.1 | 2.8 | 48.3 | 2.1 | 1.4 | 0.6 | 12.0 | 94.0 | 2.2 | 43.4 | |
Min | 180.0 | 24.8 | 0.0 | 2.1 | 3.5 | 0.6 | 0.4 | 0.0 | 0.0 | 0.0 | 0.7 | 15.3 | 0.4 | 3.2 | |
N | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | |
Hills | Me | 421.8 | 72.9 | 10.7 | 16.4 | 4.6 | 1.3 | 10.6 | 0.4 | 0.1 | 0.1 | 1.8 | 68.4 | 1.1 | 15.6 |
SD | 82.0 | 8.1 | 3.9 | 5.5 | 0.3 | 0.4 | 19.8 | 0.5 | 0.2 | 0.1 | 0.7 | 22.4 | 0.5 | 12.1 | |
CV% | 19.4 | 11.1 | 36.4 | 33.7 | 6.7 | 33.2 | 186.8 | 119.7 | 157.5 | 105.9 | 41.9 | 32.7 | 40.3 | 77.7 | |
Max | 570.0 | 83.9 | 18.1 | 24.2 | 5.1 | 2.1 | 68.6 | 1.6 | 0.7 | 0.2 | 3.6 | 94.7 | 2.0 | 39.3 | |
Min | 310.0 | 57.8 | 6.6 | 8.0 | 4.2 | 0.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7 | 30.6 | 0.5 | 2.0 | |
N | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | |
Alluvial plain | Me | 164.0 | 39.1 | 30.4 | 30.5 | 4.9 | 2.0 | 36.3 | 2.2 | 1.2 | 0.2 | 5.5 | 44.9 | 2.4 | 35.4 |
SD | 53.4 | 22.7 | 17.0 | 17.1 | 0.6 | 1.4 | 71.1 | 2.6 | 1.4 | 0.2 | 3.8 | 33.8 | 4.1 | 26.4 | |
CV% | 32.6 | 58.2 | 55.9 | 55.9 | 11.9 | 66.5 | 196.0 | 115.8 | 117.0 | 80.5 | 69.6 | 75.3 | 173.1 | 74.6 | |
Max | 390.0 | 87.2 | 64.2 | 73.7 | 6.4 | 6.3 | 357.0 | 11.2 | 4.9 | 0.7 | 14.6 | 100.0 | 25.4 | 88.9 | |
Min | 118.0 | 4.9 | 2.0 | 2.8 | 4.0 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 0.0 | 0.0 | 1.7 | |
N | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | |
Alluvial plains with dunes | Me | 142.6 | 51.2 | 17.6 | 31.3 | 4.5 | 2.7 | 3.9 | 0.2 | 0.1 | 0.1 | 1.9 | 74.0 | 1.5 | 9.4 |
SD | 45.5 | 21.8 | 14.9 | 22.0 | 0.2 | 2.8 | 9.5 | 0.4 | 0.1 | 0.1 | 1.0 | 17.3 | 0.9 | 8.8 | |
CV% | 31.9 | 42.6 | 84.8 | 70.2 | 4.6 | 101.7 | 240.9 | 159.7 | 111.8 | 103.7 | 50.4 | 23.4 | 60.5 | 93.3 | |
Max | 220.0 | 88.0 | 54.5 | 70.0 | 4.9 | 11.4 | 43.0 | 1.8 | 0.5 | 0.2 | 4.3 | 96.8 | 4.2 | 33.9 | |
Min | 100.0 | 18.7 | 6.0 | 5.2 | 4.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 21.8 | 0.4 | 1.3 | |
N | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | |
Alluvial valley | Me | 254.2 | 51.0 | 14.8 | 34.3 | 4.8 | 1.9 | 29.4 | 2.6 | 1.0 | 0.3 | 5.7 | 36.2 | 1.7 | 40.7 |
SD | 175.9 | 23.8 | 14.6 | 16.9 | 0.5 | 1.4 | 42.1 | 3.4 | 1.0 | 0.2 | 4.0 | 24.3 | 1.3 | 23.9 | |
CV% | 69.2 | 46.7 | 98.9 | 49.2 | 9.7 | 70.7 | 143.2 | 131.5 | 101.3 | 66.3 | 70.3 | 66.9 | 78.2 | 58.5 | |
Max | 622.0 | 96.8 | 58.4 | 69.7 | 5.7 | 5.3 | 165.0 | 14.1 | 3.5 | 0.6 | 17.8 | 79.5 | 4.6 | 105.5 | |
Min | 125.0 | 11.3 | 2.0 | 1.2 | 4.1 | 0.7 | 0.0 | 0.3 | 0.2 | 0.0 | 1.3 | 4.1 | 0.2 | 10.5 | |
N | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
Soil Properties | Component | ||
---|---|---|---|
1 | 2 | 3 | |
Altitude | −0.026 | 0.382 | 0.135 |
Sand (%) | −0.197 | 0.024 | 0.368 |
Clay (%) | 0.164 | 0.005 | −0.127 |
Silt (%) | 0.128 | −0.041 | −0.415 |
pH | 0.141 | −0.198 | 0.224 |
OM | 0.057 | 0.385 | 0.043 |
P | 0.025 | −0.137 | 0.308 |
Ca2+ | 0.207 | −0.070 | 0.161 |
Mg2+ | 0.214 | −0.051 | 0.065 |
K+ | 0.116 | 0.050 | 0.383 |
CEC | 0.190 | 0.146 | 0.126 |
Al | 0.072 | 0.286 | −0.104 |
Total variance (%) | 33.33 | 17.80 | 12.03 |
Cumulative variance (%) | 33.33 | 51.14 | 63.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahecha-Pulido, J.D.; Trujillo-González, J.M.; Torres-Mora, M.A.; García-Navarro, F.J.; Jiménez-Ballesta, R. Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region. Land 2025, 14, 1073. https://doi.org/10.3390/land14051073
Mahecha-Pulido JD, Trujillo-González JM, Torres-Mora MA, García-Navarro FJ, Jiménez-Ballesta R. Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region. Land. 2025; 14(5):1073. https://doi.org/10.3390/land14051073
Chicago/Turabian StyleMahecha-Pulido, Juan David, Juan Manuel Trujillo-González, Marco Aurelio Torres-Mora, Francisco J. García-Navarro, and Raimundo Jiménez-Ballesta. 2025. "Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region" Land 14, no. 5: 1073. https://doi.org/10.3390/land14051073
APA StyleMahecha-Pulido, J. D., Trujillo-González, J. M., Torres-Mora, M. A., García-Navarro, F. J., & Jiménez-Ballesta, R. (2025). Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region. Land, 14(5), 1073. https://doi.org/10.3390/land14051073