Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Soil and Restorative Materials
2.2. Pot Experiment
2.3. Samples Collection and Analysis
2.3.1. Soil Sample Analysis
2.3.2. Plant Sample Analysis
2.4. Microbial Community (16S rDNA and ITS)
2.5. SEM Analysis
2.6. Statistical Analysis
3. Results
3.1. Improvement of Soil Properties and Nutrients
3.1.1. Soil pH, OC, and N, P
3.1.2. Changes in EC, CEC, Soil Salinity, and Alkalinity
3.2. Microbial Biomass and Microbial Diversity in Soil
3.2.1. Microbial Biomass
3.2.2. Microbial Diversity and Communities
3.3. Enhancement of Ryegrass Growth
4. Discussion
4.1. Feasibility of the Application of Biochar and WJLS on Sandy-Loam Soil
4.2. Effect of Biochar and WJLS on Microorganisms
4.3. The Potential of Biochar and Sludge in Promoting Plant Growth
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
WJLS | Water jet-loom sludge |
OC | Organic carbon |
TN | Total nitrogen |
TP | Total phosphorus |
AN | Available nitrogen |
AP | Available phosphorus |
SAR | Sodium absorption ratio |
CEC | Cation exchange capacity |
EC | Electric conductivity |
MBC | Microbial biomass carbon |
MBN | Microbial biomass nitrogen |
MBP | Microbial biomass phosphorus |
ESP | Exchangeable sodium percentage |
LSD | Least significant difference |
RDA | Redundancy analysis |
PTE | Potentially toxic elements |
References
- Burezq, H. Combating wind erosion through soil stabilization under simulated wind flow condition-Case of Kuwait. Int. Soil Water Conserv. Res. 2020, 8, 154–163. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, W.; Wen, Z.; Yang, Y.; Chang, X.; Yang, Q.; Meng, Y.; Liu, C. Mechanisms and feedbacks for evapotranspiration-induced salt accumulation and precipitation in an arid wetland of China. J. Hydrol. 2019, 568, 403–415. [Google Scholar] [CrossRef]
- Zhang, P.; Bing, X.; Jiao, L.; Xiao, H.; Li, B.; Sun, H. Amelioration effects of coastal saline-alkali soil by ball-milled red phosphorus-loaded biochar. Chem. Eng. J. 2022, 431, 133904. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Tian, L.; Shi, S.; Xu, S.; Yang, F.; Li, X.; Wang, Z.; Tian, C. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 2018, 329, 108–117. [Google Scholar] [CrossRef]
- Fu, J.; Xiao, Y.; Wang, Y.-F.; Liu, Z.-H.; Yang, K. Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment. Sci. Rep. 2021, 11, 11152. [Google Scholar] [CrossRef] [PubMed]
- Simpson, M.J.; Simpson, A.J. Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Yin, R.; Kardol, P.; Thakur, M.P.; Gruss, I.; Wu, G.-L.; Eisenhauer, N.; Schädler, M. Soil functional biodiversity and biological quality under threat: Intensive land use outweighs climate change. Soil Biol. Biochem. 2020, 147, 107847. [Google Scholar] [CrossRef]
- Ji, C.; Huang, J.; Tian, Y.; Liu, Y.; Barvor, J.B.; Shao, X.; Li, Z.A. Feasibility Study on the Application of Microbial Agent Modified Water-Jet Loom Sludge for the Restoration of Degraded Soil in Mining Areas. Int. J. Environ. Res. Public Health 2021, 18, 6797. [Google Scholar] [CrossRef]
- Bi, Y.; Guo, Y.; Sun, H. Arbuscular mycorrhizal fungal diversity in soils underlying moss biocrusts in coal mining subsidence areas. Environ. Sci. Pollut. Res. 2021, 28, 3484–3493. [Google Scholar] [CrossRef]
- Arif, M.S.; Riaz, M.; Shahzad, S.M.; Yasmeen, T.; Ashraf, M.; Siddique, M.; Mubarik, M.S.; Bragazza, L.; Buttler, A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. Sci. Total Environ. 2018, 619, 517–527. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Gao, W.; Gao, K.; Guo, Z.; Liu, Y.; Jiang, L.; Liu, C.; Liu, X.; Wang, G. Different responses of soil bacterial and fungal communities to 3 years of biochar amendment in an alkaline soybean soil. Front. Microbiol. 2021, 12, 630418. [Google Scholar] [CrossRef] [PubMed]
- Benzarti, S.; Hamdi, H.; Aoyama, I.; Jedidi, N.; Hassen, A.; Dahmane, A. Assessment of the effect of repetitive municipal solid waste compost application on soil using physico-chemical analyses, solid-phase bioassays and microbial activity characterization. Jpn. J. Environ. Toxicol. 2007, 10, 19–30. [Google Scholar]
- Hu, Z.; Zhu, Q.; Liu, X.; Li, Y. Preparation of topsoil alternatives for open-pit coal mines in the Hulunbuir grassland area, China. Appl. Soil Ecol. 2020, 147, 103431. [Google Scholar] [CrossRef]
- Penido, E.S.; Martins, G.C.; Mendes, T.B.M.; Melo, L.C.A.; do Rosário Guimarães, I.; Guilherme, L.R.G. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Ecotoxicol. Environ. Saf. 2019, 172, 326–333. [Google Scholar] [CrossRef]
- Markowicz, A.; Bondarczuk, K.; Cycoń, M.; Sułowicz, S. Land application of sewage sludge: Response of soil microbial communities and potential spread of antibiotic resistance. Environ. Pollut. 2021, 271, 116317. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Lv, M.; Zuo, W.; Tang, Z.; Ding, C.; Yu, Z.; Shen, Z.; Gu, C.; Bai, Y. Sewage sludge application enhances soil properties and rice growth in a salt-affected mudflat soil. Sci. Rep. 2021, 11, 1402. [Google Scholar] [CrossRef]
- McHenry, M.P. Agricultural biochar production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agric. Ecosyst. Environ. 2009, 129, 1–7. [Google Scholar] [CrossRef]
- Jiang, T.; Jiang, J.; Xu, R.; Li, Z. Adsorption of Pb (II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 2012, 89, 249–256. [Google Scholar] [CrossRef]
- Yadav, V.; Jain, S.; Mishra, P.; Khare, P.; Shukla, A.K.; Karak, T.; Singh, A.K. Amelioration in nutrient mineralization and microbial activities of sandy loam soil by short term field aged biochar. Appl. Soil Ecol. 2019, 138, 144–155. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, C.; Kong, Y.; Cao, X.; Zhu, L.; Zhang, Y.; Ning, Y.; Tian, W.; Zhang, H.; Yu, Y. Biochar application alleviated rice salt stress via modifying soil properties and regulating soil bacterial abundance and community structure. Agronomy 2022, 12, 409. [Google Scholar] [CrossRef]
- Sheng, M.; Han, X.; Long, J.; Li, N. Characterization of soil organic matter in different regions of China. Soils Crops 2019, 8, 320–330. [Google Scholar]
- Kalembasa, S.J.; Jenkinson, D.S. A comparative study of titrimetric and gravimetric methods for the determination of organic carbon in soil. J. Sci. Food Agric. 1973, 24, 1085–1090. [Google Scholar] [CrossRef]
- Lu, R. Analytical Methods for Soil Agrochemistry; Chinese Agriculture Science and Technology Press: Beijing, China, 2000; pp. 34–36+147–175. [Google Scholar]
- HJ 889-2017; Soil Quality-Determination of Cation Exchange Capacity (CEC)-Hexamminecobalt Trichloride Solution-Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2017.
- HJ 634-2012; Soil-Determination of Ammonium, Nitrite and Nitrate by Extraction with Potassium Chloride Solution—Spectrophotometric Methods. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012.
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Qadir, M.; Sposito, G.; Smith, C.; Oster, J.D. Reassessing irrigation water quality guidelines for sodicity hazard. Agric. Water Manag. 2021, 255, 107054. [Google Scholar] [CrossRef]
- Ali, I.; Yuan, P.; Ullah, S.; Iqbal, A.; Zhao, Q.; Liang, H.; Khan, A.; Zhang, H.; Wu, X.; Wei, S. Biochar amendment and nitrogen fertilizer contribute to the changes in soil properties and microbial communities in a paddy field. Front. Microbiol. 2022, 13, 834751. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, B.; Zhu, L.; Xing, B. Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: A review. Environ. Pollut. 2017, 227, 98–115. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef]
- Shanmugam, S.; Jenkins, S.N.; Mickan, B.S.; Jaafar, N.M.; Mathes, F.; Solaiman, Z.M.; Abbott, L.K. Co-application of a biosolids product and biochar to two coarse-textured pasture soils influenced microbial N cycling genes and potential for N leaching. Sci. Rep. 2021, 11, 955. [Google Scholar] [CrossRef]
- Zhang, H.; Shao, J.; Zhang, S.; Zhang, X.; Chen, H. Effect of phosphorus-modified biochars on immobilization of Cu (II), Cd (II), and As (V) in paddy soil. J. Hazard. Mater. 2020, 390, 121349. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Wang, M.; Li, Y.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Naidu, R.; Liu, Y. Land application of sewage sludge biochar: Assessments of soil-plant-human health risks from potentially toxic metals. Sci. Total Environ. 2021, 756, 144137. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, P.; Jeyakumar, P.; Bolan, N.; Wang, H.; Gao, B.; Wang, S.; Wang, B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. J. Environ. Manag. 2022, 313, 114973. [Google Scholar] [CrossRef]
- Mehdizadeh, L.; Moghaddam, M.; Lakzian, A. Amelioration of soil properties, growth and leaf mineral elements of summer savory under salt stress and biochar application in alkaline soil. Sci. Hortic. 2020, 267, 109319. [Google Scholar] [CrossRef]
- Zhan, Y.; Jiang, K.; Jiang, J.; Zhang, L.; Gao, C.; Qi, X.; Fan, J.; Li, Y.; Sun, S.; Fan, X. Soil aggregate construction: Contribution from functional soil amendment fertilizer derived from dolomite. Sustainability 2022, 14, 12287. [Google Scholar] [CrossRef]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Hanzel, J.; Myrold, D.; Sessitsch, A.; Smalla, K.; Tebbe, C.C.; Totsche, K.U. Microbial Ecology of Biogeochemical Interfaces–Diversity, Structure, and Function of Microhabitats in Soil; Blackwell Publishing Ltd.: Oxford, UK, 2013; Volume 86, pp. 1–2. [Google Scholar]
- Takaichi, S.; Maoka, T.; Takasaki, K.; Hanada, S. Carotenoids of Gemmatimonas aurantiaca (Gemmatimonadetes): Identification of a novel carotenoid, deoxyoscillol 2-rhamnoside, and proposed biosynthetic pathway of oscillol 2, 2’-dirhamnoside. Microbiology 2010, 156, 757–763. [Google Scholar] [CrossRef]
- Kodama, Y.; Watanabe, K. Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int. J. Syst. Evol. Microbiol. 2011, 61, 1781–1785. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.-y.; Liang, X.-y.; Zhang, H.-y.; Fu, R.; Li, M.; Chen, C.-j. Effect of biochar and bioorganic fertilizer on the microbial diversity in the rhizosphere soil of Sesbania cannabina in saline-alkaline soil. Front. Microbiol. 2023, 14, 1190716. [Google Scholar] [CrossRef]
- Zhou, G.; Xu, X.; Qiu, X.; Zhang, J. Biochar influences the succession of microbial communities and the metabolic functions during rice straw composting with pig manure. Bioresour. Technol. 2019, 272, 10–18. [Google Scholar] [CrossRef]
- Kruczyńska, A.; Kuźniar, A.; Podlewski, J.; Słomczewski, A.; Grządziel, J.; Marzec-Grządziel, A.; Gałązka, A.; Wolińska, A. Bacteroidota structure in the face of varying agricultural practices as an important indicator of soil quality—A culture independent approach. Agric. Ecosyst. Environ. 2023, 342, 108252. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Hu, H.; Du, J.; Xi, Y.; Shen, Z.; Lin, J.; Chen, D. Soil bacterial community triggered by organic matter inputs supports a high-yielding pear production. SOIL 2021, 2021, 1–25. [Google Scholar]
- Zhou, X.; Xiao, C.; Zhang, B.; Chen, T.; Yang, X. Effects of Microplastics on Carbon Release and Microbial Community in Mangrove Soil Systems. J. Hazard. Mater. 2023, 465, 133152. [Google Scholar] [CrossRef] [PubMed]
- Hao, D.; Song, S.; Mu, J.; Hu, W.; Xiao, P. Unearthing microbial diversity of Taxus rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. Sci. Rep. 2016, 6, 22006. [Google Scholar] [CrossRef] [PubMed]
Parameters | Soil | WJLS | Biochar | Parameters | Soil | WJLS | Biochar |
---|---|---|---|---|---|---|---|
pH | 9.12 | 8.24 | 9.66 | Total Ca (mg·kg−1) | 32800 | ND | 2.08 |
Electric conductivity (mS·m−1) | 127.0 | 92.5 | 22.5 | Total Pb (mg·kg−1) | 29.0 | 26.0 | ND |
OC (g·kg−1) | 3.15 | 486 | 336 | Total Zn (mg·kg−1) | 70.0 | 540.0 | 19.1 |
TN (g·kg−1) | 0.289 | 13.3 | 5.4 | Total Cd (mg·kg−1) | 0.8 | 0.4 | ND |
TP (g·kg−1) | 0.795 | 4.26 | 0.413 | Total Ni (mg·kg−1) | 36.0 | 57.0 | 2.0 |
Total Na (mg·kg−1) | 29,100 | 16,000 | 214.7 | Total Cu (mg·kg−1) | 20.0 | 226.0 | 3.2 |
Total Mg (mg·kg−1) | 8500 | 300 | 1.35 |
Pot Number | Soil Matrix Composition | Biochar Dosage |
---|---|---|
S0 | Soil: WJLS = 100:0 | 0 |
S0B | 3% | |
S1 | Soil: WJLS = 95:5 | 0 |
S1B | 3% | |
S2 | Soil: WJLS = 85:15 | 0 |
S2B | 3% |
pH | OC | TN | TP | AN | AP | EC | CEC | SAR | ESP | MBC | MBN | MBP | Biomass of Plants | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WJLS | ** | ** | ** | ** | ** | ** | - | ** | ** | - | ** | ** | ** | ** |
Biochar | - | - | - | - | * | - | - | - | ** | - | ** | ** | ** | ** |
Interaction | - | - | - | - | - | - | - | - | * | - | ** | ** | ** | - |
Treatments | Exchangeable Cation (cmol·kg−1) | ||
---|---|---|---|
Na+ | Ca2+ | Mg2+ | |
S0 | 1.04 ± 0.17 c | 47.87 ± 0.79 b | 2.67 ± 0.11 d |
S0B | 1.03 ± 0.14 c | 43.90 ± 3.53 b | 2.60 ± 0.19 d |
S1 | 0.95 ± 0.21 c | 46.38 ± 1.69 b | 2.82 ± 0.24 d |
S1B | 1.07 ± 0.05c | 47.15 ± 3.28 b | 3.23 ± 0.09 c |
S2 | 1.34 ± 0.04 b | 52.61 ± 1.54 a | 3.53 ± 0.15 b |
S2B | 1.65 ± 0.38 a | 46.98 ± 2.59 b | 3.72 ± 0.44 a |
Treatments | Soil Microbial Biomass (mg·kg−1) | ||
---|---|---|---|
MBC | MBN | MBP | |
S0 | 61.07 ± 5.59 c | 7.75 ± 0.42 d | 1.13 ± 0.19 f |
S0B | 66.97 ± 5.64 c | 10.01 ± 1.06 dc | 1.67 ± 0.06 e |
S1 | 42.18 ± 2.14 d | 7.78 ± 0.99 d | 2.2 ± 0.13 d |
S1B | 70.49 ± 3.53 c | 10.63 ± 0.76 c | 2.56 ± 0.18 c |
S2 | 109.56 ± 5.74 b | 24.2 ± 2.34 b | 4.58 ± 0.08 b |
S2B | 200.21 ± 12.06 a | 35.76 ± 1.19 a | 8.84 ± 0.10 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhu, X.; Rao, X.; Huang, J. Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge. Land 2025, 14, 1066. https://doi.org/10.3390/land14051066
Jiang M, Zhu X, Rao X, Huang J. Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge. Land. 2025; 14(5):1066. https://doi.org/10.3390/land14051066
Chicago/Turabian StyleJiang, Mengmeng, Xiaofang Zhu, Xunzheng Rao, and Jiu Huang. 2025. "Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge" Land 14, no. 5: 1066. https://doi.org/10.3390/land14051066
APA StyleJiang, M., Zhu, X., Rao, X., & Huang, J. (2025). Amelioration Effects of Soil Fertility and Microbial Responses on a Sandy Loam Soil in Mining Areas Treated with Biochar and Water Jet-Loom Sludge. Land, 14(5), 1066. https://doi.org/10.3390/land14051066