Corn Cultivation and Its Relationship with Soil Quality: A Focus on Soil Quality Index Methodologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Agricultural Soils
2.2. Soil Sampling
2.3. Physicochemical Characterization
2.4. Statistical Analysis
2.5. Establishment of SQIs
3. Results and Discussion
3.1. Textural Classification and Physicochemical Characterization of Sampled Soils
3.2. PCA
3.3. Establishment of SQIs
3.4. Limitations and Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ENASAS | National Soil Strategy for Sustainable Agriculture |
Soil Quality Index | |
Additive Soil Quality Index | |
Weighted Soil Quality Index | |
Unified Weighted Soil Quality Index | |
Nemoro Soil Quality Index | |
SMAF | Soil Management Assessment Framework |
CLY | Clay |
WHC | Water Holding Capacity |
Na | Sodium |
C/N | Carbon Nitrogen Ratio |
K | Potassium |
P | Phosphorus |
TOC | Total Organic Carbon |
EC | Electrical Conductivity |
BD | Bulk Density |
DHA | Dehydrogenase Activity |
MBC | Microbial Biomass Carbon |
pH | Hydrogen Potential |
SAR | Sodium Adsorption Ratio |
INEGI | National Institute of Statistics Geography and Informatics |
RAN | National Agrarian Registry |
t | Tons |
ha | Hectare |
NPK | Nitrogen Phosphorus Potassium Units |
SND | Sand |
SLT | Silt |
USDA | United States Department of Agriculture |
OM | Organic Matter |
TN | Total Nitrogen |
S | Sulfur |
Ca | Calcium |
Mg | Magnesium |
Fe | Iron |
Zn | Zinc |
Mn | Magnesium |
Cu | Cupper |
B | Boron |
ICP | Inductively Coupled Plasma |
CEC | Catio Exchange Capacity |
ESP | Exchangeable Sodium Percentage |
KMO | Kaiser Meyer Olkin Test |
PCA | Principal Component Analysis |
PCs | Principal Components |
SI | Sensitivity Index |
ER | Efficiency Ratio |
Mean | |
Min | Minimum Value |
Max | Maximum Value |
SD | Standard Deviation |
References
- Han, N.; Zhang, B.; Liu, Y.; Peng, Z.; Zhou, Q.; Wei, Z. Rapid Diagnosis of Nitrogen Nutrition Status in Summer Maize over Its Life Cycle by a Multi-Index Synergy Model Using Ground Hyperspectral and UAV Multispectral Sensor Data. Atmosphere 2022, 13, 122. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Agricultural Production Statistics 2010–2023; FAOSTAT Analytical Briefs; FAO: Rome, Italy, 2024; pp. 1–16. [Google Scholar]
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize Yield in Mexico under Climate Change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- Secretaría de Agricultura y Desarrollo Rural [Agricultura]. Estrategia Nacional de Suelo Para La Agricultura Sostenible (ENASAS); Secretaría de Agricultura y Desarrollo Rural: Mexico City, Mexico, 2022. [Google Scholar]
- Reyes, E.B.S.; Zabala, S.A.F.; Echeverri, L.F.G. Índices de calidad del suelo. Una revisión sistemática. Ecosistemas 2018, 27, 130–139. [Google Scholar]
- Adak, S.; Bandyopadhyay, K.; Purakayastha, T.J.; Sen, S.; Sahoo, R.N.; Shrivastava, M.; Krishnan, P. Impact of Contrasting Tillage, Residue Mulch and Nitrogen Management on Soil Quality and System Productivity under Maize-Wheat Rotation in the North-Western Indo-Gangetic Plains. Front. Sustain. Food Syst. 2023, 7, 1230207. [Google Scholar] [CrossRef]
- Amorim, H.C.S.; Ashworth, A.J.; Wienhold, B.J.; Savin, M.C.; Allen, F.L.; Saxton, A.M.; Owens, P.R.; Curi, N. Soil Quality Indices Based on Long-Term Conservation Cropping Systems Management. Agrosyst. Geosci. Environ. 2020, 3, e20036. [Google Scholar] [CrossRef]
- Assunção, S.J.R.; Pedrotti, A.; Gonzaga, M.I.S.; Nobrega, J.C.A.; Holanda, F.S.R. Soil Quality Index of an Ultisol under Long-Term Plots in the Coastal Tablelands in Northeastern Brazil. Rev. Caatinga 2023, 36, 432–444. [Google Scholar] [CrossRef]
- Zhang, M.; Khosravi Aqdam, M.; Abbas Fadel, H.; Wang, L.; Waheeb, K.; Kadhim, A.; Hekmati, J. Evaluation of Soil Fertility Using Combination of Landsat 8 and Sentinel-2 Data in Agricultural Lands. Environ. Monit. Assess. 2024, 196, 131. [Google Scholar] [CrossRef] [PubMed]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils 1. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Soil Survey Manual; United Department of Agriculture: Washington, DC, USA, 1951.
- Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 475–490. [Google Scholar]
- Hendrickx, J.M.H.; Das, B.; Corwin, D.L.; Wraith, J.M.; Kachanoski, R.G. Relationship Between Soil Water Solute Concentration and Apparent Soil Electrical Conductivity. In Methods of Soil Analysis: Part 4; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 1275–1282. [Google Scholar]
- Alef, K.; Nannipieri, P. Methods in Applied Soil Microbiology and Biochemistry; Elsevier: London, UK, 1995; ISBN 978-0-12-513840-6. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Methods for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Yilmaz, E.; Sönmez, M. The Role of Organic/Bio–Fertilizer Amendment on Aggregate Stability and Organic Carbon Content in Different Aggregate Scales. Soil Tillage Res. 2017, 168, 118–124. [Google Scholar] [CrossRef]
- Bremner, J.M. Nitrogen-Total. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1121. [Google Scholar]
- Bettinelli, M.; Baroni, U. A Microwave Oven Digestion Method for the Determination of Metals in Sewage Sludges by ICP-AES and GFAAS. Int. J. Environ. Anal. Chem. 1991, 43, 33–40. [Google Scholar] [CrossRef]
- Cottenie, A. Soil and Plant Testing as a Basis of Fertilizer Recommendations; FAO Soil’s Bulletin, 38/2; Food and Agriculture Organization of the United Nations: Rome, Italy, 1980; pp. 64–65. [Google Scholar]
- NORMA Oficial Mexicana NOM-021-RECNAT-2000, Que Establece las Especificaciones de Fertilidad, Salinidad y Clasificaciónde Suelos. Estudios, Muestreo y Análisis. 2002, p. 73. Available online: https://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf (accessed on 7 April 2025).
- Webster, R. Interpreting Soil Test Results: What Do All the Numbers Mean? 2nd ed.; Hazelton, P., Murphy, B., Eds.; Csiro Publishing: Collingwood, Australia, 2007; Volume 58. [Google Scholar]
- de Mendiburu, F. Agricolae; Statistical Procedures for Agricultural Research; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Harrell, F.; Dupont, C. Hmisc; Harrell Miscellaneous; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Kassambara, A.; Mundt, F. factoextra; Extract and Visualize the Results of Multivariate Data Analyses; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Revelle, W. psych; Procedures for Psychological, Psychometric, and Personality Research; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Cham, Switzerland, 2016. [Google Scholar]
- R Core Team. R; Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Juhos, K.; Czigány, S.; Madarász, B.; Ladányi, M. Interpretation of Soil Quality Indicators for Land Suitability Assessment—A Multivariate Approach for Central European Arable Soils. Ecol. Indic. 2019, 99, 261–272. [Google Scholar] [CrossRef]
- Mahajan, G.; Das, B.; Morajkar, S.; Desai, A.; Murgaokar, D.; Kulkarni, R.; Sale, R.; Patel, K. Soil Quality Assessment of Coastal Salt-Affected Acid Soils of India. Environ. Sci. Pollut. Res. 2020, 27, 26221–26238. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the Minimum Data Set and Quantitative Soil Quality Indexing of Alkaline Soils Under Different Land Uses in Northeastern China. Sci. Total Environ. 2018, 616–617, 564–571. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil Quality Indicators to Assess Functionality of Restored Soils in Degraded Semiarid Ecosystems. Restor. Ecol. 2016, 24, S43–S52. [Google Scholar] [CrossRef]
- Villazón Gómez, J.; Martín-Gutiérrez, G.; Cobo-Vidal, Y. Análisis Multivariado de Las Propiedades Químicas de Los Suelos Pardos Erosionados. Cent. Agric. 2017, 44, 56–62. [Google Scholar]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the Effects of Slope Gradient and Land Use Change on Soil Quality Degradation through Digital Mapping of Soil Quality Indices and Soil Loss Rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Lima, A.C.R.; Brussaard, L.; Totola, M.R.; Hoogmoed, W.B.; de Goede, R.G.M. A Functional Evaluation of Three Indicator Sets for Assessing Soil Quality. Appl. Soil Ecol. 2013, 64, 194–200. [Google Scholar] [CrossRef]
- Hernández-González, D.E.; Muñoz-Iniestra, D.J.; López-Galindo, F.; Hernández-Moreno, M.M. Impact of Land Use on Soil Quality in a Semi-Arid Zone of the Mezquital Valley, Hidalgo, Mexico. BIOCyT 2018, 11, 792–807. [Google Scholar] [CrossRef]
- Zhou, M.; Xiao, Y.; Li, Y.; Zhang, X.; Wang, G.; Jin, J.; Ding, G.; Liu, X. Soil Quality Index Evaluation Model in Responses to Six-Year Fertilization Practices in Mollisols. Arch. Agron. Soil Sci. 2020, 68, 180–194. [Google Scholar] [CrossRef]
- Bedolla-Rivera, H.I.; Xochilt Negrete-Rodríguez, M.d.l.L.; Medina-Herrera, M.d.R.; Gámez-Vázquez, F.P.; Álvarez-Bernal, D.; Samaniego-Hernández, M.; Gámez-Vázquez, A.J.; Conde-Barajas, E. Development of a Soil Quality Index for Soils under Different Agricultural Management Conditions in the Central Lowlands of Mexico: Physicochemical, Biological and Ecophysiological Indicators. Sustainability 2020, 12, 9754. [Google Scholar] [CrossRef]
- Mora Ravelo, S.G.; Gavi Reyes, F.; Peña Cabriales, J.J.; Pérez Moreno, J.; Tijerina Chávez, L. Evaluación de La Recuperación Del Nitrógeno y Fósforo de Diferentes Fuentes de Fertilizantes Por El Cultivo de Trigo Irrigado Con Aguas Residuales y de Pozo. Acta agron. 2014, 63, 25–30. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2022: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022; ISBN 979-8-9862451-1-9. [Google Scholar]
- Castelán Vega, R.D.C. Susceptibilidad Ambiental a La Desertificación En La Microcuenca Del Río Azumiatla, Puebla, México. Ecosistemas Recur. Agropecu. 2019, 6, 91–101. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C. Use of Organic Amendments to Reclaim Saline and Sodic Soils: A Review. Arid. Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Moorman, T.B. Tillage Intensity Effects on Soil Structure Indicators—A US Meta-Analysis. Sustainability 2020, 12, 2071. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Zhao, J.; Xiao, K.; Wang, K. Effects of Nitrogen Addition on Activities of Soil Nitrogen Acquisition enzymes: A Meta-Analysis. Agric. Ecosyst. Environ. 2018, 252, 126–131. [Google Scholar] [CrossRef]
- Muñoz, B.; Pastor, J.; Rivas, W.; Gonzalez, O.; González, L. Evaluación de La Calidad Del Suelo Bajo Diferentes Sistemas Agrícolas En La Península de Paraguaná Mediante El Uso de Indicadores de Sustentabilidad. Koinonia 2017, 2, 123–139. [Google Scholar]
- Libohova, Z.; Seybold, C.; Wysocki, D.; Wills, S.; Schoeneberger, P.; Williams, C.; Lindbo, D.; Stott, D.; Owens, P.R. Reevaluating the Effects of Soil Organic Matter and Other Properties on Available Water-Holding Capacity Using the National Cooperative Soil Survey Characterization Database. J. Soil Water Conserv. 2018, 73, 411–421. [Google Scholar] [CrossRef]
- Marzi, M.; Shahbazi, K.; Kharazi, N.; Rezaei, M. The Influence of Organic Amendment Source on Carbon and Nitrogen Mineralization in Different Soils. J. Soil Sci. Plant Nutr. 2020, 20, 177–191. [Google Scholar] [CrossRef]
- Rahman, M.S.; Ferdous, J.; Mumu, N.J.; Kamruzzaman, M.; Eckhardt, C.; Zaman, M.; Müller, C.; Jahangir, M.M.R. Crop Residues Integration with Nitrogen Rates Reduces Yield-Scaled Nitrous Oxide Emissions and Improves Maize Yield and Soil Quality. J. Integr. Environ. Sci. 2024, 21, 2310856. [Google Scholar] [CrossRef]
- Ouyang, Y.; Norton, J.M. Short-Term Nitrogen Fertilization Affects Microbial Community Composition and Nitrogen Mineralization Functions in an Agricultural Soil. Appl. Environ. Microbiol. 2019, 86, e02278-19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ji, H.; Wang, R.; Guo, S. Responses of Nitrification and Denitrification to Nitrogen and Phosphorus Fertilization: Does the Intrinsic Soil Fertility Matter? Plant Soil 2019, 440, 443–456. [Google Scholar] [CrossRef]
- Noll, L.; Zhang, S.; Zheng, Q.; Hu, Y.; Wanek, W. Wide-Spread Limitation of Soil Organic Nitrogen Transformations by Substrate Availability and Not by Extracellular Enzyme Content. Soil Biol. Biochem. 2019, 133, 37–49. [Google Scholar] [CrossRef]
- Zungu, N.S.; Egbewale, S.O.; Olaniran, A.O.; Pérez-fernández, M.; Magadlela, A. Soil Nutrition, Microbial Composition and Associated Soil Enzyme Activities in KwaZulu-Natal Grasslands and Savannah Ecosystems Soils. Appl. Soil Ecol. 2020, 155, 103663. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Greene, R.S.B.; Dalal, R.C.; Murphy, B.W. Soil Carbon Dynamics in Saline and Sodic Soils: A Review. Soil Use Manag. 2010, 26, 2–11. [Google Scholar] [CrossRef]
- Aftab, T.; Hakeem, K.R. (Eds.) Plant Micronutrients: Deficiency and Toxicity Management; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-49855-9. [Google Scholar]
- Denton-Thompson, S.M.; Sayer, E.J. Micronutrients in Food Production: What Can We Learn from Natural Ecosystems? Soil Syst. 2022, 6, 8. [Google Scholar] [CrossRef]
- Peixoto, D.S.; Silva, L.D.C.M.D.; Melo, L.B.B.D.; Azevedo, R.P.; Araújo, B.C.L.; Carvalho, T.S.D.; Moreira, S.G.; Curi, N.; Silva, B.M. Occasional Tillage in No-Tillage Systems: A Global Meta-Analysis. Sci. Total Environ. 2020, 745, 140887. [Google Scholar] [CrossRef]
- Rangel-Peraza, J.G.; Padilla-Gasca, E.; López-Corrales, R.; Medina, J.R.; Bustos-Terrones, Y.; Amabilis-Sosa, L.E.; Rodríguez-Mata, A.E.; Osuna-Enciso, T. Robust Soil Quality Index for Tropical Soils Influenced by Agricultural Activities. J. Agric. Chem. Environ. 2017, 6, 199–221. [Google Scholar] [CrossRef]
- Kacprzak, M.; Kupich, I.; Jasinska, A.; Fijalkowski, K. Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context. Energies 2022, 15, 385. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Revisiting Sulphur—The Once Neglected Nutrient: It’s Roles in Plant Growth, Metabolism, Stress Tolerance and Crop Production. Agriculture 2021, 11, 626. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Gong, Y. Evaluation of Soil Quality and Maize Growth in Different Profiles of Reclaimed Land with Coal Gangue Filling. Land 2021, 10, 1307. [Google Scholar] [CrossRef]
- Prieto-Méndez, J.; Prieto-García, F.; Acevedo-Sandoval, O.A.; Méndez-Marzo, M.A. Indicadores e índices de calidad de los suelos (ICS) cebaderos del sur del estado de Hidalgo, México. Agron. Mesoam. 2013, 24, 83. [Google Scholar] [CrossRef]
Municipality | Soil | Crop | Irrigation | Tillage | Fertilization (NPK) | Yield (t ha−1) | Location |
---|---|---|---|---|---|---|---|
Salvatierra | Sv1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°15′44.94″ N, 100°54′41.02″ O |
Cortazar | Co1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°27′14.61″ N, 101°01′34.44″ O |
Acambaro | Ac1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°05′13.32″ N, 100°45′25.62″ O |
Ac2 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°03′57.77″ N, 100°45′20.95″ O | |
Ac3 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°07′07.47″ N, 100°46′04.19″ O | |
Ac4 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°03′31.20″ N, 100°48′07.58″ O | |
Ac5 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°04′30.44″ N, 100°44′38.79″ O | |
Valle de Santiago | Va2 | Maize | Furrow | Minimum | 240-40-00 | 8.5–12.0 | 20°27′54.79″ N, 101°11′05.97″ O |
Penjamo | Pe1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°30′17.14″ N, 101°36′21.61″ O |
Salamanca | Sa1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°26′38.56″ N, 101°00′26.72″ O |
Sa2 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°25′37.58″ N, 100°59′18.57″ O | |
Sa6 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°35′42.42″ N, 101°12′37.97″ O | |
Irapuato | Ir1 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°49′08.48″ N, 101°23′02.82″ O |
Ir2 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°50′21.64″ N, 101°22′10.45″ O | |
Ir3 | Maize | Furrow | Conventional | 240-40-00 | 8.5–12.0 | 20°49′42.58″ N, 101°21′13.54″ O |
Indicators | Descriptive Statistics | Indicators | Descriptive Statistics | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | SD | Min | Max | SD | ||||
pH | 6.05 | 7.07 | 6.45 | 0.24 | Ca | 15.72 | 34.68 | 24.07 | 4.90 |
EC | 0.15 | 0.97 | 0.26 | 0.16 | Mg | 5.99 | 10.51 | 8.67 | 1.26 |
SND | 10.04 | 34.45 | 19.35 | 5.86 | Na | 0.44 | 3.45 | 1.28 | 0.70 |
CLY | 41.62 | 68.88 | 54.41 | 6.09 | Fe | 0.02 | 0.27 | 0.11 | 0.06 |
SLT | 18.33 | 36.67 | 26.25 | 4.63 | Zn | 0.001 | 0.020 | 0.008 | 0.006 |
WHC | 77.60 | 149.09 | 110.98 | 16.92 | Mn | 0.005 | 0.047 | 0.025 | 0.012 |
TOC | 9.26 | 22.68 | 13.40 | 3.59 | Cu | 0.002 | 0.058 | 0.008 | 0.013 |
OM | 21.13 | 49.86 | 30.80 | 7.91 | B | 0.018 | 0.108 | 0.038 | 0.024 |
TN | 14.00 | 581.25 | 251.14 | 134.72 | S | 0.01 | 0.19 | 0.08 | 0.04 |
C/N | 0.63 | 29.88 | 3.51 | 4.49 | CEC | 26.20 | 46.16 | 35.56 | 5.42 |
P | 0.03 | 0.35 | 0.16 | 0.09 | ESP | 1.39 | 8.86 | 3.56 | 1.80 |
K | 1.28 | 2.87 | 1.55 | 0.34 | SAR | 0.08 | 0.59 | 0.22 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde-Barajas, E.; Negrete-Rodríguez, M.d.l.L.X.; Álvarez-Bernal, D.; Gámez-Vázquez, F.P.; Lastiri-Hernández, M.A.; Patiño-Galván, H.; Silva-Martínez, G.A.; Tristán-Flores, F.E.; Bedolla-Rivera, H.I. Corn Cultivation and Its Relationship with Soil Quality: A Focus on Soil Quality Index Methodologies. Land 2025, 14, 861. https://doi.org/10.3390/land14040861
Conde-Barajas E, Negrete-Rodríguez MdlLX, Álvarez-Bernal D, Gámez-Vázquez FP, Lastiri-Hernández MA, Patiño-Galván H, Silva-Martínez GA, Tristán-Flores FE, Bedolla-Rivera HI. Corn Cultivation and Its Relationship with Soil Quality: A Focus on Soil Quality Index Methodologies. Land. 2025; 14(4):861. https://doi.org/10.3390/land14040861
Chicago/Turabian StyleConde-Barajas, Eloy, María de la Luz Xochilt Negrete-Rodríguez, Dioselina Álvarez-Bernal, Francisco Paúl Gámez-Vázquez, Marcos Alfonso Lastiri-Hernández, Honorio Patiño-Galván, Guillermo Antonio Silva-Martínez, Fabiola Estefanía Tristán-Flores, and Héctor Iván Bedolla-Rivera. 2025. "Corn Cultivation and Its Relationship with Soil Quality: A Focus on Soil Quality Index Methodologies" Land 14, no. 4: 861. https://doi.org/10.3390/land14040861
APA StyleConde-Barajas, E., Negrete-Rodríguez, M. d. l. L. X., Álvarez-Bernal, D., Gámez-Vázquez, F. P., Lastiri-Hernández, M. A., Patiño-Galván, H., Silva-Martínez, G. A., Tristán-Flores, F. E., & Bedolla-Rivera, H. I. (2025). Corn Cultivation and Its Relationship with Soil Quality: A Focus on Soil Quality Index Methodologies. Land, 14(4), 861. https://doi.org/10.3390/land14040861