Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Preprocessing
2.2.1. Data Collection
2.2.2. Preprocessing
2.3. Methods
2.3.1. Assessment Model of Ecosystem Service Value
2.3.2. Ecosystem Scenario Simulation Model
2.3.3. Spatial Clustering Analysis Method of Ecosystem Service Values
3. Results
3.1. Spatial Dynamic Changes in Ecosystem Service Value in the Nanpan and Beipan River Basins from 2000 to 2020
3.2. Analysis of Ecosystem Service Value (ESV) in the Study Area Under Multiple Scenarios
3.2.1. Spatial Changes in Ecosystems Under Multiple Scenario Simulations
3.2.2. Change Differences in Ecosystem Service Values Under Four Scenarios
3.2.3. Spatial Clustering Analysis of Ecosystem Service Values in Different Scenarios
4. Discussion
4.1. Factors Affecting the Spatiotemporal Distribution of ESVs
4.2. Outlook for Territorial Spatial Planning in Karst Mountainous River Basins
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaikaew, P.; Hodges, A.W.; Grunwald, S. Estimating the value of ecosystem services in a mixed-use watershed: A choice experiment approach. Ecosyst. Serv. 2017, 23, 228–237. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of the Evaluation Method for Ecosystem Service Value Based on Per Unit Area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Wang, J.; Yan, S.; Guo, Y.; Li, J.; Sun, G. The effects of land consolidation on the ecological connectivity based on ecosystem service value: A case study of Da’an land consolidation project in Jilin province. J. Geogr. Sci. 2015, 25, 603–616. [Google Scholar] [CrossRef]
- Pan, S.; Liang, J.; Chen, W.; Li, J.; Liu, Z. Gray Forecast of Ecosystem Services Value and Its Driving Forces in Karst Areas of China: A Case Study in Guizhou Province, China. Int. J. Environ. Res. Public Health 2021, 18, 12404. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Wu, L.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Han, H.; Su, Z. Research progress and prospects of karst ecosystem services. Carsologica Sin. 2017, 36, 352–358. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, K.; Liu, H.; Chen, H.; Zhang, C.; Yue, Y. Spatio-temporal variation of karst ecosystem service value and its correlation with ambient environmental factor. Chin. J. Eco-Agric. 2010, 18, 189–197. [Google Scholar] [CrossRef]
- Li, S.-L.; Liu, C.-Q.; Chen, J.-A.; Wang, S.-J. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agric. Ecosyst. Environ. 2021, 306, 107173. [Google Scholar] [CrossRef]
- Liu, W.; Zhan, J.; Zhao, F.; Yan, H.; Zhang, F.; Wei, X. Impacts of urbanization-induced land-use changes on ecosystem services: A case study of the Pearl River Delta Metropolitan Region, China. Ecol. Indic. 2019, 98, 228–238. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Jing, Y. Assessing and predicting changes of the ecosystem service values based on land use/cover change in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Sci. Total Environ. 2019, 656, 1133–1144. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, J.; Li, J.; Sha, J.; Zhou, J.; Jiao, Y. Quantification and Simulation of the Ecosystem Service Value of Karst Region in Southwest China. Land 2024, 13, 812. [Google Scholar] [CrossRef]
- Jiang, H.; Lin, J.; Liu, B.; Yue, H.; Lin, J.; Shui, W.; Gao, M.; Chen, Y. Discovering the Ecosystem Service Value Growth Characteristics of a Subtropical Soil Erosion Area Using a Remote-Sensing-Driven Mountainous Equivalent Factor Method. Remote Sens. 2024, 16, 3700. [Google Scholar] [CrossRef]
- Li, Y.; Cai, Y.; Fu, Q.; Zhang, X.; Wan, H.; Yang, Z. Dynamics of Land Use/Land Cover Considering Ecosystem Services for a Dense-Population Watershed Based on a Hybrid Dual-Subject Agent and Cellular Automaton Modeling Approach. Engineering 2024, 37, 182–195. [Google Scholar] [CrossRef]
- Pal, A.; Tiwari, A.; Dutta, S.; Rawal, A.; Kanchan, R. Dynamicity of Ecosystem Service Value Driven by Land Use/Land Cover Alteration in Vadodara City, India. Discov. Cities 2024, 1, 22. [Google Scholar] [CrossRef]
- Zhang, Q.; Yi, C.; Destouni, G.; Wohlfahrt, G.; Kuzyakov, Y.; Li, R.; Kutter, E.; Chen, D.; Rietkerk, M.; Manzoni, S.; et al. Water limitation regulates positive feedback of increased ecosystem respiration. Nat. Ecol. Evol. 2024, 8, 1870–1876. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Y.; Li, W. Spatial optimization of land use and carbon storage prediction in urban agglomerations under climate change: Different scenarios and multiscale perspectives of CMIP6. Sustain. Cities Soc. 2024, 116, 105920. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, H. Multi-Scenario Simulation of Urban–Rural Land Use Spatial Reconstruction in Highly Urbanized Areas: A Case Study from the Southern Jiangsu Region. Land 2024, 13, 2199. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of land use for the next 30 years using the PLUS model’s multi-scenario simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.; Abrantes, P.; Banos, A.; Rocha, J. Modelling future land use scenarios based on farmers’ intentions and a cellular automata approach. Land Use Policy 2019, 85, 142–154. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Liu, M.; Luo, Q.; Wang, J.; Sun, L.; Xu, T.; Wang, E. VST-PCA: A Land Use Change Simulation Model Based on Spatiotemporal Feature Extraction and Pre-Allocation Strategy. ISPRS Int. J. Geo-Inf. 2024, 13, 100. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, L.; Zhang, F.; Xia, Y. Multi-scenario simulation prediction of land use in Nanchang based on network robustness analysis. Ecol. Indic. 2024, 167, 112599. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Li, Y.; Zhang, Q. Comparison of various models for multi-scenario simulation of land use/land cover to predict ecosystem service value: A case study of Harbin-Changchun Urban Agglomeration, China. J. Clean. Prod. 2024, 478, 144012. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Zhang, H.; Liu, X.; Shi, H. Evaluation of Effectiveness and Multi-Scenario Analysis of Land Use Development Strategies and Ecological Protection Redlines on Carbon Storage in the Great Bay Area of China Using the PLUS-InVEST-PSM Model. Land 2024, 13, 1918. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, P.; Zhou, N.; Li, S. Unveiling the spatiotemporal heterogeneity and driving mechanisms of carbon storage changes in response to land use/land cover changes under different future scenarios: Insights from the GMOP-SEM model. J. Clean. Prod. 2025, 487, 144622. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, L.; Yang, L.; Zhao, J.; Li, Y.; Qi, Y.; Ma, X.; Cao, L. Exploring the response of ecosystem service value to land use changes under multiple scenarios coupling a mixed-cell cellular automata model and system dynamics model in Xi’an, China. Ecol. Indic. 2023, 147, 110009. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Z.; Zuo, Q.; Du, H. Simulating the impact of land use change on ecosystem services in agricultural production areas with multiple scenarios considering ecosystem service richness. J. Clean. Prod. 2023, 397, 136485. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Y.; Zhu, C.; Shi, C. Route selection for scenic byways in karst areas based on the minimum cumulative resistance model: A case study of the Nanpan–Beipan River Basin, China. Ecol. Indic. 2024, 163, 112093. [Google Scholar] [CrossRef]
- Veress, M. A General Description of Karst Types. Encyclopedia 2022, 2, 1103–1118. [Google Scholar] [CrossRef]
- Liu, S.; Su, H.; Cao, G.; Wang, S.; Guan, Q. Learning from data: A post classification method for annual land cover analysis in urban areas. ISPRS J. Photogramm. Remote Sens. 2019, 154, 202–215. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Brouwer, R.; Pinto, R.; Dugstad, A.; Navrud, S. The economic value of the Brazilian Amazon rainforest ecosystem services: A meta-analysis of the Brazilian literature. PLoS ONE 2022, 17, e0268425. [Google Scholar] [CrossRef] [PubMed]
- Boulton, C.A.; Lenton, T.M.; Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 2022, 12, 271–278. [Google Scholar] [CrossRef]
- Tiba, N.; Mulungu, D.M.M.; Izdori, F. Evaluating future climate-driven changes in agricultural water resilience: Insights from CMIP6 model simulations for the Ka., River sub-basin. J. Environ. Manag. 2025, 378, 22. [Google Scholar]
- Musidzaramba, T.J.; Mvumi, B.M.; Nyanga, L.K.; Kadzere, I.; Kiboi, M.; Mahlangu, M.; Chingoma, G.; Mazula, M.; Macheka, L. Nutritional profile and food safety of raw and value-added food products of sorghum and millets in sub-Saharan Africa and South Asia. Cogent Food Agric. 2025, 11, 17. [Google Scholar] [CrossRef]
- Zhao, G.; Xiao, Y.; Xu, C.; Li, B.; Huang, Z.; Zhang, T.; Gualtieri, C. Spatial-temporal correlation-based analysis of multi-source flood coincidence risks: A case study of the middle and lower Yangtze River basin. J. Hydrol.-Reg. Stud. 2025, 58, 19. [Google Scholar] [CrossRef]
- Sheng, E.; Liu, B.; Peng, H.; Zeng, M.; Cai, S.; Lan, J. Hydroclimatic variations in southwestern China during the Middle to Late Holocene transition and effects on the evolution of Late Neolithic cultures in the upper Yangtze River Valley. Quat. Sci. Rev. 2025, 352, 18. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, Y.; Ma, N.; Kong, D.; Mao, Y.; Feng, W.; Wu, Y.; Zhong, M. Changes and drivers of long-term land evapotranspiration in the Yangtze River Basin: A water balance perspective. J. Hydrol. 2025, 653, 15. [Google Scholar] [CrossRef]
- Thiru, B.K.; Kumar, R.; Kota, S.H. Assessing and mitigating India’s agricultural emissions: A regional and temporal perspective on crop residue, tillage, and livestock contributions. J. Hazard. Mater. 2025, 488, 18. [Google Scholar]
- Sow, S.; Kumar, N.; Rana, L.; Singh, A.K.; Kumar, V.; Singh, H.; Kavita; Kumar, S. Suitable Planting Material with Integrated Nutrient Management Can Enhance Productivity, Nutrient Use Efficiency and Profitability of Sugarcane. J. Soil Sci. Plant Nutr. 2025, 24, 1–24. [Google Scholar] [CrossRef]
- Kumar, S.; Midya, K.; Ghosh, S.; Kumar, P.; Mishra, V.N. Land use change analysis and prediction of urban growth using multi-layer perceptron neural network Markov chain model in Faridabad—A data-scarce region of Northwestern India. Phys. Chem. Earth 2025, 138, 13. [Google Scholar] [CrossRef]
- Peeters, A.; Zu, M.; Käthner, J.; Ünlü, M.; Kan, R.; Hetzroni, A.; Geber, R.; Ben-Gal, A. Getis–Ord’s hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Comput. Electron. Agric. 2015, 111, 140–150. [Google Scholar] [CrossRef]
- Yin, Z.; Feng, Q.; Zhu, R.; Wang, L.; Chen, Z.; Fang, C.; Lu, R. Analysis and prediction of the impact of land use/cover change on ecosystem services value in Gansu province, China. Ecol. Indic. 2023, 154, 110868. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Xu, H. Response of ecosystem service values to land use change, 2002–2021. Ecol. Indic. 2024, 160, 111947. [Google Scholar] [CrossRef]
- Liu, H.; Deng, Y.; Liu, X. The contribution of forest and grassland change was greater than that of cropland in human-induced vegetation greening in China, especially in regions with high climate variability. Sci. Total Environ. 2021, 792, 148408. [Google Scholar] [CrossRef]
- Wang, D.; Lan, A.; Fan, Z.; Zou, Y.; Li, W.; Wang, R. Scenario Modeling of Response of Land Use Change to Ecosystem Service Values in A Typical Karst Region. Res. Soil Water Conserv. 2024, 31, 308–315. [Google Scholar]
- Hu, Y.; Zhou, X.; Ao, Y.; Yuan, W.; Zhang, W.; Wang, X. Analysis of evolution and influencing factors of ecosystem service value in Guizhou Province. Sci. Surv. Mapp. 2023, 48, 120–130. [Google Scholar]
- Sun, D.; Liang, Y.; Liu, L. Impact of Land Use Change on Ecosystem Service Values in Guizhou Province from 2000 to 2020. Resour. Environ. Yangtze Basin 2024, 33, 547–560. [Google Scholar]
- Brander, L.M.; De Groot, R.; Schägner, J.P.; Guisado-Goñi, V.; Van’t Hoff, V.; Solomonides, S.; McVittie, A.; Eppink, F.; Sposato, M.; Do, L.; et al. Economic values for ecosystem services: A global synthesis and way forward. Ecosyst. Serv. 2024, 66, 101606. [Google Scholar] [CrossRef]
- Berghöfer, A.; Mader, A.; Patrickson, S.; Calcaterra, E.; Smit, J.; Blignaut, J.N.; de Wit, M.; Van Zyl, H. TEEB Manual for Cities: Ecosystem Services in Urban Management. 2011. Available online: https://teebweb.org/publications/other/teeb-cities/ (accessed on 10 January 2025).
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth. 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, R.; Zhang, Y.; Yin, J.; Huang, J. The Evolution and Determinants of Ecosystem Services in Guizhou—A Typical Karst Mountainous Area in Southwest China. Land 2022, 11, 1164. [Google Scholar] [CrossRef]
- Yang, L.; Jiao, H. Spatiotemporal Changes in Ecosystem Services Value and Its Driving Factors in the Karst Region of China. Sustainability 2022, 14, 6695. [Google Scholar] [CrossRef]
Primary Type | Provisioning Services | Regulating Services | Supporting Services | Cultural Services | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Secondary Type | FP | RMP | WRS | GR | CL | EP | HR | SC | MNC | B | AL | |
Farmland Ecosystem | 2000 | 1305.16 | 289.38 | −1541.38 | 1051.21 | 549.23 | 159.45 | 1765.8 | 614.19 | 183.08 | 200.79 | 88.59 |
2005 | 1305.16 | 422.16 | −2248.62 | 1533.54 | 801.23 | 232.62 | 2576.01 | 896.00 | 267.08 | 292.92 | 129.23 | |
2010 | 1305.16 | 595.95 | −3174.32 | 2164.86 | 1131.08 | 328.38 | 3636.49 | 1264.86 | 377.03 | 413.51 | 182.43 | |
2015 | 3105.72 | 688.6 | −3667.85 | 2501.44 | 1306.93 | 379.43 | 4201.86 | 1461.52 | 435.64 | 477.8 | 210.8 | |
2020 | 3892.49 | 863.04 | −4597.02 | 3135.13 | 1638.02 | 475.55 | 5266.32 | 1831.76 | 546.01 | 598.85 | 264.2 | |
Forest Ecosystem | 2000 | 239.18 | 546.28 | 283.47 | 1804.19 | 5400.75 | 1553.19 | 3062.1 | 2196.91 | 168.31 | 1999.07 | 876.99 |
2005 | 348.92 | 796.93 | 413.54 | 2632.01 | 7878.8 | 2265.85 | 4467.09 | 3204.93 | 245.54 | 2916.32 | 1279.39 | |
2010 | 492.57 | 1125.00 | 583.78 | 3715.54 | 11,122.29 | 3198.65 | 6306.08 | 4524.32 | 346.62 | 4116.89 | 1806.08 | |
2015 | 569.15 | 1299.91 | 674.55 | 4293.21 | 12,851.52 | 3695.95 | 7286.51 | 5227.74 | 400.51 | 4756.96 | 2086.88 | |
2020 | 713.33 | 1629.21 | 845.43 | 5380.8 | 16,107.18 | 4632.24 | 9132.39 | 6552.07 | 501.97 | 5962.03 | 2615.55 | |
Grassland Ecosystem | 2000 | 196.86 | 286.62 | 159.85 | 1016.56 | 2684.33 | 885.07 | 1966.99 | 1237.83 | 94.49 | 1122.87 | 496.08 |
2005 | 287.18 | 418.13 | 233.19 | 1483.00 | 3915.99 | 1291.16 | 2869.51 | 1805.79 | 137.85 | 1638.08 | 723.69 | |
2010 | 405.41 | 590.27 | 329.19 | 2093.51 | 5528.11 | 1822.7 | 4050.81 | 2549.19 | 194.59 | 2312.43 | 1021.62 | |
2015 | 468.44 | 682.04 | 380.37 | 2419.00 | 6387.58 | 2106.08 | 4680.6 | 2945.52 | 224.85 | 2671.95 | 1180.46 | |
2020 | 587.10 | 854.82 | 476.73 | 3031.80 | 8005.74 | 2639.62 | 5866.34 | 3691.71 | 281.81 | 3348.84 | 1479.5 | |
Wetland Ecosystem | 2000 | 859.28 | 351.39 | 8108.5 | 1243.15 | 3091.63 | 5979.50 | 97,724.30 | 1505.95 | 115.16 | 4582.81 | 3070.96 |
2005 | 1253.54 | 512.62 | 11,828.96 | 1813.54 | 4510.17 | 8723.11 | 142,563.57 | 2196.93 | 168 | 6685.56 | 4480.02 | |
2010 | 1769.59 | 723.65 | 16,698.64 | 2560.13 | 6366.89 | 12,314.18 | 201,253.30 | 3101.35 | 237.16 | 9437.83 | 6324.32 | |
2015 | 2044.72 | 836.16 | 19,294.84 | 2958.17 | 7356.77 | 14,228.72 | 232,542.89 | 3583.53 | 274.03 | 10,905.17 | 7307.59 | |
2020 | 2562.71 | 1047.98 | 24,182.78 | 3707.56 | 9220.46 | 17,833.26 | 291,452.75 | 4491.34 | 343.46 | 13,667.76 | 9158.81 | |
Urban Ecosystem | 2000 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
2005 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2010 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2015 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
2020 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Desert Ecosystem | 2000 | 0.00 | 0.00 | 0.00 | 23.62 | 0.00 | 118.11 | 35.43 | 23.62 | 0.00 | 23.62 | 11.81 |
2005 | 0.00 | 0.00 | 0.00 | 34.46 | 0.00 | 172.31 | 51.69 | 34.46 | 0.00 | 34.46 | 17.23 | |
2010 | 0.00 | 0.00 | 0.00 | 48.65 | 0.00 | 243.24 | 72.97 | 48.65 | 0.00 | 48.65 | 24.32 | |
2015 | 0.00 | 0.00 | 0.00 | 56.21 | 0.00 | 281.06 | 84.32 | 56.21 | 0.00 | 56.21 | 28.11 | |
2020 | 0.00 | 0.00 | 0.00 | 70.45 | 0.00 | 352.26 | 105.68 | 70.45 | 0.00 | 70.45 | 35.23 |
Ecosystem Types | 2000 | 2005 | 2010 | 2015 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area | ESV | Area | ESV | Area | ESV | Area | ESV | Area | ESV | |
Farmland Ecosystem | 741.03 | 34.5727 | 736.14 | 50.1032 | 728.11 | 69.9577 | 723.01 | 80.2678 | 711.37 | 98.9735 |
Forest Ecosystem | 1343.79 | 243.6351 | 1355.6 | 358.5465 | 1366.64 | 510.2724 | 1364.32 | 588.6087 | 1241.96 | 671.4667 |
Grassland Ecosystem | 782.09 | 79.3632 | 774.64 | 114.675 | 758.07 | 158.4201 | 757.33 | 182.8706 | 867.82 | 262.6129 |
Wetland Ecosystem | 5.09 | 6.4487 | 5.33 | 9.8554 | 14.84 | 34.7074 | 15.06 | 45.3681 | 22.16 | 83.6876 |
Urban Ecosystem | 7.1 | 0 | 6.52 | 0 | 11.57 | 0 | 19.43 | 0 | 35.94 | 0 |
Desert Ecosystem | 0.6 | 0.0014 | 1.47 | 0.0051 | 0.48 | 0.0023 | 0.56 | 0.0031 | 0.46 | 0.0032 |
Total | 2879.71 | 364.0211 | 2879.71 | 533.1852 | 2879.71 | 773.3599 | 2879.71 | 897.1184 | 2879.71 | 1116.7439 |
Ecosystem Types | Natural Development | Farmland Protection | Economic Development | Sustainable Development | ||||
---|---|---|---|---|---|---|---|---|
ESV | Rate | ESV | Rate | ESV | Rate | ESV | Rate | |
Farmland Ecosystem | 95.6177 | 8.95% | 117.7149 | 11.21% | 94.3093 | 8.86% | 96.0074 | 9.00% |
Forest Ecosystem | 578.5743 | 54.18% | 571.8084 | 54.47% | 579.7068 | 54.43% | 579.2487 | 54.28% |
Grassland Ecosystem | 309.7598 | 29.01% | 267.3025 | 25.46% | 308.9771 | 29.01% | 310.2649 | 29.07% |
Wetland Ecosystem | 83.9028 | 7.86% | 92.8956 | 8.85% | 82.0302 | 7.70% | 81.6074 | 7.65% |
Urban Ecosystem | 0.0000 | 0.00% | 0.0000 | 0.00% | 0.0000 | 0.00% | 0.0000 | 0.00% |
Desert Ecosystem | 0.0022 | 0.00% | 0.0022 | 0.00% | 0.0021 | 0.00% | 0.0021 | 0.00% |
Total | 1067.86 | 100% | 1049.72 | 100% | 1065.03 | 100% | 1067.13 | 100% |
Ecosystem Types | 2020 | Natural Development | Farmland Protection | Economic Development | Sustainable Development | ||||
---|---|---|---|---|---|---|---|---|---|
Area | Area | Rate | Area | Rate | Area | Rate | Area | Rate | |
Farmland Ecosystem | 711.37 | 687.19 | −3.40% | 846.00 | 18.92% | 677.78 | −4.72% | 689.99 | −3.01% |
Forest Ecosystem | 1241.96 | 1070.00 | −13.85% | 1057.49 | −14.85% | 1072.10 | −13.68% | 1071.25 | −13.75% |
Grassland Ecosystem | 867.82 | 1023.53 | 17.94% | 883.24 | 1.78% | 1020.94 | 17.64% | 1025.19 | 18.13% |
Wetland Ecosystem | 22.16 | 22.22 | 0.25% | 24.60 | 11.00% | 21.72 | −1.99% | 21.61 | −2.49% |
Urban Ecosystem | 35.94 | 74.37 | 106.93% | 65.99 | 83.60% | 84.77 | 135.87% | 69.27 | 92.73% |
Desert Ecosystem | 0.46 | 0.31 | −32.59% | 0.31 | −33.01% | 0.30 | −34.46% | 0.30 | −33.93% |
Ecosystem Types | Natural Development | Farmland Protection | Economic Development | Sustainable Development | ||||
---|---|---|---|---|---|---|---|---|
Area | Rate | Area | Rate | Area | Rate | Area | Rate | |
Cold spot | 253.89 | 8.82% | 251.46 | 8.74% | 216.18 | 7.51% | 252 | 8.76% |
Sub-cold spot | 1200.78 | 41.73% | 1239.48 | 43.07% | 1231.38 | 42.79% | 1499.22 | 52.10% |
Transition area | 758.07 | 26.34% | 772.83 | 26.85% | 741.51 | 25.77% | 503.64 | 17.50% |
Sub-hot spot | 242.91 | 8.44% | 253.26 | 8.80% | 258.66 | 8.99% | 233.19 | 8.10% |
Hot spot | 422.19 | 14.67% | 360.81 | 12.54% | 430.11 | 14.95% | 389.79 | 13.54% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, S.; Lan, A.; Fan, Z.; Feng, B.; Xiao, K. Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins. Land 2025, 14, 824. https://doi.org/10.3390/land14040824
Lian S, Lan A, Fan Z, Feng B, Xiao K. Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins. Land. 2025; 14(4):824. https://doi.org/10.3390/land14040824
Chicago/Turabian StyleLian, Shishu, Anjun Lan, Zemeng Fan, Bingcheng Feng, and Kuisong Xiao. 2025. "Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins" Land 14, no. 4: 824. https://doi.org/10.3390/land14040824
APA StyleLian, S., Lan, A., Fan, Z., Feng, B., & Xiao, K. (2025). Long-Term Analysis and Multi-Scenarios Simulation of Ecosystem Service Values in Typical Karst River Basins. Land, 14(4), 824. https://doi.org/10.3390/land14040824