Factors Shaping Biodiversity in Urban Voids: A Systematic Literature Review
Abstract
:1. Introduction
“a landscape element (patch or corridor), which consists of any unutilized, uncultivated, undesigned, non-built up, or abandoned land and premises which exist in urban areas, that at least partly covered with non-remnant, spontaneous vegetation showing signs of lack of maintenance, or presenting bare soil. The term should not be confused with open spaces that serve specific purposes, like parks or sidewalks.”
2. Materials and Methods
- Relevant subjects: The case study site should be recognised as UVs as defined in this review.
- Relevant type of factors: Studies should have identified, described, or quantified specific UV-related parameters such as site attributes, human intervention level, or urban landscape context.
- Relevant type of data: Sufficient data on UVs and plant diversity parameters were provided by the study for literature trends analysis.
- Relevant type of outcomes: Measures on the diversity of plants should have been provided.
- Geographical distribution of studies
- Analysis in relation to factors influencing urban void plant diversity
- ○
- Physical factors discussed in reviewed studies
- ○
- Temporal factors discussed in reviewed studies
- ○
- Biophysical factors discussed in reviewed studies
- ○
- Methodological factors discussed in reviewed studies
3. Results
3.1. Identification of Relevant Studies
3.2. Geographical Distribution of Studies
3.3. Factors Influencing Urban Void Plant Diversity
3.3.1. Biophysical Factors Discussed in Reviewed Studies
3.3.2. Temporal Factors Discussed in Reviewed Studies
3.3.3. Landscape Factors Discussed in Reviewed Studies
3.3.4. Methodological Factors Discussed in Reviewed Studies
4. Discussion
4.1. Cultural Bias in the Study of Urban Voids
4.2. Factors That Influence Plant Biodiversity in UVs
4.3. Scale and Factors of Analysis
4.4. Limitations of the Research and Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKinney, M.; McKinney, M.L. Urbanization as a major cause of biotic homogenization. Biological Conservation. Biol. Conserv. 2006, 127, 247–260. [Google Scholar] [CrossRef]
- Angold, P.; Sadler, J.P.; Hill, M.O.; Pullin, A.; Rushton, S.; Austin, K.; Small, E.; Wood, B.; Wadsworth, R.; Sanderson, R. Biodiversity in urban habitat patches. Sci. Total Environ. 2006, 360, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Gaston, K.J. Urban Ecology; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Swan, C.; Pickett, S.; Szlavecz, K.; Waren, P.; Willey, T. Chapter 3.5: Urban ecology: Patterns, processes, and applications. In Biodiversity and Community Composition in Urban Ecosystems: Coupled Human, Spatial, and Metacommunity Processes; Oxford University Press: Oxford, UK, 2011; pp. 179–186. [Google Scholar]
- Blouin, D.; Pellerin, S.; Poulin, M. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosyst. 2019, 22, 879–892. [Google Scholar] [CrossRef]
- Goddard, M.A.; Dougill, A.J.; Benton, T.G. Scaling up from gardens: Biodiversity conservation in urban environments. Trends Ecol. Evol. 2010, 25, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Zeeman, B.J.; McDonnell, M.J.; Kendal, D.; Morgan, J.W. Biotic homogenization in an increasingly urbanized temperate grassland ecosystem. J. Veg. Sci. 2017, 28, 550–561. [Google Scholar] [CrossRef]
- Gong, C.; Chen, J.; Yu, S. Biotic homogenization and differentiation of the flora in artificial and near-natural habitats across urban green spaces. Landsc. Urban Plan. 2013, 120, 158–169. [Google Scholar] [CrossRef]
- Macgregor, C.J.; Bunting, M.J.; Deutz, P.; Bourn, N.A.; Roy, D.B.; Mayes, W.M. Brownfield sites promote biodiversity at a landscape scale. Sci. Total Environ. 2022, 804, 150162. [Google Scholar] [CrossRef]
- Kim, G.; Miller, P.A.; Nowak, D.J. Assessing urban vacant land ecosystem services: Urban vacant land as green infrastructure in the City of Roanoke, Virginia. Urban For. Urban Green. 2015, 14, 519–526. [Google Scholar] [CrossRef]
- de Solà-Morales Rubió, I. Terrain Vague. In Anyplace; Davidson, C.C., Ed.; MIT Press: Cambridge, MA, USA, 1995; pp. 118–123. [Google Scholar]
- Rega-Brodsky, C.C.; Nilon, C.H.; Warren, P.S. Balancing Urban Biodiversity Needs and Resident Preferences for Vacant Lot Management. Sustainability 2018, 10, 1679. [Google Scholar] [CrossRef]
- Muratet, A.; Machon, N.; Jiguet, F.; Moret, J.; Porcher, E. The role of urban structures in the distribution of wasteland flora in the greater paris area, France. Ecosystems 2007, 10, 661–671. [Google Scholar] [CrossRef]
- Gao, Z.; Song, K.; Pan, Y.; Malkinson, D.; Zhang, X.; Jia, B.; Xia, T.; Guo, X.; Liang, H.; Huang, S.; et al. Drivers of spontaneous plant richness patterns in urban green space within a biodiversity hotspot. Urban For. Urban Green. 2021, 61, 127098. [Google Scholar] [CrossRef]
- Bonthoux, S.; Brun, M.; Di Pietro, F.; Greulich, S.; Bouche-Pillon, S. How can wastelands promote biodiversity in cities? A review. Landsc. Urban Plan. 2014, 132, 79–88. [Google Scholar] [CrossRef]
- Newman, G.D.; Smith, A.L.; Brody, S.D. Repurposing Vacant Land through Landscape Connectivity. Landsc. J. 2017, 36, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Kowarik, I. Wild Urban Woodlands: Towards a Conceptual Framework. In Wild Urban Woodlands, New Perspectives for Urban Forestry; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–32. [Google Scholar] [CrossRef]
- Northam, R.M. Vacant Urban Land in the American City. Land Econ. 1971, 47, 345–355. [Google Scholar] [CrossRef]
- Gilbert, O.L. The Ecology of Urban Habitats; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Sukopp, H.; Hejný, S. (Eds.) Urban Ecology: Plants and Plant Communities in Urban Environments; SPB Academic Publishing: The Hague, The Netherlands, 1990; p. 296. [Google Scholar]
- Sukopp, H. Nature in Cities: A Report and Review of Studies and Experiments Concerning Ecology, Wildlife, and Nature Conservation in Urban and Suburban Areas; Werner, P., Ed.; Council of Europe: Strasbourg, France; Manhattan Pub. Co. [Distributor]: Croton, NY, USA, 1982. [Google Scholar]
- Sukopp, H.; Weiler, S. Biotope Mapping and Nature Conservation Strategies in Urban Areas of the Federal Republic of Germany. Landsc. Urban Plan. 1988, 15, 39–58. [Google Scholar] [CrossRef]
- Bournerias, M.; Aymonin, G.G. Paul Jovet, ses amis, ses disciples. Hommage au grand naturaliste. J. D’Agric. Tradit. Bot. Appl. 1997, 39, 15–33. [Google Scholar] [CrossRef]
- Drouin, J.-M. Paul Jovet, les concepts de l’écologie végétale à l’épreuve de la ville. J. D’Agric. Tradit. Bot. Appl. 1997, 39, 75–89. [Google Scholar] [CrossRef]
- Jovet, P. Evolution des groupements rudéraux «parisiens». Bull. Société Bot. Fr. 1940, 87, 304–312. [Google Scholar] [CrossRef]
- Lizet, B.; Wolf, A.-E.; Celecia, J. Sauvages dans la ville: De l’inventaire naturaliste à l’écologie urbaine: Hommage à Paul Jovet (1896–1991); Publications Scientifiques du Muséum: Paris, France, 1999; 607p. [Google Scholar]
- Lizet, B.; Jovet, P. La végétation des entrepôts de Bercy, dynamique historique d’un paysage végétal urbain. J. D’Agric. Tradit. Bot. Appl. 1980, 27, 169–201. [Google Scholar] [CrossRef]
- Coquillat, M. Flore du pavé de Lyon. In Publications de la Société Linnéenne de Lyon; La Société Linnéenne de Lyon: Lyon, France, 1956; Volume 25, pp. 185–199. [Google Scholar] [CrossRef]
- Kühn, N. Intentions for the Unintentional: Spontaneous Vegetation as the Basis for Innovative Planting Design in Urban Areas. J. Landsc. Archit. 2006, 1, 46–53. [Google Scholar] [CrossRef]
- Ludovici, L.; Pastore, M.C. Informal Urban Biodiversity in the Milan Metropolitan Area: The Role of Spontaneous Nature in the Leftover Regeneration Process. Land 2024, 13, 1123. [Google Scholar] [CrossRef]
- Clément, G. Manifeste du Tiers Paysage; Sujet-Objet: Geneva, Switzerland, 2004; p. 69. [Google Scholar]
- Clément, G. Jardins en mouvement, friches urbaines et mécanismes de la vie. J. D’Agric. Tradit. Bot. Appl. 1997, 39, 157–175. [Google Scholar] [CrossRef]
- Del Tredici, P. Spontaneous urban vegetation: Reflections of change in a globalized world. Nat. Cult. 2010, 5, 299–315. [Google Scholar]
- Iliescu, S. The garden as collage: Rupture and continuity in the landscape projects of Peter and Anneliese Latz. Stud. Hist. Gard. Des. Landsc. 2007, 27, 149–182. [Google Scholar] [CrossRef]
- Iuliana, P.; Adelina, D.; Valentin, S.; Doina, C.; Georgel, M. Ecological and aesthetic role of spontaneous flora in urban sustainable landscapes development. J. Plant Dev. 2011, 18, 169–177. [Google Scholar]
- Weilacher, U. Duisburg-Nord Landscape Park. In Syntax of Landscape; Weilacher, U., Ed.; DE GRUYTER: Berlin, Germany, 2008; pp. 102–133. [Google Scholar]
- Ignatieva, M. From One to Many Natures: Integrating Divergent Urban Nature Visions to Support Nature-Based Solutions in Australia and Europe. Sustainability 2023, 15, 4640. [Google Scholar] [CrossRef]
- Ignatieva, M. Spontaneous urban nature: Opportunities for planting design in Europe and Australia. Kerb 2021, 29, 32–35. [Google Scholar]
- Chen, C. Progress in Plant Ecology. Bull. Biol. 1981, 16, 13–16. [Google Scholar]
- Chen, C. On Geoecology. Acta Ecol. Sin. 1986, 6, 289–294. [Google Scholar]
- Chen, C.; Zhang, L.; Hu, W. The Basic Characteristics of Plant Communities, Flora And Their Distribution in The Sandy District of Gurbantungut. Acta Phytoecol. Geobot. Sin. 1983, 7, 89–99. [Google Scholar]
- Chen, C. The Urban Ecological Studies in China. Acta Ecol. Sin. 1990, 10, 92–95. [Google Scholar]
- Chen, C. Landscape conservation and Red Book for threatened landscape. Biodivers. Sci. 1994, 2, 177–180. [Google Scholar]
- Chen, C.; Zhang, M.; Yang, L.; Yan, M.; Yu, Z. Vegetation in the low mountain and plain regions of Cele County, Xinjiang, and its relationship to desertification control. Arid. Zone Res. 1987, 1, 28–40. [Google Scholar]
- Chen, C. Biodiversity in the Wuyi Mountains and its importance in China. Biodivers. Sci. 1999, 7, 320–326. [Google Scholar]
- Chen, C.; Li, D. On the biodiversity and the ecological integrity of Wulingyuan district, Hu’nan Province. Acta Ecol. Sin. 2003, 23, 2414–2423. [Google Scholar]
- Ma, S.; Wang, R. The Social-Economic-Natural Complex Ecosystem. Acta Ecol. Sin. 1984, 4, 1–9. [Google Scholar]
- Wang, R.; Zhao, J.; Zhao, Q. Regeneration, Symboisis and Autotrophy—The Three Principles of Eco-cybernetics and Sustainable Development. J. Ecol. 1989, 8, 33–36. [Google Scholar] [CrossRef]
- Wang, R.; Ouyang, Z. Ecological Integration: A Scientific Approach to Sustainable Human Development. Chin. Sci. Bull. 1996, 41, 47–67. [Google Scholar]
- Wu, Y. On Issues of Socialist Urbanization in China. City Plan. Rev. 1979, 3, 13–25. [Google Scholar]
- Wu, L. Reconstruction of the Old City of Beijing. Archit. J. 1982, 8–18, 82. [Google Scholar]
- Fu, B.; Chen, L. Landscape diversity types and their ecological significance. Acta Geogr. Sin. 1996, 51, 454–462. [Google Scholar]
- Wu, J. Landscape Ecology-Concepts and Theories. Chin. J. Ecol. 2000, 19, 42–52. [Google Scholar]
- Guo, J.; Xue, J.; Li, Z.; Tan, R. Studies on the dynamics of patch size and grain structure of landscape elements in the forest restoration process. Acta Ecol. Sin. 2000, 20, 218–223. [Google Scholar]
- Xiao, D.; Zhao, Y.; Sun, Z.; Zhang, G. Study on Landscape Pattern Changes in the Western Suburbs of Shenyang. In Landscape Ecology: Theory, Methods, and Applications; Xiao, D., Ed.; China Forestry Publishing House: Beijing, China, 1991. [Google Scholar]
- Li, X.; Hu, Y.; Xiao, D. Landscape Ecology and Biodiversity Conservation. Acta Ecol. Sin. 1999, 19, 399–407. [Google Scholar]
- Dong, Y.; Fang, J.; Gao, G. Spatial Connections and Edge Effects of Cities and Regions. In Landscape Ecology: Theory, Methods, and Applications; Xiao, D., Ed.; China Forestry Publishing House: Beijing, China, 1991. [Google Scholar]
- Yu, K.; Li, D.; Duan, T. Landscape approaches in biodiversity conservation. Chin. Biodivers. 1998, 6, 205–212. [Google Scholar]
- Yu, K.; Hu, H.; Li, J. Design Accessible and Ecological Water Edges for Unstable Water Level—Qijiang Park in Zhongshan City. J. Chin. Landsc. Archit. 2002, 18, 37–38. [Google Scholar]
- Yu, K. Landscape Ecological Security Patterns in Biological Conservation. Acta Ecol. Sin. 1999, 19, 8–15. [Google Scholar]
- Hofmann, M.; Westermann, J.R.; Kowarik, I.; van der Meer, E. Perceptions of parks and urban derelict land by landscape planners and residents. Urban For. Urban Green. 2012, 11, 303–312. [Google Scholar] [CrossRef]
- Nemeth, J.; Langhorst, J. Rethinking urban transformation: Temporary uses for vacant land. Cities 2014, 40, 143–150. [Google Scholar] [CrossRef]
- Gandy, M. Marginalia: Aesthetics, Ecology, and Urban Wastelands. Ann. Assoc. Am. Geogr. 2013, 103, 1301–1316. [Google Scholar] [CrossRef]
- Brun, M.; Di Pietro, F. Urban Wastelands’ Contribution to Ecological Connectivity. In Urban Wastelands: A Form of Urban Nature? Di Pietro, F., Robert, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 73–93. [Google Scholar] [CrossRef]
- Phillips, D.; Lindquist, M. Just weeds? Comparing assessed and perceived biodiversity of urban spontaneous vegetation in informal greenspaces in the context of two American legacy cities. Urban For. Urban Green. 2021, 62, 12. [Google Scholar] [CrossRef]
- Gandy, M. Natura Urbana: Ecological Constellations in Urban Space; MIT Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Doron, G.M. The Dead Zone and the Architecture of Transgression. City 2000, 4, 247–263. [Google Scholar] [CrossRef]
- Pearsall, H.; Lucas, S. Vacant land: The new urban green? Cities 2014, 40, 121–123. [Google Scholar] [CrossRef]
- Lopez-Pineiro, S. A Glossary of Urban Voids; Jovis GmbH: Berlin, Germany, 2020. [Google Scholar]
- McKinney, M.L. Strategies for Increasing Biodiversity Conservation in Cities Using Wastelands: Review and Case Study. In Urban Wastelands: A Form of Urban Nature? Di Pietro, F., Robert, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 47–72. [Google Scholar] [CrossRef]
- Rupprecht, C.D.D.; Byrne, J.A.; Garden, J.G.; Hero, J.M. Informal urban green space: A trilingual systematic review of its role for biodiversity and trends in the literature. Urban For. Urban Green. 2015, 14, 883–908. [Google Scholar] [CrossRef]
- Nassauer, J.I.; Raskin, J. Urban vacancy and land use legacies: A frontier for urban ecological research, design, and planning. Landsc. Urban Plan. 2014, 125, 245–253. [Google Scholar] [CrossRef]
- Khan, K.S.; Kunz, R.; Kleijnen, J.; Antes, G. Five steps to conducting a systematic review. J. R. Soc. Med. 2003, 96, 118–121. [Google Scholar] [CrossRef]
- Pickering, C.; Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 2014, 33, 534–548. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Nilon, C.H.; Pouyat, R.V.; Zipperer, W.C.; Costanza, R. Urban Ecological Systems: Linking Terrestrial Ecological, Physical, and Socioeconomic Components of Metropolitan Areas. Annu. Rev. Ecol. Syst. 2001, 32, 127–157. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Hersperger, A.M. Green infrastructure in strategic spatial plans: Evidence from European urban regions. Urban For. Urban Green. 2019, 40, 17–28. [Google Scholar] [CrossRef]
- Wu, J. Scale and scaling: A cross-disciplinary perspective. In Key Topics in Landscape Ecology; Wu, J., Hobbs, R.J., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 115–142. [Google Scholar] [CrossRef]
- McDonnell, M.J. (Ed.) Ecology of Cities and Towns: A Comparative Approach; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Summerlin, P.; Benjamin, G.; Fulford, C.T. Which Software Are You Teaching?: A Survey of Design Software Usage in Landscape Architecture Curricula. Int. J. Architecton. Spat. Environ. Des. 2017, 11, 1. [Google Scholar] [CrossRef]
- Salisbury, A.; Gallagher, F.J.; Parag, H.A.; Meneses-Florian, L.; Holzapfel, C. Plant diversity increases in an urban wildland after four decades of unaided vegetation development in a post-industrial site. Urban Ecosyst. 2021, 24, 95–111. [Google Scholar] [CrossRef]
- Midgley, M.; Anderson, E.; Minor, E. Vacant lot plant establishment techniques alter urban soil ecosystem services. Urban For. Urban Green. 2021, 61, 9. [Google Scholar] [CrossRef]
- Godefroid, S.; Monbaliu, D.; Koedam, N. The role of soil and microclimatic variables in the distribution patterns of urban wasteland flora in Brussels, Belgium. Landsc. Urban Plan. 2007, 80, 45–55. [Google Scholar] [CrossRef]
- Johnson, A.L.; Tauzer, E.C.; Swan, C.M. Human legacies differentially organize functional and phylogenetic diversity of urban herbaceous plant communities at multiple spatial scales. Appl. Veg. Sci. 2015, 18, 513–527. [Google Scholar] [CrossRef]
- Johnson, A.L.; Borowy, D.; Swan, C.M. Land use history and seed dispersal drive divergent plant community assembly patterns in urban vacant lots. J. Appl. Ecol. 2018, 55, 451–460. [Google Scholar] [CrossRef]
- Bonthoux, S.; Voisin, L.; Bouche-Pillon, S.; Chollet, S. More than weeds: Spontaneous vegetation in streets as a neglected element of urban biodiversity. Landsc. Urban Plan. 2019, 185, 163–172. [Google Scholar] [CrossRef]
- Kowarik, I.; Hiller, A.; Planchuelo, G.; Seitz, B.; von der Lippe, M.; Buchholz, S. Emerging Urban Forests: Opportunities for Promoting the Wild Side of the Urban Green Infrastructure. Sustainability 2019, 11, 6318. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Assessing social and biophysical drivers of spontaneous plant diversity and structure in urban vacant lots. Sci. Total Environ. 2019, 653, 1272–1281. [Google Scholar] [CrossRef]
- Vakhlamova, T.; Rusterholz, H.-P.; Kanibolotskaya, Y.; Baur, B. Changes in plant diversity along an urban–rural gradient in an expanding city in Kazakhstan, Western Siberia. Landsc. Urban Plan. 2014, 132, 111–120. [Google Scholar] [CrossRef]
- Westermann, J.R.; von der Lippe, M.; Kowarik, I. Seed traits, landscape and environmental parameters as predictors of species occurrence in fragmented urban railway habitats. Basic Appl. Ecol. 2011, 12, 29–37. [Google Scholar] [CrossRef]
- Hüse, B.; Szabó, S.; Deák, B.; Tóthmérész, B. Mapping an ecological network of green habitat patches and their role in maintaining urban biodiversity in and around Debrecen city (Eastern Hungary). Land Use Policy 2016, 57, 574–581. [Google Scholar] [CrossRef]
- Kattwinkel, M.; Biedermann, R.; Kleyer, M. Temporary conservation for urban biodiversity. Biol. Conserv. 2011, 144, 2335–2343. [Google Scholar] [CrossRef]
- Guo, T.R.; Shan, B.Q. Urban Wilderness Construction: An Example of Shanghai Urban Biodiversity Education Base. Landsc. Archit. Front. 2021, 9, 120–131. [Google Scholar] [CrossRef]
- Hou, W.; Zhai, L.; Feng, S.S.; Walz, U. Restoration priority assessment of coal mining brownfields from the perspective of enhancing the connectivity of green infrastructure networks. J. Environ. Manag. 2021, 277, 10. [Google Scholar] [CrossRef]
- Swan, C.M.; Johnson, A.; Nowak, D.J. Differential organization of taxonomic and functional diversity in an urban woody plant metacommunity. Appl. Veg. Sci. 2017, 20, 7–17. [Google Scholar] [CrossRef]
- Perry, K.I.; Hoekstra, N.C.; Culman, S.W.; Gardiner, M.M. Vacant lot soil degradation and mowing frequency shape communities of belowground invertebrates and urban spontaneous vegetation. Urban Ecosyst. 2021, 24, 737–752. [Google Scholar] [CrossRef]
- Feng, S.S.; Hou, W.; Chang, J. Changing Coal Mining Brownfields into Green Infrastructure Based on Ecological Potential Assessment in Xuzhou, Eastern China. Sustainability 2019, 11, 2252. [Google Scholar] [CrossRef]
- Vega, K.A.; Küffer, C. Promoting wildflower biodiversity in dense and green cities: The important role of small vegetation patches. Urban For. Urban Green. 2021, 62, 127165. [Google Scholar] [CrossRef]
- Penone, C.; Machon, N.; Julliard, R.; Le Viol, I. Do railway edges provide functional connectivity for plant communities in an urban context? Biol. Conserv. 2012, 148, 126–133. [Google Scholar] [CrossRef]
- Kim, K.D.; Lee, E.J. Soil seed bank of the waste landfills in South Korea. Plant Soil 2005, 271, 109–121. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, S.; Luo, M.; Wei, H.; Song, Q. Characteristics of Plant Diversity and Heavy Metal Enrichment and Migration Under Different Ecological Restoration Modes in Abandoned Mining Areas. Environ. Sci. 2021, 43, 985–994. [Google Scholar] [CrossRef]
- Cervelli, E.W.; Lundholm, J.T.; Du, X. Spontaneous urban vegetation and habitat heterogeneity in Xi’an, China. Landsc. Urban Plan. 2013, 120, 25–33. [Google Scholar] [CrossRef]
- Borowy, D.; Swan, C.M. The effects of local filtering processes on the structure and functioning of native plant communities in experimental urban habitats. Ecol. Evol. 2022, 12, 17. [Google Scholar] [CrossRef]
- Yang, J.; Yan, P.; He, R.; Song, X. Exploring land-use legacy effects on taxonomic and functional diversity of woody plants in a rapidly urbanizing landscape. Landsc. Urban Plan. 2017, 162, 92–103. [Google Scholar] [CrossRef]
- Guan, J.; Cao, Y.; Wu, T.; Dong, L. An Investigation of Revegetation in Shouyun Iron Mine Wasteland in Beijing. Chin. Landsc. Archit. 2017, 33, 13–18. [Google Scholar]
- Anderson, E.C.; Minor, E.S. Assessing four methods for establishing native plants on urban vacant land. Ambio 2021, 50, 695–705. [Google Scholar] [CrossRef]
- Zhang, Q.; Jia, X.; Zheng, S.; Dai, X. Research on Plant Diversity and Plant Community Structure of Wildness in Urban Industrial Area: Taking the Rewilding of Shanghai Solvent Factory as an Example. Chin. Landsc. Archit. 2021, 37, 14–19. [Google Scholar]
- Kowarik, I.; Langer, A. Natur-Park Südgelände: Linking Conservation and Recreation in an Abandoned Railyard in Berlin; Springer: Berlin/Heidelberg, Germany, 2005; pp. 287–299. [Google Scholar] [CrossRef]
- Riley, C.B.; Perry, K.I.; Ard, K.; Gardiner, M.M. Asset or Liability? Ecological and Sociological Tradeoffs of Urban Spontaneous Vegetation on Vacant Land in Shrinking Cities. Sustainability 2018, 10, 2139. [Google Scholar] [CrossRef]
- Albrecht, H.; Eder, E.; Langbehn, T.; Tschiersch, C. The soil seed bank and its relationship to the established vegetation in urban wastelands. Landsc. Urban Plan. 2011, 100, 87–97. [Google Scholar] [CrossRef]
- Cabral, I.; Keim, J.; Engelmann, R.; Kraemer, R.; Siebert, J.; Bonn, A. Ecosystem services of allotment and community gardens: A Leipzig, Germany case study. Urban For. Urban Green. 2017, 23, 44–53. [Google Scholar] [CrossRef]
- Rupprecht, C.D.D.; Byrne, J.A. Informal Urban Green-Space: Comparison of Quantity and Characteristics in Brisbane, Australia and Sapporo, Japan. PLoS ONE 2014, 9, 17. [Google Scholar] [CrossRef]
- Muller, A.; Bocher, P.K.; Fischer, C.; Svenning, J.C. ‘Wild’ in the city context: Do relative wild areas offer opportunities for urban biodiversity? Landsc. Urban Plan. 2018, 170, 256–265. [Google Scholar] [CrossRef]
- Schroder, R.; Kiehl, K. Ecological restoration of an urban demolition site through introduction of native forb species. Urban For. Urban Green. 2020, 47, 10. [Google Scholar] [CrossRef]
- Sehrt, M.; Bossdorf, O.; Freitag, M.; Bucharova, A. Less is more! Rapid increase in plant species richness after reduced mowing in urban grasslands. Basic Appl. Ecol. 2020, 42, 47–53. [Google Scholar] [CrossRef]
- Anderson, E.C.; Minor, E.S. Management effects on plant community and functional assemblages in Chicago’s vacant lots. Appl. Veg. Sci. 2020, 23, 266–276. [Google Scholar] [CrossRef]
- Fischer, L.K.; von der Lippe, M.; Rillig, M.C.; Kowarik, I. Creating novel urban grasslands by reintroducing native species in wasteland vegetation. Biol. Conserv. 2013, 159, 119–126. [Google Scholar] [CrossRef]
- Vega, K.A.; Schlapfer-Miller, J.; Kueffer, C. Discovering the wild side of urban plants through public engagement. Plants People Planet 2021, 3, 389–401. [Google Scholar] [CrossRef]
- Riley, C.B.; Herms, D.A.; Gardiner, M.M. Exotic trees contribute to urban forest diversity and ecosystem services in inner-city Cleveland, OH. Urban For. Urban Green. 2018, 29, 367–376. [Google Scholar] [CrossRef]
- Frazier, A.E.; Bagchi-Sen, S. Developing open space networks in shrinking cities. Appl. Geogr. 2015, 59, 1–9. [Google Scholar]
- Pagano, M.; Bowman, A. Vacant Land in Cities: An Urban Resource; The Brookings Institution Survey Series; Brookings Institution, Center on Urban and Metropolitan Policy: Washington, DC, USA, 2000; Volume 1, pp. 1–9. [Google Scholar]
- Schadek, U.; Strauss, B.; Biedermann, R.; Kleyer, M. Plant species richness, vegetation structure and soil resources of urban brownfield sites linked to successional age. Urban Ecosyst. 2009, 12, 115–126. [Google Scholar] [CrossRef]
- Jia, P.; Liang, J.-L.; Yang, S.-X.; Zhang, S.-C.; Liu, J.; Liang, Z.-W.; Li, F.-M.; Zeng, Q.-W.; Fang, Z.; Liao, B.; et al. Plant diversity enhances the reclamation of degraded lands by stimulating plant–soil feedbacks. J. Appl. Ecol. 2020, 57, 1258–1270. [Google Scholar] [CrossRef]
- Wang, J.; Luo, X.; Zhang, Y.; Huang, Y.; Rajendran, M.; Xue, S. Plant species diversity for vegetation restoration in manganese tailing wasteland. Environ. Sci. Pollut. Res. 2018, 25, 24101–24110. [Google Scholar] [CrossRef]
- Peng, D.; Hou, X.; He, Z.; Liu, L.; Cai, L.; Lin, J.; Jiang, R.; Huang, F.; Zhong, J. Evolution of Species Diversity and Soil Characteristics at Different Stages of Vegetation Restoration in Gold Tailings. J. Soil Water Conserv. 2016, 30, 159–164. [Google Scholar] [CrossRef]
- Jiang, M.; Wu, J.; Jin, Y. Application of The Principles of Landscape Ecology on Conservation Biology. J. Wuhan Bot. Res. 1998, 16, 273–279. [Google Scholar]
- Li, J.; Gao, G.; Zhang, X.; Zheng, X. Effects of urbanization on biodiversity: A review. Chin. J. Ecol. 2005, 24, 953–957. [Google Scholar] [CrossRef]
- Ma, Y.; Li, F.; Yang, R. The Impact of Urbanization on Biodiversity and Its Regulation Countermeasures. Chin. Landsc. Archit. 2021, 37, 6–13. [Google Scholar] [CrossRef]
- Wu, C.; Hao, J. Landscape Fragmentation and Biodiversity Relativity. J. Anhui Agric. Sci. 2011, 39, 9245–9247, 9294. [Google Scholar] [CrossRef]
- Li, D. Fragmentation—The Biggest Obstacle For Biodiversity Conservation. Landsc. Archit. Front. 2016, 4, 34–39. [Google Scholar]
- Liu, Y.; Ou, X.; Zheng, X. Urban Biodiversity Conservation Planning Integrating Green Space Structural and Functional Connection Analysis. Landsc. Archit. 2022, 29, 26–33. [Google Scholar] [CrossRef]
- Mao, Q.; Ma, K.; Wu, J.; Tang, R.; Zhang, Y.; Luo, S.; Bao, L.; Cai, X. An overview of advances in distributional pattern of urban biodiversity. Acta Ecol. Sin. 2013, 33, 1051–1064. [Google Scholar]
- Li, J.; Zhang, Y.; Zhu, Y. Research on Biodiversity Conservation of Beidaihe New District Based on Landscape Security Pattern. Res. Soil Water Conserv. 2017, 24, 305–310, 316. [Google Scholar] [CrossRef]
- Chen, C.; Wang, R.; Chen, M.; Zhao, J.; Li, H.; Ignatieva, M.; Zhou, W. The post-effects of landscape practices on spontaneous plants in urban parks. Urban For. Urban Green. 2025, 107, 128744. [Google Scholar] [CrossRef]
- Wang, X.; Ren, J. From Industrial Wasteland to Green Park. J. Chin. Landsc. Archit. 2003, 3, 11–18. [Google Scholar]
- Wu, D.; Liu, J. Analysis of Landscape Revival Strategies in Post-industrial Wharf Areas—Case Study of Transformation Projects of Post-industrial Countries. Chin. Landsc. Archit. 2014, 30, 27–32. [Google Scholar]
- Tong, Y. Discussion on Structural Protection of the Industrial Landscape Heritage. Urban Dev. Stud. 2015, 22, 107–111. [Google Scholar]
- Li, B. On the Patterns of Changes in Shougang Industrial Landscape (1919–2019). Chin. Landsc. Archit. 2020, 36, 15–20. [Google Scholar] [CrossRef]
- Li, S.; Daixi, X.; Shi, T.; Zhou, S.; Fu, S.; Yu, C. Landscape ecological planning of coastal industrial park based on low impact development concept: A case of the second coastal industrial base in Yingkou City, Liaoning Province, China. Chin. J. Appl. Ecol. 2018, 29, 3357–3366. [Google Scholar]
- Luo, T.; Gong, X. Strategic Analysis of Urban Industrial Landscape Regeneration under Post-Industrialization: A Survey and Comparison Study of Samples in Shanghai. Landsc. Archit. Front. 2020, 8, 60–75. [Google Scholar] [CrossRef]
- Bao, Y.; Li, X.; Huang, R. The Habitat and Diversity of Spontaneous Plants in Industrial Wasteland in the Fourth Ring Road of Chengdu. Landsc. Archit. 2024, 31, 103–111. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Dong, R.; Hu, Y. Diversity and Distribution Characteristics of Spontaneous Plants in Urban Industrial Wasteland in Harbin. Landsc. Archit. 2024, 31, 112–120. [Google Scholar] [CrossRef]
- Srivathsa, A.; Vasudev, D.; Nair, T.; Chakrabarti, S.; Chanchani, P.; DeFries, R.; Deomurari, A.; Dutta, S.; Ghose, D.; Goswami, V.R.; et al. Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being. Nat. Sustain. 2023, 6, 568–577. [Google Scholar] [CrossRef]
- Farrell, K.; Westlund, H. China’s rapid urban ascent: An examination into the components of urban growth. Asian Geogr. 2018, 35, 85–106. [Google Scholar] [CrossRef]
UVs Keywords | English | Chinese |
---|---|---|
Urban voids | 城市空墟地 | |
Urban vacant land | 城市空地 | |
Informal green space | 非正式绿地 | |
Urban brownfield | 城市棕地 | |
Urban wilderness | 城市荒野 | |
Wastelands | 闲置地/废弃地 | |
Plant Keywords | ||
Plant diversity | 植物多样性 | |
Plant species richness | 植物物种丰富度 |
Category | Definition |
---|---|
Biophysical | The environmental components of vacant urban sites, encompassing both non-living elements and living components that shape ecosystem function. These site-specific characteristics form the ecological foundation upon which plant communities establish and develop [75]. |
Temporal | Time-related dimensions and management interventions that evolve throughout an urban void’s existence. These capture the dynamic nature of urban voids and their transformation through both planned and spontaneous succession processes [33]. |
Landscape | The contextual and inter-site relationships of fragmented urban open spaces within the metropolitan matrix. These spatial determinants describe how isolated patches interact with surrounding urban fabric and contribute to broader ecological networks [76]. |
Scale | Refers to the analytic spatial framework at which urban void biodiversity is studied and analysed. These factors address the different levels of resolution at which researchers examine ecological patterns and processes within urban voids [77]. |
Method | Encompasses the specific research approaches and techniques used to study urban void biodiversity. These factors describe the procedural aspects of how data on urban voids is collected, processed, and analysed [78]. |
Software | Refers to the computational tools and programs used for data analysis, spatial mapping, and statistical modelling in urban void biodiversity research. These tools help researchers process complex datasets and visualise spatial relationships [79]. |
Category | Sub-Category | Factor | Working Definition of Factors |
---|---|---|---|
Environmental | Biophysical | Size/Shape | Physical dimensions and geometric configuration of urban voids that influence habitat area and edge effects [9]. |
Biophysical | Age | Current ecological successional stages of a site since abandonment and transition from previous uses [80]. | |
Biophysical | Soil | Chemical and physical properties of soil including nutrient content, pH, metal concentration, and depth [81,82]. | |
Biophysical | Land Use Legacy | Soil, site and vegetation conditions resulting from past uses [83,84]. | |
Biophysical | Microclimate | Local atmospheric conditions including temperature, humidity, and light exposure [5,85]. | |
Biophysical | Plant Species | Existing vegetation composition that influences further plant colonisation and community development [86]. | |
Temporal | Accessibility | Frequency to which humans enter and interact with urban voids in everyday routines [72]. | |
Temporal | Human Disturbance | Level and frequency of human interventions including trampling, waste dumping, and management activities [12]. | |
Temporal | Restoration Strategy | Deliberate approaches to enhance biodiversity, such as seeding, planting, or habitat creation [87]. | |
Landscape | Connectivity | Degree to which urban voids are physically or functionally linked to other green spaces [13,16]. | |
Landscape | Context/Location | Position within the urban–rural gradient and surrounding land use types [88]. | |
Landscape | Distance to Green spaces | Proximity to other vegetated areas that can serve as seed sources [89]. | |
Methodological | Scale | Macro | City-wide or regional level analysis of urban void networks [6]. |
Scale | Local | Neighbourhood or district level assessment of urban void clusters [90]. | |
Scale | Micro | Site-specific evaluation of individual urban voids [6]. | |
Method | Study Period | Duration and timing of research observations [91]. | |
Method | Case Study | Analysis of specific urban void sites and their characteristics [92]. | |
Method | Experimental | Controlled manipulation of variables to determine causal relationships [81]. | |
Method | Remote Sensing | Use of satellite or aerial imagery to assess urban void distribution and properties [93]. | |
Method | Literature Review | Synthesis of existing research on urban void biodiversity [15]. | |
Method | Statistical Analysis | Quantitative approaches to analyse relationships between factors and biodiversity [94]. | |
Software | R (version 2.11.1-4.1.2) | Programming language used for statistical analysis and modelling [95]. | |
Software | ArcGIS (version 10.2-10.6.1; QGIS (version 2.12-3.0) | Geographic Information Systems used for spatial analysis and mapping [96]. | |
Software | Others (e.g., Google Earth Pro 7.1; i-Tree 5.0; SPSS 16.0–23.0; MATLAB R2017a) | Additional software tools employed for specific analytical purposes [81]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, J.; Sharifi, E.; Bartesaghi Koc, C.; Yi, L.; Hawken, S. Factors Shaping Biodiversity in Urban Voids: A Systematic Literature Review. Land 2025, 14, 821. https://doi.org/10.3390/land14040821
Cui J, Sharifi E, Bartesaghi Koc C, Yi L, Hawken S. Factors Shaping Biodiversity in Urban Voids: A Systematic Literature Review. Land. 2025; 14(4):821. https://doi.org/10.3390/land14040821
Chicago/Turabian StyleCui, Jian, Ehsan Sharifi, Carlos Bartesaghi Koc, Linna Yi, and Scott Hawken. 2025. "Factors Shaping Biodiversity in Urban Voids: A Systematic Literature Review" Land 14, no. 4: 821. https://doi.org/10.3390/land14040821
APA StyleCui, J., Sharifi, E., Bartesaghi Koc, C., Yi, L., & Hawken, S. (2025). Factors Shaping Biodiversity in Urban Voids: A Systematic Literature Review. Land, 14(4), 821. https://doi.org/10.3390/land14040821