Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources and Processing
3. Research Methods
3.1. Lines of Research and Methodology
- (1)
- Data collection and preprocessing: The initial step is to collect data pertaining to land use/cover, socioeconomic factors, and environmental conditions within the designated study area. This step is followed by necessary preprocessing, which includes data cleaning, format conversion, and spatial matching, to prepare the input data for the subsequent modeling tasks.
- (2)
- Optimization of the GMOP model: The second step is the optimization of land use through the utilization of the GMOP algorithm. This entails the definition of decision variables and the establishment of constraints and objective functions. Subsequently, solutions to the land use optimization problem under different control policy scenarios are obtained.
- (3)
- PLUS model parameterization and calibration: The essential parameters of the PLUS model are entered, such as those pertaining to land change drivers, land use conversion rules, neighborhood weights, and spatial constraints. It is essential to calibrate the PLUS model on the basis of historical data to guarantee that the model can accurately reflect the historical trend of land use change.
- (4)
- Uncertainty analysis: The IFS is employed to address the uncertainty inherent in the model.
- (5)
- Land change simulation analysis: The coupled model is run to simulate variations in the quantity and spatial distribution of land use under disparate control policy scenarios. The simulation results are analyzed to identify the prevailing trends and patterns of land use change.
- (6)
- Evaluation of the value of ecological services: The results of the land change simulation are combined to evaluate the ESV provided by different land use types and configurations. This process includes evaluations of provisioning, regulations, and cultural and support services.
3.2. PLUS-GMOP-Based Coupled Model
3.2.1. Modeling Principles
- (1)
- Multiobjective optimization: In this phase, the GMOP model is employed to perform a multiobjective optimization task. By meticulously selecting decision variables, defining constraints, and establishing a set of objective functions, multiple objectives are comprehensively considered, including, but not limited to, the maximization of economic benefits derived from land use, the maximization of ecological value, and the coordination of economic and ecological development. GMOP employs sophisticated algorithms to identify optimal solutions across multiple objectives in parallel, resulting in the generation of a range of non-inferior solutions within the multiobjective space. These solutions represent the optimal trade-offs among the objectives under the given constraints, thereby providing a basic scheme for the subsequent spatialized simulation of land use change.
- (2)
- A simulation of land use change that incorporates spatial elements: The PLUS model is used to express the multiobjective optimization solutions output by the GMOP model in a spatial context. The PLUS model integrates the land expansion analysis strategy and a conditional meta-cellular automata model to transform the quantitative information from the optimal solutions into specific spatial layouts (Table 2). In this process, various land change drivers selected for this study, such as topography, traffic, and existing land use types, are considered. Moreover, parameters such as transformation rules and domain weights are applied. This approach ensures that the simulation results reflect not only the quantitative changes in land use but also a reasonable spatial distribution. It is worth mentioning that the PLUS software package (V1.2.5) provides convenience for this simulation, which is hosted on the Github platform (https://github.com/HPSCIL/Patch-generating_Land_Use_Simulation_Model).
3.2.2. LSTM Model
3.2.3. Scenarios
3.2.4. Restrictive Conditions
3.2.5. Driving Force
3.3. Logistic Regression Analysis
3.4. ESV Calculation
4. Simulation and Analysis of Land Use Change
4.1. Accuracy Verification
4.2. Land Use Change
4.2.1. Analysis of Land Use Change
4.2.2. Analysis of the Forces Driving Land Use Change
4.3. Multiscene Land Transformation Analysis
4.4. Changes in the Value of Ecological Services
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beillouin, D.; Cardinael, R.; Berre, D.; Boyer, A.; Corbeels, M.; Fallot, A.; Feder, F.; Demenois, J. A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon. Glob. Change Biol. 2022, 28, 1690–1702. [Google Scholar]
- Assede, E.S.; Orou, H.; Biaou, S.S.; Geldenhuys, C.J.; Ahononga, F.C.; Chirwa, P.W. Understanding drivers of land use and land cover change in Africa: A review. Curr. Landsc. Ecol. Rep. 2023, 8, 62–72. [Google Scholar] [CrossRef]
- Yin, D.Y.; Li, X.S.; Li, G.I.; Zhang, J.; Yu, H.C. Spatio-temporal evolution of land use transition and its eco-environmental effects: A case study of the Yellow River basin, China. Land 2020, 9, 514. [Google Scholar] [CrossRef]
- Huang, J.L.; Tang, Z.; Liu, D.F.; He, J.H. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Gasser, T.; Crepin, L.; Quilcaille, Y.; Houghton, R.A.; Ciais, P.; Obersteiner, M. Historical CO2 emissions from land use and land cover change and their uncertainty. Biogeosciences 2020, 17, 4075–4101. [Google Scholar]
- Davison, C.W.; Rahbek, C.; Morueta-Holme, N. Land-use change and biodiversity: Challenges for assembling evidence on the greatest threat to nature. Glob. Change Biol. 2021, 27, 5414–5429. [Google Scholar] [CrossRef]
- Wang, J.; Bretz, M.; Dewan, M.A.A.; Delavar, M.A. Machine learning in modelling land-use and land cover-change (LULCC): Current status, challenges and prospects. Sci. Total Environ. 2022, 822, 153559. [Google Scholar] [PubMed]
- Roy, P.S.; Ramachandran, R.M.; Paul, O.; Thakur, P.K.; Ravan, S.; Behera, M.D.; Sarangi, C.; Kanawade, V.P. Anthropogenic land use and land cover changes—A review on its environmental consequences and climate change. J. Indian Soc. Remote Sens. 2022, 50, 1615–1640. [Google Scholar]
- Briassoulis, H. Analysis of Land Use Change: Theoretical and Modeling Approaches; WVU Research Repository: Morgantown, WV, USA, 2020. [Google Scholar]
- Barbier, E.B. The policy implications of the Dasgupta review: Land use change and biodiversity: Invited paper for the special issue on “the economics of biodiversity: Building on the Dasgupta Review” in environmental and resource economics. Environ. Resour. Econ. 2022, 83, 911–935. [Google Scholar] [CrossRef]
- Patel, S.K.; Verma, P.; Shankar Singh, G. Agricultural growth and land use land cover change in peri-urban India. Environ. Monit. Assess. 2019, 191, 600. [Google Scholar] [CrossRef]
- Tobias, J.A.; Durant, S.M.; Pettorelli, N. Improving predictions of climate change–land use change interactions. Trends Ecol. Evol. 2021, 36, 29–38. [Google Scholar]
- Duveiller, G.; Caporaso, L.; Abad-Viñas, R.; Perugini, L.; Grassi, G.; Arneth, A.; Cescatti, A. Local biophysical effects of land use and land cover change: Towards an assessment tool for policy makers. Land Use Policy 2020, 91, 104382. [Google Scholar] [CrossRef]
- Tong, X.; Feng, Y. A review of assessment methods for cellular automata models of land-use change and urban growth. Int. J. Geogr. Inf. Sci. 2020, 34, 866–898. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Sillanpää, M.; Hayes, M.A.; Bachri, S.; Saragi-Sasmito, M.F.; Sidik, F.; Hanggara, B.B.; Mofu, W.Y.; Rumbiak, V.I.; Hendri; et al. Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Glob. Change Biol. 2020, 26, 3028–3039. [Google Scholar] [CrossRef] [PubMed]
- Valle, D.; Izbicki, R.; Leite, R.V. Quantifying uncertainty in land-use land-cover classification using conformal statistics. Remote Sens. Environ. 2023, 295, 113682. [Google Scholar] [CrossRef]
- Gomes, E.; Inacio, M.; Bogdzevi, K.; Kalinauskas, M.; Karnauskait, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Kannan, E.; Balamurugan, G.; Narayanan, S. Spatial economic analysis of agricultural land use changes: A case of peri-urban Bangalore, India. J. Asia Pac. Econ. 2021, 26, 34–50. [Google Scholar] [CrossRef]
- Chen, M.; Vernon, C.; Graham, N.; Hejazi, M.; Huang, M.; Cheng, Y.; Calvin, K. Global land use for 2015–2100 at 0.05 resolution under diverse socioeconomic and climate scenarios. Sci. Data 2020, 7, 320. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, M.; Zhou, M.; Tu, J.; Ma, C.; Li, S. Multiple scenarios-based on a hybrid economy–environment–ecology model for land-use structural and spatial optimization under uncertainty: A case study in Wuhan, China. Stoch. Environ. Res. Risk Assess. 2022, 36, 2883–2906. [Google Scholar] [CrossRef]
- Sourn, T.; Pok, S.; Chou, P.; Nut, N.; Theng, D.; Hin, L. Assessing land use and land cover (LULC) change and factors affecting agricultural land: Case study in battambang province, Cambodia. Res. World Agric. Econ. 2023, 4, 41–54. [Google Scholar] [CrossRef]
- Ren, Y.; Lu, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Shen, X.; Wang, X.; Zhang, Z.; Lu, Z.; Lv, T. Evaluating the effectiveness of land use plans in containing urban expansion: An integrated view. Land Use Policy 2019, 80, 205–213. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Gong, J.; Du, H.; Sun, Y.; Zhan, Y. Simulation and prediction of land use in urban agglomerations based on the PLUS model: A case study of the Pearl River Delta, China. Front. Environ. Sci. 2023, 11, 1306187. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Wu, L.; Miao, H.; Liu, J.; Jiang, K.; Ding, H.; Gao, W.; Liu, T. Prediction of land use for the next 30 years using the PLUS model’s multi-scenario simulation in Guizhou Province, China. Sci. Rep. 2024, 14, 13143. [Google Scholar] [CrossRef]
- van Vliet, J.; Bregt, A.K.; Hagen-Zanker, A. Revisiting Kappa to account for change in the accuracy assessment of land-use change models. Ecol. Model. 2011, 222, 1367–1375. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Spatial and temporal variation and prediction of ecological carrying capacity based on machine learning and PLUS model. Ecol. Indic. 2023, 154, 110611. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, P.; Gao, S.; Yasir, M.; Islam, Q.U. Combining LSTM and PLUS models to predict future urban land use and land cover change: A case in Dongying City, China. Remote Sens. 2023, 15, 2370. [Google Scholar] [CrossRef]
- Xu, X.; Kong, W.; Wang, L.; Wang, T.; Luo, P.; Cui, J. A novel and dynamic land use/cover change research framework based on an improved PLUS model and a fuzzy multiobjective programming model. Ecol. Inform. 2024, 80, 102460. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, X.; Yang, Y.; Xue, M. Optimization and simulation of mountain city land use based on MOP-PLUS model: A case study of Caijia Cluster, Chongqing. ISPRS Int. J. Geo-Inf. 2023, 12, 451. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, Y. Multi-scenario simulation of ecosystem service value in Wuhan metropolitan area based on PLUS-GMOP model. Sustainability 2022, 14, 13604. [Google Scholar] [CrossRef]
- Ma, R.; Fan, Y.; Wu, H.; Zhu, L.; Ma, X.; Fan, X.; Zhang, H. Simulation of land-use patterns in arid areas coupled with GMOP and PLUS models. J. Agric. Resour. Environ. 2023, 40, 143. [Google Scholar]
- Fu, H.; Liang, Y.; Chen, J.; Zhu, L.; Fu, G. A New Framework of Land Use Simulation for Land Use Benefit Optimization Based on GMOP-PLUS Model—A Case Study of Haikou. Land 2024, 13, 1257. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, A.; Li, Q. Optimization of Land Use Structure Based on the Coupling of GMOP and PLUS Models: A Case Study of Lvliang City, China. Land 2024, 13, 1335. [Google Scholar] [CrossRef]
- Yan, Z.; Huixin, M.; Xiaoyu, Z.; Furong, Z.; Zhanjun, W.; Shuxing, F.; Sarah, O.S.; Pan, J.; Ma, Z.; Fan, J. Ningxia. In Climate Risk and Resilience in China; Routledge: London, UK, 2015; pp. 233–261. [Google Scholar]
- Abd El-Hamid, H.T.; Wei, C.Y.; Hafiz, M.A.; Mustafa, E.K. Effects of land use/land cover and climatic change on the ecosystem of North Ningxia, China. Arab. J. Geosci. 2020, 13, 1099. [Google Scholar] [CrossRef]
- Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; de Almeida, F.T.; de Souza, A.P.; de Oliveira, R.F.; Paulino, J.; Uliana, E.M. Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. J. South Am. Earth Sci. 2021, 108, 103224. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, P.; Jiang, J.; Zhai, J.; Chen, Y.; Wang, Y.; Bai, J.; Zhang, B.; Xu, H. Coordination study on ecological and economic coupling of the Yellow River Basin. Int. J. Environ. Res. Public Health 2021, 18, 10664. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Cao, Y. Research on the coordinated development of economic development and ecological environment of nine Provinces (regions) in the Yellow River Basin. Sustainability 2022, 14, 13102. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Fu, B.; Comber, A.; Li, T.; Hu, J. Driving factors of land change in China’s loess plateau: Quantification using geographically weighted regression and management implications. Remote Sens. 2020, 12, 453. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Cao, H. Land-use change and its driving factors in Henan province from 1995 to 2015. Arab. J. Geosci. 2022, 15, 247. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatial–temporal evolution of ESV and its response to land use change in the Yellow River Basin, China. Sci. Rep. 2022, 12, 13103. [Google Scholar] [CrossRef]
- Peng, H.; Hua, L.; Zhang, X.; Yuan, X.; Li, J. Evaluation of ESV change under urban expansion based on ecological sensitivity: A case study of three gorges reservoir area in China. Sustainability 2021, 13, 8490. [Google Scholar] [CrossRef]
- Costanza, R. Social goals and the valuation of ecosystem services. Ecosystems 2000, 3, 4–10. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Jellal, R.A.; Lange, M.; Wassermann, B.; Schilling, A.; Zell, A. LS-ELAS: Line segment based efficient large scale stereo matching. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Cui, F.; Wang, B.; Zhang, Q.; Tang, H.; De Maeyer, P.; Hamdi, R.; Dai, L. Climate change versus land-use change—What affects the ecosystem services more in the forest-steppe ecotone? Sci. Total Environ. 2021, 759, 143525. [Google Scholar] [CrossRef]
- Yu, Z.; Ciais, P.; Piao, S.L.; Houghton, R.A.; Lu, C.Q.; Tian, H.Q.; Agathokleous, E.; Kattel, G.R.; Sitch, S.; Goll, D.; et al. Forest expansion dominates China’s land carbon sink since 1980. Nat. Commun. 2022, 13, 5374. [Google Scholar] [CrossRef] [PubMed]
Category | Data | Statistical Object (Year) | Resolution | Data Resource |
---|---|---|---|---|
Land use datasets | Territorial change survey (TCS) | 2010–2020 | Vector graph | Information Center of Ningxia Department of Natural Resources |
Global 30-m land use cover map | 2000 | http://www.resdc.cn (accessed on 15 August 2024) | ||
Socioeconomic statistics | Population and GDP | 2010–2020 | Non-spatial data | https://tj.nx.gov.cn/ (accessed on 15 August 2024) |
Food production | http://lswz.nx.gov.cn/ (accessed on 17 August 2024) | |||
Area under cultivation | ||||
Food prices | ||||
Value of agriculture | ||||
Forestry | ||||
Socioeconomic spatial data | Population density | 2019 | 1 km | http://www.resdc.cn (accessed on 20 August 2024) |
GDP | 2019 | 1 km | ||
Light intensity | 2019 | 400 m | ||
Topographic data | Slope | 2019 | 30 m | NASA ASTER Global Digital Elevation Model V003 |
Direction of slope | 2019 | 30 m | ||
Elevation | 2019 | 30 m | ||
Climate and environmental data | Mean annual precipitation | 1960–2010 | 1 km | http://www.resdc.cn (accessed on 3 August 2024) |
Mean annual ground temperature | ||||
Mean annual evaporation | ||||
Soil type | ||||
Spatial accessibility | Distance to rural settlements | 2019 | mm | TCS |
Distance to town | 30 m | |||
Distance to the industrial park | mm | |||
Distance from the Yellow River | 30 m | |||
Distance to other roads | 30 m | |||
Space-limited data | Quality farmland | 2022 | Vector graph | http://www.resdc.cn (accessed on 27 August 2024) |
Water-based wetland |
Parameters | Implication |
---|---|
d | The value of d is 0 or 1; a value of 1 indicates that there is a change from other land use types to land use type k and 0 indicates other conversions. |
x | A vector consisting of multiple drivers. |
I(·) | Indicator functions for decision tree sets. |
hn(x) | Prediction type for the nth decision tree for vector x. |
M | Total number of decision trees. |
Probability of growth of land use type k in cell i. | |
Impact of future demand on land use type k. | |
k | Adaptive drive factor, depending on the gap between the current amount of land at iteration t and the target land use demand. |
Neighborhood effect of cell i, i.e., the proportion of land use components covered by k in the lower neighborhood. | |
Last iteration. | |
Total number of grid cells occupied by land use type k in the window. | |
wk | The weight between different land use types due to different neighborhood effects, for different land use types, has a default value of 1, but it can be defined by the model user. |
, | Difference between current quantity and future demand for land use type k in t − 1 and t − 2 iterations. |
r | Random values from 0 to 1. |
Generating new land use patch thresholds for land use type k, as determined by the model user. | |
Step | Approximate land use demand step size. |
The decreasing threshold of the decay factor, which ranges from 0 to 1 and is set by the expert. | |
r1 | A normally distributed random value with a mean of 1 and a range from 0 to 2. |
l | Decay steps. |
TMk,c | A transition matrix which defines whether land is allowed to be converted to type c using type k. |
Implicit Variable | Driving Factor | Regression Coefficient | Standard Deviation | Wald χ2 |
---|---|---|---|---|
Cropland | DFU | 0.52 | 0.03 | 125.78 |
DFR | −0.01 | 0.03 | 0.13 | |
DFW | 0.01 | 0.05 | 0.01 | |
Elevation | −1.49 | 0.08 | 335.45 | |
Population | 0.49 | 0.07 | 54.56 | |
constant | 0.43 | 0.04 | 60.79 | |
Forest | DFU | 0.64 | 0.02 | 343.523 |
DFR | 1.19 | 0.04 | 233.872 | |
DFW | 0.35 | 0.02 | 66.92 | |
Elevation | 3.75 | 0.02 | 65.476 | |
Population | −0.13 | 0.03 | 6.955 | |
constant | 0.56 | 0.07 | 1517.868 | |
Built | DFU | 0.86 | 0.03 | 215.23 |
DFR | 1.33 | 0.01 | 262.173 | |
DFW | 0.27 | 0.05 | 6.15 | |
Elevation | 0.01 | 0.03 | 8.14 | |
Population | 0.22 | 0.06 | 137.232 | |
constant | 0.58 | 0.05 | 188.96 | |
Grassland | DFU | 0.08 | 0.01 | 15.194 |
DFR | 0.02 | 0.01 | 13.606 | |
DFW | 0.04 | 0.05 | 42.135 | |
Elevation | 0.1 | 0.03 | 138.734 | |
Population | 0.2 | 0.05 | 22.366 | |
constant | 0.62 | 0.05 | 299.415 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, D.; Wu, X.; Zhang, X.; Liu, Q.; Kong, W.; Luo, P.; Yang, S. Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model. Land 2025, 14, 802. https://doi.org/10.3390/land14040802
Wang L, Liu D, Wu X, Zhang X, Liu Q, Kong W, Luo P, Yang S. Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model. Land. 2025; 14(4):802. https://doi.org/10.3390/land14040802
Chicago/Turabian StyleWang, Ligang, Dan Liu, Xinyi Wu, Xiaopu Zhang, Qiaoyang Liu, Weijiang Kong, Pingping Luo, and Shengfu Yang. 2025. "Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model" Land 14, no. 4: 802. https://doi.org/10.3390/land14040802
APA StyleWang, L., Liu, D., Wu, X., Zhang, X., Liu, Q., Kong, W., Luo, P., & Yang, S. (2025). Simulation Analysis of Land Use Change via the PLUS-GMOP Coupling Model. Land, 14(4), 802. https://doi.org/10.3390/land14040802