The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway
Abstract
:1. Introduction
2. Data and Methods
2.1. The IMCC Dataset
2.2. Maps of Agricultural Land
2.3. Verification of Using Stratified Random Sampling
2.4. Analysis of IMCC Verification
3. Results
4. Discussion
4.1. The Accuracy of IMCC 2015–2018
4.2. Differences in Observed Cases of Soil Sealing in Norway and Poland
4.3. Differences in Observed Cases of Imperviousness Loss in Norway and Poland
4.4. Differences in Unchanged Areas in Norway and Poland
4.5. Potential Use of IMCC 2015–2018 and Future Prospects
4.6. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Jónsson, J.Ö.G.; Davíðsdóttir, B. Classification and valuation of soil ecosystem services. Agric. Syst. 2016, 145, 24–38. [Google Scholar] [CrossRef]
- Colsaet, A.; Laurans, Y.; Levrel, H. What drives land take and urban land expansion? A systematic review. Land Use Policy 2018, 79, 339–349. [Google Scholar] [CrossRef]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution 70/1 Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Shukla, P.R.; Skeg, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; Available online: https://www.ipcc.ch/srccl/ (accessed on 1 April 2025).
- European Commission; Directorate-General for Environment; Jobstmann, H.; Prokop, G.; Schönbauer, A. Overview of Best Practices for Limiting Soil Sealing or Mitigating Its Effects in EU-27: Final Report; Publications Office: Luxembourg, 2011; Available online: https://data.europa.eu/doi/10.2779/15146 (accessed on 1 April 2025).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Soil Strategy for 2030—Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate, COM/2021/699 Final. 52021DC0699, 17 November 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52021DC0699 (accessed on 1 April 2025).
- Heuser, D.I. Soil Governance in current European Union Law and in the European Green Deal. Soil Secur. 2022, 6, 100053. [Google Scholar] [CrossRef]
- Turner, S. Proceedings of the Technical Workshop on Indicators for Soil Sealing; Technical report 80/-1; European Environment Agency: Copenhagen, Denmark, 2002; Available online: https://www.eea.europa.eu/en/analysis/publications/technical_report_2002_80 (accessed on 1 April 2025).
- Dramstad, W.E.; Fjellstad, W.J.; Strand, G.H.; Mathiesen, H.F.; Engan, G.; Stokland, J.N. Development and implementation of the Norwegian monitoring programme for agricultural landscapes. J. Environ. Manag. 2002, 64, 49–63. [Google Scholar] [CrossRef]
- Ståhl, G.; Allard, A.; Esseen, P.-A.; Glimskär, A.; Ringvall, A.; Svensson, J.; Sundquist, S.; Christensen, P.; Torell, Å.G.; Högström, M.; et al. National Inventory of Landscapes in Sweden (NILS)—Scope, design, and experiences from establishing a multiscale biodiversity monitoring system. Environ. Monit. Assess. 2011, 173, 579–595. [Google Scholar] [CrossRef]
- Eurostat 2025. LUCAS Web Site. Available online: https://ec.europa.eu/eurostat/web/lucas (accessed on 13 March 2025).
- Fadnes, K.D.; Munsterhjelm, N. Registrert Nedbygd Jordbruksareal. Kartbasert Måling Basert på Registreringar i Perioden 2020–2021; NIBIO Rapport 8 (142); NIBIO: Ås, Norway, 2022; Available online: https://nibio.brage.unit.no/nibio-xmlui/handle/11250/3033086 (accessed on 1 April 2025).
- Moser, A.; van Vliet, J.; Wissen Hayek, U.; Grêt-Regamey, A. Analyzing the extent and use of impervious land in rural landscapes. Geogr. Sustain. 2024, 5, 625–636. [Google Scholar] [CrossRef]
- Gardi, C.; Panagos, P.; Van Liedekerke, M.; Bosco, C.; De Brogniez, D. Land take and food security: Assessment of land take on the agricultural production in Europe. J. Environ. Plan. Manag. 2015, 58, 898–912. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M. Urban impervious surface detection from remote sensing images: A review of the methods and challenges. IEEE Geosci. Remote Sens. Mag. 2019, 7, 64–93. Available online: https://ieeexplore.ieee.org/document/8846614 (accessed on 28 March 2025).
- Peroni, F.; Pappalardo, S.E.; Facchinelli, F.; Crescini, E.; Munafò, M.; Hodgson, M.E.; De Marchi, M. How to Map Soil Sealing, Land Take and Impervious Surfaces? A Systematic Review. Environ. Res. Lett. 2022, 17, 053005. [Google Scholar] [CrossRef]
- Güneralp, B.; Reba, M.; Hales, B.U.; Wentz, E.A.; Seto, K.C. Trends in urban land expansion, density, and land transitions from 1970 to 2010: A global synthesis. Environ. Res. Lett. 2020, 15, 044015. [Google Scholar] [CrossRef]
- Pourtaherian, P.; Jaeger, J.A.G. How effective are greenbelts at mitigating urban sprawl? A comparative study of 60 European cities. Landsc. Urban Plan. 2022, 227, 104532. [Google Scholar] [CrossRef]
- Orsi, F. Exploring the role of compactness in path-dependent land-taking processes in Italy. GeoJournal 2023, 88, 69–87. [Google Scholar] [CrossRef]
- Vallecillo, S.; Maes, J.; Teller, A.; Babí Almenar, J.; Barredo, J.; Trombetti, M.; Abdul Malak, D.; Paracchini, M.; Carré, A.; Addamo, A.; et al. EU-Wide Methodology to Map and Assess Ecosystem Condition: Towards a Common Approach Consistent with a Global Statistical Standard; Joint Research Centre Science for Policy report, European Commission; Publications Office of the European Union: Luxembourg, 2022; Available online: https://data.europa.eu/doi/10.2760/13048 (accessed on 1 April 2025).
- Strand, G.-H. Accuracy of the Copernicus High-Resolution Layer Imperviousness Density (HRL IMD) Assessed by Point Sampling within Pixels. Remote Sens. 2022, 14, 3589. [Google Scholar] [CrossRef]
- Hurbanek, P.; Atkinson, P.M.; Pazur, R.; Rosina, K.; Chockalingam, J. Accuracy of Built-up Area Mapping in Europe at Varying Scales and Thresholds. In Proceedings of the Accuracy 2010, Ninth International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Leicester, UK, 20–23 July 2010; University of Leicester: Leicester, UK, 2010; Volume 385388. Available online: https://gsweb4.umd.edu/sites/default/files/lcluc_documents/pazur_lcluc_8-2010_poster_0.pdf (accessed on 1 April 2025).
- Krówczyńska, M.; Soszyńska, A.; Pabjanek, P.; Wilk, E.; Hurbanek, P.; Rosina, K. Accuracy of the Soil Sealing Enhancement Product for Poland. Quaest. Geogr. 2016, 35, 89–95. [Google Scholar] [CrossRef]
- Pabjanek, P.; Krówczyńska, M.; Wilk, E.; Miecznikowski, M. An accuracy assessment of European Soil Sealing Dataset (SSL2009): Stara Miłosna area, Poland—A case study. Misc. Geogr. 2017, 20, 59–63. [Google Scholar] [CrossRef]
- EEA. HRL Copernicus Land Monitoring Service—High Resolution Layer Imperviousness: Product Specifications Document; European Environment Agency: Copenhagen, Denmark, 2018; Available online: https://land.copernicus.eu/en/technical-library/hrl-imperviousness-technical-document-prod-2015/@@download/file (accessed on 1 April 2025).
- Copernicus; EEA. Copernicus Land Monitoring Service: High Resolution Land Cover Characteristics; Lot1: Imperviousness 2018, Imperviousness Change 2015–2018 and Built-Up 2018; User Manual; Document Version 2.2; Copernicus Land Monitoring Service (CLMS); European Environment Agency (EEA), GeoVille GmbH: Innsbruck, Austria, 2020; Available online: https://land.copernicus.eu/en/technical-library/hrl-imperviousness-2018-user-manual/@@download/file (accessed on 1 April 2025).
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004, 101, 251–268. [Google Scholar] [CrossRef]
- Forbord, M.; Bjørkhaug, H.; Burton, R.J.F. Drivers of change in Norwegian agricultural land control and the emergence of rental farming. J. Rural. Stud. 2014, 33, 9–19. [Google Scholar] [CrossRef]
- Vinge, H. Food Security, Food Sovereignty, and the Nation-State: Historicizing Norwegian Farmland Policy. In Food Sovereignty in International Context: Discourse, Politics and Practice in Place; Trauger, A., Ed.; Routledge: New York, NY, USA, 2015; pp. 87–105, Chapter 6. [Google Scholar] [CrossRef]
- Vinge, H.; Sørensen, S.O. From Agri-Culture to Agri-Nature: New Alliances for Farmland Preservation in Norway. In Finance or Food? Hilde, B., Philip, M., Bruce, M., Eds.; University of Toronto Press: Toronto, ON, USA, 2019; pp. 225–242, Chapter 11. [Google Scholar] [CrossRef]
- Norwegian Ministry of Finance. Prop. 121 S, 2022–2023. Updated Agricultural Soil Protection Strategy. In Proposition to the Storting: Changes to the State Budget 2023 Under the Ministry of Agriculture and Food; Attachment 9; Norwegian Ministry of Finance: Oslo, Norway, 2023. (In Norwegian) [Google Scholar]
- Statistics Poland, Statistical Yearbook of Agriculture 2024, Warsaw 2024. Available online: https://stat.gov.pl/en/topics/statistical-yearbooks/statistical-yearbooks/statistical-yearbook-of-agriculture-2024,6,19.html (accessed on 1 April 2025).
- Tiitu, M.; Naess, P.; Ristimäki, M. The urban density in two Nordic capitals—Comparing the development of Oslo and Helsinki metropolitan regions. Eur. Plan. Stud. 2021, 29, 1092–1112. [Google Scholar] [CrossRef]
- Cortinovis, C.; Haase, D.; Zanon, B.; Geneletti, D. Is urban spatial development on the right track? Comparing strategies and trends in the European Union. Landsc. Urban Plan. 2019, 181, 22–37. [Google Scholar] [CrossRef]
- Stanilov, K. (Ed.) The Post-Socialist City: URBAN Form and Space Transformations in Central and Eastern Europe After Socialism; Springer: Dordrecht, The Netherlands, 2007; Volume 92. [Google Scholar] [CrossRef]
- Marks-Bielska, R. Factors shaping the agricultural land market in Poland. Land Use Policy 2013, 30, 791–799. [Google Scholar] [CrossRef]
- Badach, E.; Szewczyk, J.; Lisek, S.; Bożek, J. Size Structure Transformation of Polish Agricultural Farms in 2010–2020 by Typological Groups of Voivodeships. Agriculture 2023, 13, 1789. [Google Scholar] [CrossRef]
- Krøgli, S.O.; Aune-Lundberg, L.; Dramstad, W.E. Presence of agriculture in photos of Norwegian landscapes uploaded to Flickr. Nor. Geogr. Tidsskr. Nor. J. Geogr. 2023, 77, 243–254. [Google Scholar] [CrossRef]
- UN-Habitat. A New Strategy of Sustainable Neighbourhood Planning: Five Principles. Urban Planning Discussion Note 3. The United Nations Human Settlements Programme (UN-Habitat). 2015. Available online: https://unhabitat.org/five-principles-of-neighbourhood-design (accessed on 1 April 2025).
- Pelczynski, J.; Tomkowicz, B. Densification of cities as a method of sustainable development. IOP Conf. Ser. Earth Environ. Sci. 2019, 362, 012106. [Google Scholar] [CrossRef]
- Cysek-Pawlak, M.; Misiak, J.; Hościło, A.; Strand, G.-H.; Eiter, S. Spatial planning needs towards Copernicus Land Monitoring Services: Case studies from Poland and Norway. Eur. Spat. Res. Policy 2023, 30, 235–255. [Google Scholar] [CrossRef]
Class Code | Class Description |
---|---|
0 | Unchanged, with zero imperviousness in both 2015 and 2018 |
10 | Unchanged degree of imperviousness (>0 IMD) |
1 | New cover, with zero imperviousness in 2015, but some IMD in 2018 |
11 | increased IMD |
2 | Loss of cover, from some imperviousness in 2015 to zero in 2018 |
12 | decreased IMD |
% of Area in Class | ||
---|---|---|
IMCC Classes | Poland | Norway |
0: Unchanged, IMD = 0 | 97.29 | 99.76 |
10: Unchanged, IMD > 0 | 2.58 | 0.17 |
1: New cover, from IMD = 0 in 2015 | 0.12 | 0.07 |
11: Increased IMD | 0.01 | 0.00111 |
2: Loss of cover, to IMD = 0 in 2018 | 0.00 | 0.00020 |
12: Decreased IMD | 0.0000022 | 0.00004 |
Total area (km2) of pixels containing agricultural land | 181,912 | 5935 |
Correct Classification According to Remote Sensing Imagery | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Classes | 0 | 10 | 1 | 11 | 2 | 12 | No. of Pixels | UA | Commission Error | |
IMCC 2015–2018 | 0: Unchanged, IMD = 0 | 198 | 2 | 200 | 99.0 | 1.0 | ||||
10: Unchanged, IMD > 0 | 88 | 105 | 6 | 1 | 200 | 52.5 | 47.5 | |||
1: New cover, from IMD = 0 in 2015 | 67 | 22 | 108 | 3 | 200 | 54.0 | 46.0 | |||
11: Increased IMD | 27 | 16 | 40 | 117 | 200 | 58.5 | 41.5 | |||
2: Loss of cover, to IMD = 0 in 2018 | 142 | 3 | 6 | 1 | 48 | 200 | 24.0 | 76.0 | ||
12: Decreased IMD | 2 | 1 | 1 | 1 | 5 | 20.0 | 80.0 | |||
No. of pixels | 524 | 147 | 163 | 122 | 48 | 1 | 1005 | |||
PA | 37.8 | 71.4 | 66.3 | 95.9 | 100.0 | 100.0 | ||||
Omission error | 62.2 | 28.6 | 33.7 | 4.1 | 0.0 | 0.0 |
Correct Classification According to Remote Sensing Imagery | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Classes | 0 | 10 | 1 | 11 | 2 | 12 | No. of Pixels | UA | Commission Error | |
IMCC 2015–2018 | 0: Unchanged, IMD = 0 | 167 | 31 | 1 | 1 | 200 | 83.5 | 16.5 | ||
10: Unchanged, IMD > 0 | 22 | 173 | 2 | 3 | 200 | 86.5 | 13.5 | |||
1: New cover, from IMD = 0 in 2015 | 19 | 135 | 39 | 7 | 200 | 19.5 | 80.5 | |||
11: Increased IMD | 7 | 67 | 3 | 122 | 1 | 200 | 61.0 | 39.0 | ||
2: Loss of cover, to IMD = 0 in 2018 | 28 | 35 | 125 | 12 | 200 | 62.5 | 37.5 | |||
12: Decreased IMD | 2 | 7 | 9 | 77.8 | 22.2 | |||||
No. of pixels | 243 | 443 | 45 | 133 | 125 | 20 | 1009 | |||
PA | 68.7 | 39.1 | 86.7 | 91.7 | 100.0 | 35.0 | ||||
Omission error | 31.3 | 60.9 | 13.3 | 8.3 | 0.0 | 65.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fjellstad, W.; Hościło, A.; Krøgli, S.O.; Rizzi, J.; Chmielewska, M. The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway. Land 2025, 14, 794. https://doi.org/10.3390/land14040794
Fjellstad W, Hościło A, Krøgli SO, Rizzi J, Chmielewska M. The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway. Land. 2025; 14(4):794. https://doi.org/10.3390/land14040794
Chicago/Turabian StyleFjellstad, Wendy, Agata Hościło, Svein Olav Krøgli, Jonathan Rizzi, and Milena Chmielewska. 2025. "The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway" Land 14, no. 4: 794. https://doi.org/10.3390/land14040794
APA StyleFjellstad, W., Hościło, A., Krøgli, S. O., Rizzi, J., & Chmielewska, M. (2025). The Potential of the Copernicus Product “Imperviousness Classified Change” to Assess Soil Sealing in Agricultural Areas in Poland and Norway. Land, 14(4), 794. https://doi.org/10.3390/land14040794