Spatial Heterogeneity of Heavy Metals Contamination in Urban Road Dust and Associated Human Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Division of Functional Areas and Sampling Points
2.2. Sampling Method and Analysis
2.3. Assessment Method
Item | Parameter | Implication | Unit | Value of Child | Value of Adult | References |
---|---|---|---|---|---|---|
Basic parameter | C | Heavy metal concentration | mg·kg−1 | 95% UCL | 95% UCL | |
EF | Exposed frequency | d·a−1 | 180 | 180 | [28,29,30] | |
Exposed behavior parameters | ED | Exposed period | a−1 | 6 | 24 | [37] |
BW | Average weight | kg | 15 | 64 | [38] | |
AT | Average exposed time (non-carcinogenesis) | d | 365 × ED | 365 × ED | [28] | |
Average exposed time (carcinogenesis) | d | 70 × 365 | 70 × 365 | [28,37] | ||
Hand–oral intake | IngR | Hand–oral dust intake | mg·d−1 | 200 | 100 | [28] |
Breath intake | InhR | Inhalation rate | m3·d−1 | 7.63 | 20 | [19] |
PEF | Particulate emission factor | m3·kg−1 | 1.36 × 109 | 1.36 × 109 | [39] | |
Skin contact | SAF | skin adherence factor | mg·cm−2 | 0.2 | 0.07 | [36] |
SA | Exposed skin areas | cm2 | 2800 | 5700 | [37,39] | |
ABS | Skin absorption factor | dimensionless | 0.001 | 0.001 | [29] |
2.4. Data Analysis
3. Results and Discussion
3.1. Heavy Metal Content in Road Dust
3.2. Bioaccessibility of Heavy Metals in Road Dust
3.3. Non-Carcinogenic Hazard of Heavy Metals in Road Dust
3.4. Carcinogenic Hazard of Heavy Metals in Road Dust
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sawidis, T.; Marnasidis, A.; Zachariadis, G.; Stratis, J. A study of air pollution with heavy metals in Thessaloniki city (Greece) using trees as biological indicators. Arch. Environ. Contam. Toxicol. 1995, 28, 118–124. [Google Scholar] [CrossRef]
- Seaton, A.; Godden, D.; MacNee, W.; Donaldson, K. Particulate air pollution and acute health effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Mayer, H. Air pollution in cities. Atmos. Environ. 1999, 33, 4029–4037. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Yang, Q.; Zhang, K.; Zheng, Y.; Zhou, G. Pollution characteristics of atmospheric dustfall and heavy metals in a typical inland heavy industry city in China. J. Environ. Sci. 2018, 71, 283–291. [Google Scholar] [CrossRef]
- Han, X.; Naeher, L.P. A review of traffic-related air pollution exposure assessment studies in the developing world. Environ. Int. 2006, 32, 106–120. [Google Scholar] [CrossRef]
- Abuduwailil, J.; Zhaoyong, Z.; Fengqing, J. Evaluation of the pollution and human health risks posed by heavy metals in the atmospheric dust in Ebinur Basin in Northwest China. Envison. Sci. Pollut. Res. Int. 2015, 22, 14018–14031. [Google Scholar] [CrossRef]
- Okorie, A.; Entwistle, J.; Dean, J.R. Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 2012, 86, 460–467. [Google Scholar]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar]
- Kowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Chirenje, T.; Ma, L.Q.; Lu, L. Retention of Cd, Cu, Pb and Zn by wood ash, lime and fume dust. Water Air Soil Pollut. 2006, 171, 301–314. [Google Scholar]
- Nordberg, G.F. Cadmium and health in the 21st century–historical remarks and trends for the future. Biometals 2004, 17, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.A.; Pahren, H.R.; Lucas, J.B. Controlling cadmium in the human food chain: A review and rationale based on health effects. Environ. Res. 1982, 28, 251–302. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Han, G. Characteristics of major elements and heavy metals in atmospheric dust in Beijing, China. J. Geochem. Explor. 2017, 176, 114–119. [Google Scholar] [CrossRef]
- Gomez, B.; Palacios, M.; Gomez, M.; Sanchez, J.; Morrison, G.; Rauch, S.; McLeod, C.; Ma, R.; Caroli, S.; Alimonti, A. Levels and risk assessment for humans and ecosystems of platinum-group elements in the airborne particles and road dust of some European cities. Sci. Total Environ. 2002, 299, 1–19. [Google Scholar] [CrossRef]
- Saeedi, M.; Li, L.Y.; Salmanzadeh, M. Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. J. Hazard. Mater. 2012, 227, 9–17. [Google Scholar] [CrossRef]
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Qiang, L.; Yang, W.; Jingshuang, L.; Quanying, W.; Mingying, Z. Grain-size distribution and heavy metal contamination of road dusts in urban parks and squares in Changchun, China. Environ. Geochem. Health 2015, 37, 71–82. [Google Scholar] [CrossRef]
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environ. Sci. Pollut. Res. 2016, 23, 13100–13113. [Google Scholar]
- Wang, G.; Oldfield, F.; Xia, D.; Chen, F.; Liu, X.; Zhang, W. Magnetic properties and correlation with heavy metals in urban street dust: A case study from the city of Lanzhou, China. Atmos. Environ. 2012, 46, 289–298. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [PubMed]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [PubMed]
- Cai, Q.-Y.; Mo, C.-H.; Li, H.-Q.; Lü, H.; Zeng, Q.-Y.; Li, Y.-W.; Wu, X.-L. Heavy metal contamination of urban soils and dusts in Guangzhou, South China. Environ. Monit. Assess. 2013, 185, 1095–1106. [Google Scholar]
- Tuzen, M.; Sari, H.; Soylak, M. Microwave and wet digestion procedures for atomic absorption spectrometric determination of trace metals contents of sediment samples. Anal. Lett. 2004, 37, 1925–1936. [Google Scholar]
- U.S. Environmental Protection Agency. Inductively coupled plasma-atomic emission spectrometry. In Method 6010C; U.S. Environmental Protection Agency: Washington, DC, USA, 2007. [Google Scholar]
- Ruby, M.V.; Davis, A.; Schoof, R.; Eberle, S.; Sellstone, C.M. Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ. Sci. Technol. 1996, 30, 422–430. [Google Scholar]
- Dong, S.; Zhang, S.; Wang, L.; Ma, G.; Lu, X.; Li, X. Concentrations, speciation, and bioavailability of heavy metals in street dust as well as relationships with physiochemcal properties: A case study of Jinan City in East China. Environ. Sci. Pollut. Res. 2020, 27, 35724–35737. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part A), Interim Final; U.S. Environmental Protection Agency: Washington, DC, USA, 1989. [Google Scholar]
- U.S. Environmental Protection Agency. Guidance for Superfund Volume I: Human Heatlh Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final; U.S. Environmental Protection Agency: Washington, DC, USA, 2004. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment), Final; U.S. Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- International Agency for Research on Cancer, World Health Organization. Agents Classified by the IARC Monographs; WHO: Geneva, Switzerland, 2006; Volume Sup 7, p. 87. [Google Scholar]
- International Agency for Research on Cancer, World Health Organization. Agents Classified by the IARC Monographs; WHO: Geneva, Switzerland, 2012; Volume 58, p. 100C. [Google Scholar]
- U.S. Environmental Protection Agency. Exposure Factors Handbook; Exposure Assessment Group, the Office of Health and Environmental Assessment, U.S. Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Li, K.; Liang, T.; Wang, L.; Yang, Z. Contamination and health risk assessment of heavy metals in road dust in Bayan Obo Mining Region in Inner Mongolia, North China. J. Geogr. Sci. 2015, 25, 1439–1451. [Google Scholar]
- Zhejiang Provincial Bureau of Quality and Technical Supervision. Guidelines for Risk Assessment of Contaminated Sites (DB33/T 892-2013); Zhejiang Provincial Bureau of Quality and Technical Supervision: Hangzhou, China, 2013. [Google Scholar]
- U.S. Environmental Protection Agency. Supplemental Guidance for Developing Soil Screening Levels for Super fund Sites; U.S. Environmental Protection Agency: Washington, DC, USA, 2002. [Google Scholar]
- Li, X.; Bei, E.; Qiu, Y.; Xiao, H.; Wang, J.; Lin, P.; Zhang, X.; Chen, C. Intake of volatile nitrosamines by Chinese residents in different provinces via food and drinking water. Sci. Total Environ. 2021, 754, 142121. [Google Scholar]
- U.S. Environmental Protection Agency. Risk Assessment Guidance for Superfund: Volume III—Part A, Processfor Conducting Probabilistic Risk Assessment; U.S. Environmental Protection Agency: Washington, DC, USA, 2001. [Google Scholar]
- U.S. Department of Energy. The Risk Assessment Information System. Available online: https://rais.ornl.gov/ (accessed on 20 January 2025).
- China National Environmental Monitoring Centre. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Men, C.; Wang, Y.; Liu, R.; Wang, Q.; Miao, Y.; Jiao, L.; Shoaib, M.; Shen, Z. Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere 2021, 270, 129434. [Google Scholar]
- Han, Y.; Du, P.; Cao, J.; Posmentier, E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ. 2006, 355, 176–186. [Google Scholar]
- Men, C.; Liu, R.; Wang, Q.; Guo, L.; Shen, Z. The impact of seasonal varied human activity on characteristics and sources of heavy metals in metropolitan road dusts. Sci. Total Environ. 2018, 637, 844–854. [Google Scholar] [PubMed]
- Norouzi, S.; Khademi, H.; Ayoubi, S.; Cano, A.F.; Acosta, J.A. Seasonal and spatial variations in dust deposition rate and concentrations of dust-borne heavy metals, a case study from Isfahan, central Iran. Atmos. Pollut. Res. 2017, 8, 686–699. [Google Scholar]
- Chen, Y.; Hu, Z.; Bai, H.; Shen, W. Variation in road dust heavy metal concentration, pollution, and health risk with distance from the factories in a city–industry integration area, China. Int. J. Environ. Res. Public Health 2022, 19, 14562. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar]
- Du, B.; Zhou, J.; Lu, B.; Zhang, C.; Li, D.; Zhou, J.; Jiao, S.; Zhao, K.; Zhang, H. Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Sci. Total Environ. 2020, 720, 137585. [Google Scholar]
- Tabelin, C.B.; Igarashi, T.; Villacorte-Tabelin, M.; Park, I.; Opiso, E.M.; Ito, M.; Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies. Sci. Total Environ. 2018, 645, 1522–1553. [Google Scholar]
- Novak, M.; Sipkova, A.; Chrastny, V.; Stepanova, M.; Voldrichova, P.; Veselovsky, F.; Prechova, E.; Blaha, V.; Curik, J.; Farkas, J.J. Cu-Zn isotope constraints on the provenance of air pollution in Central Europe: Using soluble and insoluble particles in snow and rime. Environ. Pollut. 2016, 218, 1135–1146. [Google Scholar]
- Jeong, H.; Ra, K. Multi-isotope signatures (Cu, Zn, Pb) of different particle sizes in road-deposited sediments: A case study from industrial area. J. Anal. Sci. Technol. 2021, 12, 39. [Google Scholar]
- Gunawardena, J.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos. Environ. 2013, 68, 235–242. [Google Scholar]
- Goonetilleke, A.; Wijesiri, B.; Bandala, E.R. Water and Soil Pollution Implications of Road Traffic; Royal Society of Chemistry: Cambridge, UK, 2017. [Google Scholar]
- Bisht, L.; Gupta, V.; Singh, A.; Gautam, A.S.; Gautam, S. Heavy metal concentration and its distribution analysis in urban road dust: A case study from most populated city of Indian state of Uttarakhand. Spat. Spatio-Temporal Epidemiol. 2022, 40, 100470. [Google Scholar]
- Azizi, M.; Faz, A.; Zornoza, R.; Martinez-Martinez, S.; Acosta, J.A. Phytoremediation potential of native plant species in mine soils polluted by metal(loid)s and rare earth elements. Plants 2023, 12, 1219. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-H.; Chen, L.-J.; Yu, L.; Guo, Z.-B.; Shan, C.-Q.; Lin, J.-Q.; Gu, Y.-G.; Yang, Z.-B.; Yang, Y.-X.; Shao, J.-R. Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci. Total Environ. 2017, 586, 1076–1084. [Google Scholar] [CrossRef]
- Trujillo-González, J.M.; Torres-Mora, M.A.; Keesstra, S.; Brevik, E.C.; Jiménez-Ballesta, R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Sci. Total Environ. 2016, 553, 636–642. [Google Scholar] [CrossRef]
- Kamani, H.; Ashrafi, S.D.; Isazadeh, S.; Jaafari, J.; Hoseini, M.; Mostafapour, F.K.; Bazrafshan, E.; Nazmara, S.; Mahvi, A.H. Heavy metal contamination in street dusts with various land uses in Zahedan, Iran. Bull. Environ. Contam. Toxicol. 2015, 94, 382–386. [Google Scholar] [CrossRef]
- Tang, R.; Ma, K.; Zhang, Y.; Mao, Q. The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Geochemistry 2013, 35, 88–98. [Google Scholar] [CrossRef]
- Zheng, N.; Hou, S.; Wang, S.; Sun, S.; An, Q.; Li, P.; Li, X. Health risk assessment of heavy metals in street dust around a zinc smelting plant in China based on bioavailability and bioaccessibility. Ecotoxicol. Environ. Saf. 2020, 197, 110617. [Google Scholar] [CrossRef]
- Kabir, M.H.; Wang, Q.; Rashid, M.H.; Wang, W.; Isobe, Y. Assessment of bioaccessibility and health risks of toxic metals in roadside dust of Dhaka City, Bangladesh. Atmosphere 2022, 13, 488. [Google Scholar] [CrossRef]
- Heidari, M.; Darijani, T.; Alipour, V. Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef]
- Wahab, M.I.A.; Abd Razak, W.M.A.; Sahani, M.; Khan, M.F. Characteristics and health effect of heavy metals on non-exhaust road dusts in Kuala Lumpur. Sci. Total Environ. 2020, 703, 135535. [Google Scholar] [CrossRef]
- Liu, G.; Chen, T.; Cui, J.; Zhao, Y.; Li, Z.; Liang, W.; Sun, J.; Liu, Z.; Xiao, T. Trace Metal (loid) Migration from road dust to local vegetables and tree tissues and the bioaccessibility-based health risk: Impacts of vehicle operation-associated emissions. J. Environ. Res. Public Health 2023, 20, 2520. [Google Scholar] [CrossRef]
- Tang, F.; Li, Z.; Zhao, Y.; Sun, J.; Sun, J.; Liu, Z.; Xiao, T.; Cui, J. Geochemical contamination, speciation, and bioaccessibility of trace metals in road dust of a megacity (Guangzhou) in Southern China: Implications for human health. J. Environ. Res. Public Health 2022, 19, 15942. [Google Scholar]
- Moya, J.; Bearer, C.F.; Etzel, R.A. Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 2004, 113, 996–1006. [Google Scholar] [CrossRef]
- Toma, C.; Manganaro, A.; Raitano, G.; Marzo, M.; Gadaleta, D.; Baderna, D.; Roncaglioni, A.; Kramer, N.; Benfenati, E. Qsar models for human carcinogenicity: An assessment based on oral and inhalation slope factors. Molecules 2020, 26, 127. [Google Scholar] [CrossRef] [PubMed]
Element | Gastric Phase (%) | Intestinal Phase (%) | |
---|---|---|---|
Pb | Area | Mean ± SE | Mean ± SE |
TourAr | 39.2 ± 4.46 a | 8.88 ± 2.95 ab | |
EdAr | 29.1 ± 5.24 a | 4.20 ± 0.70 b | |
ResAr | 39.2 ± 10.6 a | 9.48 ± 1.94 ab | |
CmAr | 36.4 ± 8.12 a | 16.3 ± 2.93 a | |
TrfAr | 40.4 ± 13.1 a | 5.83 ± 2.01 b | |
IndAr | 44.1 ± 7.11 a | 9.79 ± 2.44 ab | |
Total | 38.1 ± 3.74 | 8.38 ± 1.12 | |
Zn | TourAr | 64.8 ± 1.88 ab | 25.9 ± 5.40 a |
EdAr | 70.9 ± 5.39 a | 17.8 ± 1.58 a | |
ResAr | 68.0 ± 5.09 ab | 25.4 ± 6.30 a | |
CmAr | 60.9 ± 4.34 ab | 21.3 ± 2.57 a | |
TrfAr | 57.7 ± 4.34 b | 20.7 ± 2.53 a | |
IndAr | 66.5 ± 4.17 ab | 21.7 ± 1.88 a | |
Total | 64.9 ± 1.89 | 22.0 ± 1.65 | |
Cu | TourAr | 20.5 ± 4.14 ab | 36.3 ± 3.77 a |
EdAr | 22.2 ± 3.95 ab | 28.7 ± 3.51 ab | |
ResAr | 22.9 ± 4.42 ab | 31.8 ± 3.52 a | |
CmAr | 30.1 ± 2.66 a | 18.8 ± 2.48 b | |
TrfAr | 20.5 ± 4.19 ab | 31.1 ± 3.92 ab | |
IndAr | 10.8 ± 3.37 b | 32.8 ± 3.81 a | |
Total | 21.5 ± 1.78 | 30.6 ± 1.60 | |
Cd | TourAr | 92.7 ± 6.38 ab | 65.4 ± 8.74 a |
EdAr | 88.5 ± 11.7 ab | 45.3 ± 2.87 a | |
ResAr | 98.6 ± 8.54 ab | 59.7 ± 7.86 a | |
CmAr | 97.0 ± 8.05 ab | 61.4 ± 13.5 a | |
TrfAr | 78.3 ± 11.1 b | 49.09 ± 8.26 a | |
IndAr | 109 ± 6.15 a | 51.2 ± 7.04 a | |
Total | 92.4 ± 3.98 | 54.0 ± 3.13 |
Elements | RfDing | RfDinh | RfDdermal | Sampling Sites | HQing | HQinh | HQdermal | HI | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Children | Adult | Children | Adult | Children | Adult | Children | Adult | |||||
Pb | 3.50 × 10−3 | 3.52 × 10−3 | 5.25 × 10−4 | TourAr | 2.29 × 10−1 | 1.14 × 10−1 | 6.38 × 10−6 | 2.87 × 10−6 | 2.44 × 10−3 | 6.23 × 10−4 | 2.31 × 10−1 | 1.15 × 10−1 |
EdAr | 2.59 × 10−1 | 1.30 × 10−1 | 7.24 × 10−6 | 3.26 × 10−6 | 2.77 × 10−3 | 7.07 × 10−4 | 2.62 × 10−1 | 1.30 × 10−1 | ||||
ResAr | 4.11 × 10−1 | 2.05 × 10−1 | 1.15 × 10−5 | 5.15 × 10−6 | 4.38 × 10−3 | 1.12 × 10−3 | 4.15 × 10−1 | 2.06 × 10−1 | ||||
CmAr | 1.75 × 10−1 | 8.77 × 10−2 | 4.89 × 10−6 | 2.20 × 10−6 | 1.87 × 10−3 | 4.77 × 10−4 | 1.77 × 10−1 | 8.81 × 10−2 | ||||
TrfAr | 2.71 × 10−1 | 1.35 × 10−1 | 7.55 × 10−6 | 3.40 × 10−6 | 2.89 × 10−3 | 7.37 × 10−4 | 2.74 × 10−1 | 1.36 × 10−1 | ||||
IndAr | 3.25 × 10−1 | 1.62 × 10−1 | 9.06 × 10−6 | 4.08 × 10−6 | 3.47 × 10−3 | 8.85 × 10−4 | 3.28 × 10−1 | 1.63 × 10−1 | ||||
Zn | 3.00 × 10−1 | 3.00 × 10−1 | 6.00 × 10−2 | TourAr | 1.69 × 10−2 | 8.43 × 10−3 | 4.73 × 10−7 | 2.13 × 10−7 | 1.35 × 10−4 | 3.44 × 10−5 | 1.70 × 10−2 | 8.46 × 10−3 |
EdAr | 1.69 × 10−2 | 8.47 × 10−3 | 4.75 × 10−7 | 2.14 × 10−7 | 1.35 × 10−4 | 3.46 × 10−5 | 1.71 × 10−2 | 8.50 × 10−3 | ||||
ResAr | 1.83 × 10−2 | 9.15 × 10−3 | 5.13 × 10−7 | 2.31 × 10−7 | 1.46 × 10−4 | 3.74 × 10−5 | 1.85 × 10−2 | 9.19 × 10−3 | ||||
CmAr | 4.85 × 10−2 | 2.43 × 10−2 | 1.36 × 10−6 | 6.13 × 10−7 | 3.88 × 10−4 | 9.91 × 10−5 | 4.89 × 10−2 | 2.44 × 10−2 | ||||
TrfAr | 2.55 × 10−2 | 1.28 × 10−2 | 7.16 × 10−7 | 3.22 × 10−7 | 2.04 × 10−4 | 5.21 × 10−5 | 2.57 × 10−2 | 1.28 × 10−2 | ||||
IndAr | 1.65 × 10−2 | 8.25 × 10−3 | 4.63 × 10−7 | 2.08 × 10−7 | 1.32 × 10−4 | 3.37 × 10−5 | 1.66 × 10−2 | 8.28 × 10−3 | ||||
Cu | 4.00×10−2 | 4.02×10−2 | 1.20×10−2 | TourAr | 2.31 × 10−2 | 1.15 × 10−2 | 6.45 × 10−7 | 2.90 × 10−7 | 1.23 × 10−4 | 3.14 × 10−5 | 2.32 × 10−2 | 1.16 × 10−2 |
EdAr | 3.11 × 10−2 | 1.56 × 10−2 | 8.69 × 10−7 | 3.91 × 10−7 | 1.66 × 10−4 | 4.24 × 10−5 | 3.13 × 10−2 | 1.56 × 10−2 | ||||
ResAr | 4.23 × 10−2 | 2.11 × 10−2 | 1.18 × 10−6 | 5.31 × 10−7 | 2.26 × 10−4 | 5.76 × 10−5 | 4.25 × 10−2 | 2.12 × 10−2 | ||||
CmAr | 1.23 × 10−1 | 6.15 × 10−2 | 3.43 × 10−6 | 1.54 × 10−6 | 6.56 × 10−4 | 1.67 × 10−4 | 1.24 × 10−1 | 6.16 × 10−2 | ||||
TrfAr | 3.26 × 10−2 | 1.63 × 10−2 | 9.10 × 10−7 | 4.10 × 10−7 | 1.74 × 10−4 | 4.44 × 10−5 | 3.28 × 10−2 | 1.63 × 10−2 | ||||
IndAr | 9.32 × 10−2 | 4.66 × 10−2 | 2.60 × 10−6 | 1.17 × 10−6 | 4.97 × 10−4 | 1.27 × 10−4 | 9.37 × 10−2 | 4.67 × 10−2 | ||||
Cd | 1.00×10−3 | 1.00×10−3 | 5.00×10−5 | TourAr | 1.09 × 10−2 | 5.47 × 10−3 | 3.07 × 10−7 | 1.38 × 10−7 | 3.50 × 10−4 | 8.94 × 10−5 | 1.13 × 10−2 | 5.56 × 10−3 |
EdAr | 8.34 × 10−3 | 4.17 × 10−3 | 2.34 × 10−7 | 1.05 × 10−7 | 2.67 × 10−4 | 6.81 × 10−5 | 8.61 × 10−3 | 4.24 × 10−3 | ||||
ResAr | 7.63 × 10−3 | 3.82 × 10−3 | 2.14 × 10−7 | 9.64 × 10−8 | 2.44 × 10−4 | 6.24 × 10−5 | 7.88 × 10−3 | 3.88 × 10−3 | ||||
CmAr | 1.48 × 10−2 | 7.41 × 10−3 | 4.16 × 10−7 | 1.87 × 10−7 | 4.74 × 10−4 | 1.21 × 10−4 | 1.53 × 10−2 | 7.53 × 10−3 | ||||
TrfAr | 4.70 × 10−3 | 2.35 × 10−3 | 1.32 × 10−7 | 5.94 × 10−8 | 1.50 × 10−4 | 3.84 × 10−5 | 4.85 × 10−3 | 2.39 × 10−3 | ||||
IndAr | 7.24 × 10−3 | 3.62 × 10−3 | 2.03 × 10−7 | 9.14 × 10−8 | 2.32 × 10−4 | 5.91 × 10−5 | 7.47 × 10−3 | 3.68 × 10−3 |
Elements | 95%UCL (mg/kg) | CSFo | IUR (μg/m3)−1 | GIABS | Sampling Sites | LADDing | LADDinh | LADDdermal | CRing | CRinh | CRdermal | CR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb (Lead and Compounds) | 121.7195486 | 0.0085 | 0.000012 | 1 | CmAr | 1.01 × 10−4 | 6.65 × 10−9 | 6.09 × 10−7 | 8.56 × 10−7 | 7.97 × 10−14 | 5.17 × 10−9 | 8.62 × 10−7 |
138.1002814 | EdAr | 1.14 × 10−4 | 7.54 × 10−9 | 6.90 × 10−7 | 9.72 × 10−7 | 9.05 × 10−14 | 5.87 × 10−9 | 9.78 × 10−7 | ||||
218.5271501 | ResAr | 1.81 × 10−4 | 1.19 × 10−8 | 1.09 × 10−6 | 1.54 × 10−6 | 1.43 × 10−13 | 9.29 × 10−9 | 1.55 × 10−6 | ||||
93.31945578 | CmAr | 7.72 × 10−5 | 5.10 × 10−9 | 4.67 × 10−7 | 6.57 × 10−7 | 6.11 × 10−14 | 3.97 × 10−9 | 6.61 × 10−7 | ||||
144.120245 | TrfAr | 1.19 × 10−4 | 7.87 × 10−9 | 7.21 × 10−7 | 1.01 × 10−6 | 9.44 × 10−14 | 6.12 × 10−9 | 1.02 × 10−6 | ||||
172.921536 | IndAr | 1.43 × 10−4 | 9.44 × 10−9 | 8.64 × 10−7 | 1.22 × 10−6 | 1.13 × 10−13 | 7.35 × 10−9 | 1.22 × 10−6 | ||||
Cd (Diet) | 1.66399128 | 0.0018 | 0.025 | TourAr | 1.38 × 10−6 | 9.09 × 10−11 | 8.32 × 10−9 | - | 1.64 × 10−13 | - | 1.64 × 10−13 | |
1.2682386 | EdAr | 1.05 × 10−6 | 6.92 × 10−11 | 6.34 × 10−9 | - | 1.25 × 10−13 | - | 1.25 × 10−13 | ||||
1.16069613 | ResAr | 9.61 × 10−7 | 6.34 × 10−11 | 5.80 × 10−9 | - | 1.14 × 10−13 | - | 1.14 × 10−13 | ||||
2.25412418 | CmAr | 1.87 × 10−6 | 1.23 × 10−10 | 1.13 × 10−8 | - | 2.22 × 10−13 | - | 2.22 × 10−13 | ||||
0.71491635 | TrfAr | 5.92 × 10−7 | 3.90 × 10−11 | 3.57 × 10−9 | - | 7.03 × 10−14 | - | 7.03 × 10−14 | ||||
1.1008246 | IndAr | 9.11 × 10−7 | 6.01 × 10−11 | 5.50 × 10−9 | - | 1.08 × 10−13 | - | 1.08 × 10−13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Shen, Y.; Maurya, P.; Chen, J.; Li, T.; Paz-Ferreiro, J. Spatial Heterogeneity of Heavy Metals Contamination in Urban Road Dust and Associated Human Health Risks. Land 2025, 14, 754. https://doi.org/10.3390/land14040754
Lu H, Shen Y, Maurya P, Chen J, Li T, Paz-Ferreiro J. Spatial Heterogeneity of Heavy Metals Contamination in Urban Road Dust and Associated Human Health Risks. Land. 2025; 14(4):754. https://doi.org/10.3390/land14040754
Chicago/Turabian StyleLu, Huanping, Yong Shen, Pankaj Maurya, Jing Chen, Tingyuan Li, and Jorge Paz-Ferreiro. 2025. "Spatial Heterogeneity of Heavy Metals Contamination in Urban Road Dust and Associated Human Health Risks" Land 14, no. 4: 754. https://doi.org/10.3390/land14040754
APA StyleLu, H., Shen, Y., Maurya, P., Chen, J., Li, T., & Paz-Ferreiro, J. (2025). Spatial Heterogeneity of Heavy Metals Contamination in Urban Road Dust and Associated Human Health Risks. Land, 14(4), 754. https://doi.org/10.3390/land14040754