Cosmic-Ray Neutron Sensor Backpack for Assessing Spatial and Temporal Variations in Soil Water Content in an Agroforestry System in Northern Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Sampling Design, and Analysis
2.2. Portable CRNS Backpack
2.3. Satellite Imagery Data
3. Results
3.1. Soil Properties
3.2. Rainfall Pattern
3.3. Cosmic-Ray Neutron Sensor Soil Water Content
3.4. Comparison of Soil Water Content Measurments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of course-resolution satellite soil moisture products. Rev. Geophys. 2012, 50, RG2002. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, B.; Wang, M. Effects of antecedent soil moisture on runoff and soil erosion in alley cropping systems. Agric. Water Manag. 2007, 94, 54–62. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Yeo, I.Y.; Walker, J.P.; Willgoose, G.R. Estimating catchment scale soil moisture at a high spatial resolution: Integrating remote sensing and machine learning. Sci. Total Environ. 2021, 776, 145924. [Google Scholar] [CrossRef]
- Albergel, C.; De Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar]
- Mohanty, B.P.; Cosh, M.H.; Lakshmi, V.; Montzka, C. Soil Moisture Remote Sensing: State-of-the-Science. Vadose Zone J. 2017, 16, 1–9. [Google Scholar] [CrossRef]
- Mekonnen, D.F. Satellite Remote Sensing for Soil Moisture Estimation: Gumara Catchment, Ethiopia. Master’s Thesis, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands, 2009. [Google Scholar]
- Wang, S.; Chen, H.S.; Fu, Z.; Wang, K. Temporal stability analysis of surface soil water content on two karst hillslopes in southwest China. Environ. Sci. Pollut. Res. 2016, 23, 25267–25279. [Google Scholar] [CrossRef]
- Schönbrodt-Stitt, S.; Ahmadian, N.; Kurtenbach, M.; Conrad, C.; Romano, N.; Bogena, H.R.; Vereecken, H.; Nasta, P. Statistical exploration of SENTINEL-1 data, terrain parameters and in-situ data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem. Front. Water 2021, 3, 655837. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Baatz, R.; Hendricks Franssen, H.J.; Vereecken, H. Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resour. Res. 2013, 49, 5778–5791. [Google Scholar]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Ferre, T.P.A. A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci. 2013, 17, 453–460. [Google Scholar] [CrossRef]
- Zhu, X.; Shao, M.A.; Zeng, C.; Jia, X.; Huang, L.; Zhang, Y.; Zhu, J. Application of cosmic-ray neutron sensing to monitor soil water content in an alpine meadow ecosystem on the northern Tibetan Plateau. J. Hydrol. 2016, 536, 247–254. [Google Scholar] [CrossRef]
- Baroni, G.; Scheiffele, L.M.; Schrön, M.; Ingwersen, J.; Oswald, S.E. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. J. Hydrol. 2018, 564, 873–887. [Google Scholar]
- Gaspar, L.; Franz, T.E.; Catalá, A.; Lizaga, I.; Ramos, M.C.; Navas, A. Combining cosmic-ray neutron sensor and fallout 137Cs to explore the connection of soil water content with soil redistribution in an agroforestry hillslope. Environ. Res. 2023, 233, 116451. [Google Scholar] [CrossRef] [PubMed]
- Montzka, C.; Bogena, H.R.; Zreda, M.G.; Monerris, A.; Morrison, R.; Muddu, S.; Vereecken, H. Validation of spaceborne and modelled surface soil moisture products with Cosmic-Ray Neutron Probes. Remote Sens. 2017, 9, 103. [Google Scholar] [CrossRef]
- González-Sanchis, M.; García-Soro, J.M.; Molina, A.J.; Lidón, A.L.; Bautista, I.; Rouzic, E.; Bogena, H.; Hendricks Franssen, H.J.; del Campo, A.D. Comparison of soil water estimates from cosmic-ray neutron and capacity sensors in a semiarid pine forest: Which is able to better assess the role of environmental conditions and thinning? Front. Water. 2020, 2, 39. [Google Scholar] [CrossRef]
- Bogena, H.R.; Schrön, M.; Jakobi, J.; Ney, P.; Zacharias, S.; Andreasen, M.; Baatz, R.; Boorman, D.; Duygu, B.M.; Eguibar-Galán, M.A.; et al. COSMOS-Europe: A European network of Cosmic-Ray Neutron Soil Moisture Sensors. Earth Syst. Sci. Data Discuss. 2021, 14, 1–33. [Google Scholar]
- Joint FAO. Soil Moisture Mapping with a Portable Cosmic Ray Neutron Sensor (No. IAEA-TECDOC-1845); Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2018. [Google Scholar]
- Heidbüchel, I.; Güntner, A.; Blume, T. Use of cosmic-ray neutron sensors for soil moisture monitoring in forests. Hydrol. Earth Syst. Sci. 2016, 20, 1269–1288. [Google Scholar] [CrossRef]
- Zreda 2012 Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Zreda, M.; Zeng, X.; Zweck, C.; Ferré, T.P. The COsmic-ray Soil Moisture Observing System (COSMOS): A non-invasive, intermediate scale soil moisture measurement network. In Proceedings of the British Hydrological Society’s Third International Symposium: “Role of Hydrology in Managing Consequences of a Changing Global Environment”, Newcastle upon Tyne, UK, 19–23 July 2010. [Google Scholar]
- Jiao, Q.; Zhu, Z.; Du, F. Theory and application of measuring mesoscale soil moisture by cosmic-ray fast neutron probe. 35th International Symposium on Remote Sensing of Environment (ISRSE35). IOP Conf. Ser. Earth Environ. Sci. 2014, 17, 012147. [Google Scholar] [CrossRef]
- Jakobi, J.; Huisman, J.A.; Vereecken, H.; Diekkrüger, B.; Bogena, H.R. Cosmic-ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions. Water Resour. Res. 2018, 54, 7383–7402. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Ferré, T.P.A. Nature’s Neutron Probe: Land Surface Hydrology at an Elusive Scale with Cosmic Rays. Water Resour. Res. 2010, 46, W11505. [Google Scholar] [CrossRef]
- Franz, T.E.; Wahbi, A.; Vreugdenhil, M.; Weltin, G.; Heng, L.; Oismueller, M.; Strauss, P.; Dercon, G.; Desilets, D. Using cosmic-ray neutron probes to monitor landscape scale soil water content in mixed land use agricultural systems. Appl. Environ. Soil Sci. 2016, 2016, 4323742. [Google Scholar]
- Haubrock, S.N.; Chabrillat, S.; Kuhnert, M.; Hostert, P.; Kaufmann, H. Surface soil moisture quantification and validation based on hyperspectral data and field measurements. J. Appl. Remote Sens. 2008, 2, 023552. [Google Scholar] [CrossRef]
- Schrön, M.; Zacharias, S.; Womack, G.; Köhli, M.; Desilets, D.; Oswald, S.E.; Bumberger, J.; Mollenhauer, H.; Kögler, S.; Remmler, P.; et al. Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geosci. Instrum. Method. Data Syst. 2018, 7, 83–99. [Google Scholar]
- Baskan, O.; Kosker, Y.; Erpul, G. Spatial and temporal variation of moisture content in the soil profiles of two different agricultural fields of semi-arid region. Environ. Monit Assess. 2013, 185, 10441–10458. [Google Scholar] [PubMed]
- Gaspar, L.; Lizaga, I.; Navas, A. Spatial distribution of fallout and lithogenic radionuclides controlled by soil carbon and water erosion in an agroforestry South-Pyrenean catchment. Geoderma 2021, 391, 114941. [Google Scholar]
- Valentino, R.; Montrasio, L.; Losi, G.L.; Bittelli, M. An empirical model for the evaluation of the degree of saturation of shallow soils in relation to rainfalls. Can. Geotech. J. 2011, 48, 795–809. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; McCool, D.K.; Yoder, D.C. Predicting soil erosion by water, a guild to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In USDA Agricultural Handbook; No. 703; U.S. Government Printing Office: Washington, DC, USA, 1997. [Google Scholar]
- Poesen, J.; Lavee, H. Rock fragments in topsoils: Significance and processes. Catena 1994, 23, 1–28. [Google Scholar]
- Van Wesemael, B.; Poesen, J.; Kosmas, C.S.; Danalatos, N.G.; Nachtergaele, J. Evaporation from cultivated soils containing rock fragments. J. Hydrol. 1996, 182, 65–82. [Google Scholar]
- Tetegan, M.; Nicoullaud, B.; Baize, D.; Bouthier, A.; Cousin, I. The contribution of rock fragments to the available water content of stony soils: Proposition of new pedotransfer functions. Geoderma 2011, 165, 40–49. [Google Scholar]
- Ly, L.; Franz, T.T.; Robinson, D.A.; Jones, S.B. Measured and Modeled Soil Moisture Compared with Cosmic-Ray Neutron Probe Estimates in a Mixed Forest. Vadose Zone J. 2014, 13, 1–12. [Google Scholar]
- West, H.; Quinn, N.; Horswell, M.; White, P. Assessing vegetation response to soil moisture fluctuation under extreme drought using sentinel-2. Water 2018, 10, 838. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar]
- Said, H.; Mbaye, M.; Heng, L.K.; Weltin, G.; Franz, T.; Dercon, G.; Toloza, A.; Strauss, P.; Rab, G. High-resolution soil moisture retrieval using C-band radar Sentinel-1 and Cosmic-ray neutron sensor data. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 221–225. [Google Scholar]
Survey | Date 2018 | Sensor | Scene ID No. |
---|---|---|---|
S1 | 6 May | S2B | L2A_20180506T105029_N0207_R051_T31TBG_20180509T155709 |
S2 | 16 May | S2B | L2A_20180516T105029_N0207_R051_T31TBG_20180516T125357 |
S3 | 15 June | S2B | L2A_20180615T105029_N0208_R051_T31TBG_20180615T142918 |
S4 | 10 July | S2A | L2A_20180710T105031_N0208_R051_T31TBG_20180710T141216 |
S5 | 20 July | S2B | L2A_20180720T105031_N0208_R051_T31TBG_20180720T135744 |
S6 | 4 August | S2B | L2A_20180804T105019_N0208_R051_T31TBG_20180804T173100 |
S7 | 24 August | S2B | L2A_20180824T105019_N0208_R051_T31TBG_20180824T165733 |
Sites | Use | Depth, | Stones, | Bulk Density, | SOC, | Clay, | Lattice Water, |
---|---|---|---|---|---|---|---|
cm | % | g/cm3 | % | % | g/g | ||
Point 1 | Woodland | 15 | 33.3 | 1.080 | 7.85 | 6.06 | 0.0125 |
Point 2 | Woodland | 20 | 13.3 | 1.030 | 5.80 | 26.10 | 0.0097 |
Point 3 | Woodland | 35 | 46.9 | 1.780 | 3.41 | 15.90 | 0.0249 |
Point 4 | Woodland | 28 | 50.0 | 1.290 | 9.33 | 19.02 | 0.0181 |
Point 5 | Cropland | 47 | 34.8 | 1.400 | 1.30 | 30.73 | 0.0184 |
Point 6 | Woodland | 40 | 30.8 | 1.870 | 3.00 | 19.93 | 0.0147 |
Point 7 | Cropland | 43 | 32.1 | 1.640 | 1.40 | 21.24 | 0.0187 |
Point 8 | Cropland | 45 | 15.4 | 1.620 | 1.61 | 20.36 | 0.0177 |
Point 9 | Cropland | 53 | 16.0 | 1.660 | 1.22 | 25.24 | 0.0114 |
SWC (cm3/cm3) | Neutrons (cpm) | ||||||
---|---|---|---|---|---|---|---|
Survey | Date 2018 | Soil Condition | Points | n | Mean ± SD | Range | Mean ± SD |
S1 | 5 May | Wet | All | 9 | 0.35 ± 0.16 | 0.1460–0.5500 | 22.0 ± 1.6 |
Woodland | 5 | 0.23 ± 0.06 | 0.1460–0.3063 | 23.1 ± 0.4 | |||
Cropland | 4 | 0.51 ± 0.05 | 0.4389–0.5500 | 20.5 ± 1.3 | |||
S2 | 19 May | Wet | All | 9 | 0.32 ± 0.14 | 0.1385–0.5500 | 22.2 ± 1.7 |
Woodland | 5 | 0.24 ± 0.12 | 0.1385–0.4475 | 22.7 ± 1.5 | |||
Cropland | 4 | 0.43 ± 0.09 | 0.3350–0.5500 | 21.6 ± 1.8 | |||
S3 | 17 June | Wet | All | 9 | 0.30 ± 0.12 | 0.1207–0.4619 | 22.9 ± 0.9 |
Woodland | 5 | 0.22 ± 0.07 | 0.1207–0.2784 | 23.4 ± 0.8 | |||
Cropland | 4 | 0.41 ± 0.05 | 0.3364–0.4619 | 22.2 ± 0.5 | |||
S4 | 6 July | Dry | All | 9 | 0.24 ± 0.14 | 0.0894–0.5358 | 24.1 ± 1.8 |
Woodland | 5 | 0.15 ± 0.06 | 0.0894–0.2339 | 24.9 ± 1.8 | |||
Cropland | 4 | 0.35 ± 0.14 | 0.2407–0.5358 | 23.1 ± 1.6 | |||
S5 | 21 July | Dry | All | 9 | 0.20 ± 0.08 | 0.1130–0.3583 | 24.6 ± 0.9 |
Woodland | 5 | 0.14 ± 0.02 | 0.1130–0.1744 | 25.0 ± 0.6 | |||
Cropland | 4 | 0.28 ± 0.06 | 0.2074–0.3583 | 24.1 ± 0.9 | |||
S6 | 5 August | Dry | All | 9 | 0.18 ± 0.11 | 0.0658–0.3640 | 25.4 ± 1.7 |
Woodland | 5 | 0.10 ± 0.04 | 0.0658–0.1576 | 26.4 ± 1.3 | |||
Cropland | 4 | 0.28 ± 0.08 | 0.1715–0.3640 | 24.1 ± 1.3 | |||
S7 | 27 August | Dry | All | 9 | 0.23 ± 0.08 | 0.1245–0.3485 | 24.0 ± 0.7 |
Woodland | 5 | 0.18 ± 0.05 | 0.1245–0.2487 | 24.1 ± 0.2 | |||
Cropland | 4 | 0.29 ± 0.07 | 0.2046–0.3485 | 23.9 ± 1.0 |
(a) | Surveys | Period | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | S1 | S2 | S3 | S4 | S5 | S6 | S7 | p-Value | Dry | Wet | |||
Point 1 | 0.0061 | 4 | 6 | 5 | 2 | 7 | 3 | 1 | 0.0103 | a | b | ||
a | ab | ab | abc | bcd | cd | d | |||||||
Point 2 | 0.0459 | 6 | 4 | 5 | 7 | 3 | 1 | 2 | 0.0023 | a | b | ||
a | ab | ab | ab | b | b | b | |||||||
Point 3 | 0.0123 | 6 | 5 | 7 | 2 | 4 | 1 | 3 | 0.0161 | a | b | ||
a | ab | abc | bc | c | c | c | |||||||
Point 4 | 0.7253 | 4 | 5 | 6 | 3 | 7 | 2 | 1 | 0.1618 | a | a | ||
a | a | a | a | a | a | a | |||||||
Point 5 | 0.0012 | 6 | 7 | 5 | 4 | 2 | 3 | 1 | 0.0000 | a | b | ||
a | ab | ab | ab | bc | cd | d | |||||||
Point 6 | 0.0003 | 6 | 5 | 7 | 4 | 3 | 1 | 2 | 0.0028 | a | b | ||
a | ab | ab | b | b | b | c | |||||||
Point 7 | 0.0242 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0.0012 | a | b | ||
a | ab | ab | ab | bc | bc | c | |||||||
Point 8 | 0.0918 | 5 | 4 | 6 | 7 | 3 | 2 | 1 | 0.0062 | a | b | ||
a | a | a | ab | ab | ab | b | |||||||
Point 9 | 0.0104 | 5 | 7 | 6 | 3 | 4 | 2 | 1 | 0.0137 | a | b | ||
a | ab | ab | bc | c | c | c | |||||||
(b) | Control Points | Land Use | |||||||||||
p-Value | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | p-Value | Wood. | Crop. | |
Survey 1 | 0.0000 | 4 | 2 | 6 | 3 | 1 | 8 | 5 | 7 | 9 | 0.0000 | a | b |
a | ab | ab | ab | b | c | c | c | c | |||||
Survey 2 | 0.0001 | 4 | 1 | 3 | 2 | 5 | 8 | 7 | 6 | 9 | 0.0007 | a | b |
a | ab | ab | ab | bc | c | cd | cd | d | |||||
Survey 3 | 0.0007 | 4 | 2 | 6 | 3 | 1 | 8 | 5 | 7 | 9 | 0.0000 | a | b |
a | ab | abc | bcd | bcd | cde | de | e | e | |||||
Survey 4 | 0.0000 | 4 | 1 | 2 | 6 | 3 | 5 | 8 | 7 | 9 | 0.0001 | a | b |
a | ab | ab | ab | b | b | b | c | d | |||||
Survey 5 | 0.0002 | 4 | 3 | 2 | 6 | 1 | 5 | 8 | 9 | 7 | 0.0000 | a | b |
a | ab | ab | ab | abc | bc | cd | de | e | |||||
Survey 6 | 0.0000 | 6 | 2 | 3 | 4 | 1 | 5 | 8 | 7 | 9 | 0.0000 | a | b |
a | ab | ab | ab | b | b | c | cd | d | |||||
Survey 7 | 0.0019 | 4 | 2 | 6 | 3 | 5 | 1 | 7 | 8 | 9 | 0.0005 | a | b |
a | ab | abc | abc | abc | bcd | cd | d | d |
(a) Spatial Factor: Point Location | (b) Temporal Factor: Survey Day | ||||||
---|---|---|---|---|---|---|---|
Survey | R2 | MAE | p-Value | Point | R2 | MAE | p-Value |
Survey 1 | 86.95 | 0.041 | 0.0000 | Point 6 | 80.15 | 0.042 | 0.0003 |
Survey 6 | 85.84 | 0.033 | 0.0000 | Point 5 | 75.39 | 0.051 | 0.0012 |
Survey 4 | 84.82 | 0.045 | 0.0001 | Point 1 | 68.27 | 0.038 | 0.0061 |
Survey 2 | 80.39 | 0.050 | 0.0001 | Point 9 | 65.39 | 0.049 | 0.0104 |
Survey 5 | 77.23 | 0.035 | 0.0002 | Point 3 | 64.46 | 0.038 | 0.0123 |
Survey 3 | 72.98 | 0.056 | 0.0007 | Point 7 | 60.24 | 0.053 | 0.0242 |
Survey 7 | 69.56 | 0.041 | 0.0019 | Point 2 | 55.63 | 0.032 | 0.0459 |
Point 8 | 49.80 | 0.055 | 0.0918 | ||||
Point 4 | 20.49 | 0.029 | 0.7253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaspar, L.; Franz, T.E.; Navas, A. Cosmic-Ray Neutron Sensor Backpack for Assessing Spatial and Temporal Variations in Soil Water Content in an Agroforestry System in Northern Spain. Land 2025, 14, 744. https://doi.org/10.3390/land14040744
Gaspar L, Franz TE, Navas A. Cosmic-Ray Neutron Sensor Backpack for Assessing Spatial and Temporal Variations in Soil Water Content in an Agroforestry System in Northern Spain. Land. 2025; 14(4):744. https://doi.org/10.3390/land14040744
Chicago/Turabian StyleGaspar, Leticia, Trenton E. Franz, and Ana Navas. 2025. "Cosmic-Ray Neutron Sensor Backpack for Assessing Spatial and Temporal Variations in Soil Water Content in an Agroforestry System in Northern Spain" Land 14, no. 4: 744. https://doi.org/10.3390/land14040744
APA StyleGaspar, L., Franz, T. E., & Navas, A. (2025). Cosmic-Ray Neutron Sensor Backpack for Assessing Spatial and Temporal Variations in Soil Water Content in an Agroforestry System in Northern Spain. Land, 14(4), 744. https://doi.org/10.3390/land14040744