People–Place Relationships in Regenerative Urban Assemblages: Streetscape Composition and Subjective Well-Being of Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Street-Level Imagery
2.2.2. Subjective Well-Being and Other Individual Data
2.2.3. Additional Data
2.3. Image Processing and Feature Extraction
- Object: pole, utility pole, traffic sign front, traffic sign back, traffic sign frame, streetlight, billboard, traffic light, trash can, junction box, car, bus, truck, motorcycle, bicycle;
- Construction: building, wall, fence, rail track, road, sidewalk, curb, guard rail, other barrier;
- Human: person;
- Nature: sky, vegetation, terrain, mountain, water;
- Marking: crosswalk zebra, general;
2.4. Spatial Analysis
2.5. Modeling
- Baseline Model: The first model included only demographic and personal variables, such as age, gender, housing type, subjective socioeconomic status, and self-reported everyday behaviors. This model served as a reference to assess the effect of individual characteristics on subjective well-being.
- Streetscape Composition Model: The second model introduced streetscape composition variables, calculated as the proportion of different landscape elements within predefined network distance thresholds. These elements, extracted through semantic segmentation of street-level images, included vegetation, sky, road, and building, as listed in the previous section.
3. Results
3.1. Subjective Well-Being
3.2. Streetscape Configurations
3.3. Bivariate Analysis
3.4. Ordinal Logistic Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betsill, M.M.; Bulkeley, H. Cities and the multilevel governance of global climate change. In Understanding Global Cooperation: Twenty-Five Years of Research on Global Governance; Mills, K., Stiles, K., Eds.; Brill: Leiden, The Netherlands, 2021; pp. 219–236. [Google Scholar] [CrossRef]
- Hölscher, K.; Frantzeskaki, N. Perspectives on urban transformation research: Transformations in, of, and by cities. Urban Transform. 2021, 3, 2. [Google Scholar] [CrossRef]
- Seto, K.C.; Churkina, G.; Hsu, A.; Keller, M.; Newman, P.W.; Qin, B.; Ramaswami, A. From low-to net-zero carbon cities: The next global agenda. Annu. Rev. Environ. Resour. 2021, 46, 377–415. [Google Scholar] [CrossRef]
- Hamnett, C. The changing social structure of global cities: Professionalisation, proletarianisation or polarisation. Urban Stud. 2021, 58, 1050–1066. [Google Scholar] [CrossRef]
- Vertovec, S. Superdiversity: Migration and Social Complexity; Taylor & Francis: London, UK, 2023. [Google Scholar] [CrossRef]
- Döringer, S.; Uchiyama, Y.; Penker, M.; Kohsaka, R. A meta-analysis of shrinking cities in Europe and Japan. Towards an integrative research agenda. Eur. Plan. Stud. 2020, 28, 1693–1712. [Google Scholar] [CrossRef]
- Lesthaeghe, R. The second demographic transition, 1986–2020: Sub-replacement fertility and rising cohabitation—A global update. Genus 2020, 76, 10. [Google Scholar] [CrossRef]
- Wolff, M.; Wiechmann, T. Urban growth and decline: Europe’s shrinking cities in a comparative perspective 1990–2010. Eur. Urban Reg. Stud. 2018, 25, 122–139. [Google Scholar] [CrossRef]
- Datola, G. Implementing urban resilience in urban planning: A comprehensive framework for urban resilience evaluation. Sustain. Cities Soc. 2023, 98, 104821. [Google Scholar] [CrossRef]
- Nel, D.; du Plessis, C.; Landman, K. Planning for dynamic cities: Introducing a framework to understand urban change from a complex adaptive systems approach. Int. Plan. Stud. 2018, 23, 250–263. [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P. Cities and the Anthropocene: Urban governance for the new era of regenerative cities. Urban Stud. 2020, 57, 1502–1519. [Google Scholar] [CrossRef]
- Thomson, G.; Newman, P. Urban fabrics and urban metabolism–from sustainable to regenerative cities. Resour. Conserv. Recycl. 2018, 132, 218–229. [Google Scholar] [CrossRef]
- DeLanda, M. Assemblage Theory; Edinburgh University Press: Edinburgh, UK, 2016. [Google Scholar]
- Dovey, K.; Rao, F.; Pafka, E. Agglomeration and assemblage: Deterritorialising urban theory. Urban Stud. 2018, 55, 263–273. [Google Scholar] [CrossRef]
- Durose, C.; van Ostaijen, M.; van Hulst, M.; Escobar, O.; Agger, A. Working the urban assemblage: A transnational study of transforming practices. Urban Stud. 2022, 59, 2129–2146. [Google Scholar] [CrossRef]
- Lara-Hernandez, J.A.; Melis, A.; Lehmann, S. Temporary appropriation of public space as an emergence assemblage for the future urban landscape: The case of Mexico City. Future Cities Environ. 2019, 5, 1–22. [Google Scholar] [CrossRef]
- Thwaites, K.; Simpson, J.; Simkins, I. Transitional edges: A conceptual framework for socio-spatial understanding of urban street edges. Urban Des. Int. 2020, 25, 295–309. [Google Scholar] [CrossRef]
- Arai, H.; Ouchi, Y.; Toba, K.; Endo, T.; Shimokado, K.; Tsubota, K.; Matsuo, S.; Mori, H.; Yumura, W.; Yokode, M.; et al. Japan as the front-runner of super-aged societies: Perspectives from medicine and medical care in Japan. Geriatr. Gerontol. Int. 2015, 15, 673–687. [Google Scholar] [CrossRef]
- Levasseur, M.; Généreux, M.; Bruneau, J.F.; Vanasse, A.; Chabot, É.; Beaulac, C.; Bédard, M.M. Importance of proximity to resources, social support, transportation and neighborhood security for mobility and social participation in older adults: Results from a scoping study. BMC Public Health 2015, 15, 503. [Google Scholar] [CrossRef]
- Maresova, P.; Krejcar, O.; Maskuriy, R.; Bakar, N.A.A.; Selamat, A.; Truhlarova, Z.; Horak, J.; Joukl, M.; Vítkova, L. Challenges and opportunity in mobility among older adults–key determinant identification. BMC Geriatr. 2023, 23, 447. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, X.; White, M. A study on street walkability for older adults with different mobility abilities combining street view image recognition and deep learning- The case of Chengxianjie Community in Nanjing (China). Comput. Environ. Urban Syst. 2024, 112, 102151. [Google Scholar] [CrossRef]
- Moran, M.R.; Werner, P.; Doron, I.; HaGani, N.; Benvenisti, Y.; King, A.C.; Winter, S.J.; Sheats, J.L.; Garber, R.; Motro, H.; et al. Exploring the objective and perceived environmental attributes of older adults’ neighborhood walking routes: A mixed methods analysis. J. Aging Phys. Act. 2017, 25, 420–431. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Yap, W.; Chang, J.H.; Biljecki, F. Incorporating networks in semantic understanding of streetscapes: Contextualising active mobility decisions. Environ. Plan. B Urban Anal. City Sci. 2023, 50, 1416–1437. [Google Scholar]
- Diener, E.; Oishi, S.; Tay, L. Advances in subjective well-being research. Nat. Hum. Behav. 2018, 2, 253–260. [Google Scholar]
- Diener, E.; Pressman, S.D.; Hunter, J.; Delgadillo-Chase, D. If, why, and when subjective well-being influences health, and future needed research. Appl. Psychol. Health Well Being 2017, 9, 133–167. [Google Scholar] [CrossRef]
- Steptoe, A.; Deaton, A.; Stone, A.A. Subjective wellbeing, health, and ageing. Lancet 2015, 385, 640–648. [Google Scholar] [PubMed]
- Smardon, R.C. Perception and aesthetics of the urban environment: Review of the role of vegetation. Landsc. Urban Plan. 1988, 15, 85–106. [Google Scholar] [CrossRef]
- Triguero-Mas, M.; Dadvand, P.; Cirach, M.; Martínez, D.; Medina, A.; Mompart, A.; Basagaña, X.; Gražulevičienė, R.; Nieuwenhuijsen, M.J. Natural outdoor environments and mental and physical health: Relationships and mechanisms. Environ. Int. 2015, 77, 35–41. [Google Scholar]
- Zhifeng, W.; Yin, R. The influence of greenspace characteristics and building configuration on depression in the elderly. Build. Environ. 2021, 188, 107477. [Google Scholar]
- Kim, Y. Impacts of the perception of physical environments and the actual physical environments on self-rated health. Int. J. Urban Sci. 2016, 20, 73–87. [Google Scholar]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Izenberg, J.M.; Mujahid, M.S.; Yen, I.H. Health in changing neighborhoods: A study of the relationship between gentrification and self-rated health in the state of California. Health Place 2018, 52, 188–195. [Google Scholar]
- Lamarca, G.A.; Leal, M.D.C.; Sheiham, A.; Vettore, M.V. The association of neighbourhood and individual social capital with consistent self-rated health: A longitudinal study in Brazilian pregnant and postpartum women. BMC Pregnancy Childbirth 2013, 13, 1. [Google Scholar] [CrossRef]
- Soares, J.; Simões, E.J.; Ramos, L.R.; Pratt, M.; Brownson, R.C. Cross-sectional associations of health-related quality of life measures with selected factors: A population-based sample in Recife, Brazil. J. Phys. Act. Health 2010, 7, S229–S241. [Google Scholar] [CrossRef] [PubMed]
- Statistics Bureau of Japan. Available online: https://www.stat.go.jp/english/data/kokusei/2015/final_en/final_en.html (accessed on 9 February 2025).
- Statistics Bureau of Japan. Available online: https://www.e-stat.go.jp/stat-search/files?page=1&toukei=00200241&tstat=000001039591 (accessed on 17 March 2025).
- OCN Real Estate. Available online: https://house.ocn.ne.jp/toshi/detail/13215/ (accessed on 17 March 2025).
- Mapillary. Available online: https://www.mapillary.com/ (accessed on 9 February 2025).
- Inoue, T.; Manabe, R.; Murayama, A.; Koizumi, H. Aggregation of Geospatial Data on “Street Units”: The Smallest Geographical Unit of Urban Places. In Urban Informatics and Future Cities; Geertman, S.C.M., Pettit, C., Goodspeed, R., Staffans, A., Eds.; Springer: Cham, Switzerland, 2021; pp. 501–526. [Google Scholar]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Neuhold, G.; Ollmann, T.; Rota Bulo, S.; Kontschieder, P. The mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 24–27 October 2017. [Google Scholar]
- Kunitachi City. Available online: https://www.city.kunitachi.tokyo.jp/machi/keikaku/9355.html (accessed on 17 March 2025).
Category | Item | Number of Respondents | Proportion (%) |
---|---|---|---|
Age | 75–79 | 312 | 34.1 |
80–84 | 411 | 44.9 | |
85–89 | 148 | 16.2 | |
90–94 | 37 | 4.0 | |
95 or over | 4 | 0.4 | |
Sex | Male | 386 | 42.2 |
Female | 529 | 57.8 | |
Family structure | Living alone | 298 | 32.6 |
Living with a spouse aged 65 or over | 399 | 43.6 | |
Living with a spouse aged under 65 | 9 | 1.0 | |
Living with children | 111 | 12.1 | |
Other | 98 | 10.7 | |
Housing type | Owned single-family detached house | 229 | 25.0 |
Owned a unit in a housing complex | 171 | 18.7 | |
Rental public housing | 406 | 44.4 | |
Rental private detached house | 3 | 0.3 | |
Rental private unit in a housing complex | 92 | 10.1 | |
Company-provided housing | 7 | 0.8 | |
Other | 7 | 0.8 | |
Subjective financial status | Stable | 7 | 0.8 |
Somewhat stable | 43 | 4.7 | |
Neither stable nor unstable | 546 | 59.7 | |
Somewhat unstable | 253 | 27.7 | |
Unstable | 66 | 7.2 | |
Frequency of going out | Five or more times a week | 385 | 42.1 |
Two to four times a week | 414 | 45.2 | |
Once a week | 84 | 9.2 | |
Rarely | 32 | 3.5 | |
Willingness to participate in community activities | Would love to participate | 70 | 7.7 |
May participate | 487 | 53.2 | |
Do not want to participate | 358 | 39.1 | |
Willingness to organize community activities | Would love to organize | 24 | 2.6 |
May organize | 271 | 29.6 | |
Do not want to organize | 620 | 67.8 |
Category | Item | Subjective Well-Being (%) | p-Value | ||
---|---|---|---|---|---|
Low | Mid | High | |||
Sex | Male | 41.7 | 38.3 | 20.0 | 0.0004 |
Female | 33.3 | 35.5 | 31.2 | ||
Family structure | Living alone | 37.6 | 39.6 | 22.8 | 0.6732 |
Living with a spouse aged 65 or over | 37.3 | 34.3 | 28.3 | ||
Living with a spouse aged under 65 | 22.2 | 33.3 | 44.4 | ||
Living with children | 36.0 | 35.1 | 28.8 | ||
Other | 34.7 | 39.8 | 25.5 | ||
Housing type | Owned single-family detached house | 27.5 | 37.6 | 34.9 | 0.0005 |
Owned a unit in a housing complex | 30.4 | 39.8 | 29.8 | ||
Rental public housing | 44.3 | 35.7 | 20.0 | ||
Rental private detached house | 33.3 | 0.0 | 66.7 | ||
Rental private unit in a housing complex | 37.0 | 33.7 | 29.4 | ||
Company-provided housing | 57.1 | 28.6 | 14.3 | ||
Other | 42.9 | 57.1 | 0.0 | ||
Subjective financial status | Stable | 14.3 | 42.9 | 42.9 | <0.0001 |
Somewhat stable | 9.3 | 41.9 | 48.8 | ||
Neither stable nor unstable | 30.4 | 38.1 | 31.5 | ||
Somewhat unstable | 49.4 | 36.4 | 14.2 | ||
Unstable | 62.1 | 22.7 | 15.2 | ||
Frequency of going out | Five or more times a week | 31.2 | 36.4 | 32.5 | <0.0001 |
Two to four times a week | 36.5 | 38.9 | 24.6 | ||
Once a week | 52.4 | 33.3 | 14.3 | ||
Rarely | 68.8 | 21.9 | 9.4 | ||
Willingness to participate in community activities | Would love to participate | 22.9 | 38.6 | 38.6 | 0.0006 |
May participate | 33.3 | 39.8 | 26.9 | ||
Do not want to participate | 44.4 | 32.1 | 23.5 | ||
Willingness to organize community activities | Would love to organize | 20.8 | 36.7 | 26.5 | 0.0056 |
May organize | 29.9 | 40.2 | 29.9 | ||
Do not want to organize | 40.5 | 35.3 | 24.2 |
Characteristics | Degree of Freedom | Wald Chi-Square | p-Value |
---|---|---|---|
Age | 1 | 3.8975 | 0.0484 |
Sex | 1 | 17.7344 | <0.0001 |
Housing type | 6 | 13.0190 | 0.0427 |
Subjective financial status | 3 | 26.7374 | <0.0001 |
Frequency of going out | 4 | 41.7977 | <0.0001 |
Willingness to participate in community activities | 2 | 2.4772 | 0.2898 |
Willingness to organize community activities | 2 | 3.1912 | 0.2028 |
Variable | Model_50 m | Model_100 m | Model_150 m | Model_200 m | Model_250 m | Model_300 m | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Log Value | Wald Chi-Square | Log Value | Wald Chi-Square | Log Value | Wald Chi-Square | Log Value | Wald Chi-Square | Log Value | Wald Chi-Square | Log Value | Wald Chi-Square | |
Age | 0.483 | 1.013 | 1.091 | 3.196 | 1.190 | 3.530 | 1.104 | 3.193 | 1.160 | 3.417 | 0.950 | 2.618 |
Sex | 3.674 | 13.722 ** | 4.247 | 16.052 ** | 4.776 | 18.255 ** | 4.663 | 17.848 ** | 4.893 | 18.771 ** | 4.906 | 18.789 ** |
Housing type | 0.878 | 7.618 | 0.850 | 9.772 | 0.512 | 7.389 | 0.903 | 10.309 | 0.568 | 7.908 | 1.237 | 12.552 |
Frequency of going out | 2.867 | 15.390 ** | 7.237 | 35.141 ** | 6.437 | 31.452 ** | 6.503 | 31.720 ** | 6.007 | 29.328 ** | 6.106 | 29.909 ** |
Subjective financial status | 5.687 | 31.081 ** | 8.311 | 42.930 ** | 9.276 | 46.818 ** | 9.096 | 46.122 ** | 8.417 | 43.020 ** | 7.836 | 40.375 ** |
PC1 | 0.201 | 0.236 | 0.123 | 0.103 | 0.749 | 1.913 | 0.755 | 1.905 | 0.044 | 0.015 | 1.863 | 6.075 * |
PC2 | 1.136 | 3.316 | 0.197 | 0.225 | 1.001 | 2.728 | 0.106 | 0.074 | 0.313 | 0.500 | 0.009 | 0.001 |
Pole | 0.356 | 0.598 | 0.540 | 1.124 | 0.301 | 0.465 | 0.618 | 1.370 | 0.034 | 0.009 | 1.178 | 3.438 |
Utility pole | 2.355 | 7.950 ** | 0.052 | 0.020 | 0.050 | 0.019 | 0.469 | 0.924 | 0.199 | 0.230 | 0.130 | 0.113 |
Traffic sign (front) | 0.299 | 0.451 | 0.067 | 0.033 | 0.287 | 0.430 | 0.928 | 2.452 | 0.092 | 0.058 | 0.022 | 0.004 |
Traffic sign (back) | 0.166 | 0.175 | 0.576 | 1.228 | 0.731 | 1.720 | 0.510 | 1.022 | 0.555 | 1.178 | 0.162 | 0.163 |
Traffic sign (frame) | 1.234 | 3.706 | 1.982 | 6.741 ** | 1.258 | 3.709 | 1.626 | 5.232 * | 0.070 | 0.036 | 0.491 | 0.981 |
Streetlight | 1.299 | 3.562 | 2.078 | 6.921 ** | 2.019 | 6.841 ** | 1.642 | 5.206 * | 0.647 | 1.464 | 0.058 | 0.026 |
Billboard | 0.079 | 0.042 | 1.462 | 4.320 * | 1.822 | 5.851 * | 1.544 | 4.801 * | 0.984 | 2.691 | 0.667 | 1.593 |
Traffic light | 0.316 | 0.504 | 0.231 | 0.305 | 0.145 | 0.135 | 0.844 | 2.164 | 0.654 | 1.526 | 0.207 | 0.257 |
Trash can | 0.104 | 0.074 | 0.109 | 0.082 | 0.287 | 0.416 | 0.003 | 0.000 | 0.151 | 0.143 | 0.335 | 0.541 |
Junction box | 2.596 | 8.826 ** | 1.070 | 3.057 | 0.575 | 1.282 | 0.828 | 2.122 | 0.347 | 0.583 | 0.141 | 0.127 |
Car | 0.089 | 0.056 | 0.060 | 0.026 | 0.264 | 0.356 | 0.468 | 0.882 | 0.318 | 0.489 | 0.149 | 0.142 |
Bus | 1.274 | 3.763 | 1.068 | 3.029 | 1.437 | 4.310 * | 2.351 | 8.039 ** | 0.323 | 0.511 | 0.845 | 2.211 |
Truck | 0.714 | 1.956 | 0.128 | 0.102 | 0.275 | 0.401 | 0.190 | 0.219 | 0.189 | 0.217 | 0.494 | 1.013 |
Motorcycle | 1.309 | 3.824 | 0.885 | 2.380 | 0.451 | 0.866 | 0.779 | 1.888 | 0.046 | 0.015 | 1.404 | 2.990 |
Bicycle | 1.179 | 3.484 | 0.080 | 0.048 | 0.268 | 0.392 | 0.220 | 0.272 | 0.133 | 0.117 | 0.072 | 0.037 |
Wall | 1.264 | 3.545 | 0.431 | 0.796 | 0.362 | 0.632 | 1.892 | 6.284 * | 0.377 | 0.678 | 0.052 | 0.021 |
Fence | 0.334 | 0.545 | 0.401 | 0.722 | 0.138 | 0.121 | 0.311 | 0.476 | 0.336 | 0.556 | 1.738 | 5.513 * |
Rail track | 1.291 | 3.833 | 1.338 | 4.196 * | 0.713 | 1.789 | 0.176 | 0.188 | 0.331 | 0.568 | 0.126 | 0.101 |
Sidewalk | 1.811 | 5.678 * | 0.265 | 0.367 | 0.150 | 0.140 | 0.938 | 2.394 | 1.307 | 3.788 | 0.214 | 0.261 |
Curb | 1.452 | 4.375 * | 0.098 | 0.063 | 0.296 | 0.453 | 0.244 | 0.317 | 0.147 | 0.138 | 0.774 | 1.915 |
Guard rail | 0.262 | 0.364 | 0.323 | 0.527 | 0.136 | 0.124 | 2.291 | 7.938 ** | 0.142 | 0.136 | 0.221 | 0.275 |
Other barriers | 0.729 | 1.674 | 1.030 | 2.771 | 2.176 | 7.312 ** | 1.544 | 4.990 * | 0.492 | 0.999 | 0.904 | 2.496 |
Person | 0.053 | 0.021 | 0.011 | 0.001 | 0.182 | 0.200 | 0.297 | 0.447 | 0.910 | 2.403 | 0.214 | 0.268 |
Terrain | 1.694 | 5.126 * | 0.756 | 1.838 | 0.555 | 1.187 | 0.096 | 0.063 | 0.322 | 0.507 | 0.178 | 0.189 |
Mountain | 0.307 | 0.446 | 0.071 | 0.037 | 0.098 | 0.064 | 0.024 | 0.005 | 0.055 | 0.023 | 0.526 | 1.080 |
Water | 1.394 | 3.457 | 0.059 | 0.024 | 0.032 | 0.008 | 0.807 | 1.997 | 0.485 | 0.944 | 0.233 | 0.305 |
Crosswalk | 0.195 | 0.218 | 0.605 | 1.348 | 1.765 | 5.868 * | 3.021 | 10.893 ** | 0.312 | 0.499 | 1.569 | 5.003 * |
Marking (general) | 1.804 | 5.745 * | 0.436 | 0.804 | 1.071 | 2.967 | 1.165 | 3.287 | 0.943 | 2.510 | 0.233 | 0.296 |
Statistical details | ||||||||||||
NLL | 648.81 | 874.19 | 905.24 | 902.53 | 914.97 | 911.47 | ||||||
AICc | 1398.92 | 1847.79 | 1909.69 | 1904.26 | 1929.14 | 1922.15 | ||||||
NR2 | 0.2227 | 0.1975 | 0.2011 | 0.2066 | 0.1812 | 0.1884 | ||||||
AUC (mid) | 0.7442 | 0.7219 | 0.7211 | 0.7288 | 0.7099 | 0.7149 | ||||||
AUC (high) | 0.7161 | 0.7197 | 0.7254 | 0.7230 | 0.7116 | 0.7159 |
Model_50 m | Model_100 m | Model_150 m | Model_200 m | Model_250 m | Model_300 m | |
---|---|---|---|---|---|---|
PC1 | 0.003 | |||||
PC2 | ||||||
Pole | ||||||
Utility pole | 9.728 | |||||
Traffic sign (front) | ||||||
Traffic sign (back) | ||||||
Traffic sign (frame) | 0.075 | 0.007 | ||||
Streetlight | 8.370 | 12.613 | 9.202 | |||
Billboard | 0.087 | 0.098 | 0.088 | |||
Traffic light | ||||||
Trash can | ||||||
Junction box | 0.079 | |||||
Car | ||||||
Bus | 4.080 | 10.591 | ||||
Truck | ||||||
Motorcycle | ||||||
Bicycle | ||||||
Wall | 41.619 | |||||
Fence | 0.072 | |||||
Rail track | 4.929 | |||||
Sidewalk | 5.375 | |||||
Curb | 0.121 | |||||
Guard rail | 282.808 | |||||
Other barriers | 0.094 | 0.113 | ||||
Person | ||||||
Terrain | 6.598 | |||||
Mountain | ||||||
Water | ||||||
Crosswalk | 0.212 | 0.056 | 24.751 | |||
Marking (general) | 5.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inoue, T.; Manabe, R.; Murayama, A.; Koizumi, H. People–Place Relationships in Regenerative Urban Assemblages: Streetscape Composition and Subjective Well-Being of Older Adults. Land 2025, 14, 680. https://doi.org/10.3390/land14040680
Inoue T, Manabe R, Murayama A, Koizumi H. People–Place Relationships in Regenerative Urban Assemblages: Streetscape Composition and Subjective Well-Being of Older Adults. Land. 2025; 14(4):680. https://doi.org/10.3390/land14040680
Chicago/Turabian StyleInoue, Takuo, Rikutaro Manabe, Akito Murayama, and Hideki Koizumi. 2025. "People–Place Relationships in Regenerative Urban Assemblages: Streetscape Composition and Subjective Well-Being of Older Adults" Land 14, no. 4: 680. https://doi.org/10.3390/land14040680
APA StyleInoue, T., Manabe, R., Murayama, A., & Koizumi, H. (2025). People–Place Relationships in Regenerative Urban Assemblages: Streetscape Composition and Subjective Well-Being of Older Adults. Land, 14(4), 680. https://doi.org/10.3390/land14040680