Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets for the Study Area
2.2. Kmlr Modeling
2.3. Kmlr Modification Approaches
2.3.1. High-Resolution Satellite Data in Kmlr
- Replace STATSGO soil data with satellite-derived soil moisture data.
- Process the satellite-derived soil moisture data for integrating into GIS with spatial compatibility.
- Integrate the satellite-derived soil moisture data into ArcGIS (which operates on GIS principles) and superimpose it for the study area boundary.
- Analyze the integrated data and generate spatially changing soil moisture data, AWC, for the study area.
- Incorporate AWC data into the SWAT model to estimate the K-factors and SY.
2.3.2. Dynamic C-Factors in Kmlr
- Acquire high-resolution satellite imagery of enhanced vegetation index (EVI), fraction of photosynthetically active radiation (SR), and leaf area index (LAI) to develop the dynamic C-factor, Cdynamic, functionality for the study area.
- Process EVI, SR, and LAI data for integration into GIS with spatial compatibility.
- Integrate EVI, SR, LAI, and the developed AWC data into ArcGIS and superimpose it for the study area boundary.
- Calculate Cdynamic for the HRUs and subbasins of the study area.
- Modify the Kmlr model by incorporating the Cdynamic estimates.
- Incorporate the modified Kmlr model estimates into the SWAT model to estimate the SY.
2.3.3. Downscaled Satellite Data in Kmlr
- Obtain downscaled satellite imagery of soil moisture from Soil Moisture Active Passive (SMAP).
- Refine spatial scales of SMAP data using the tool GeoDa and resampling methods.
- Integrate the refined SMAP data into ArcGIS and superimpose it for the study area boundary.
- Incorporate SMAP data generated in Step 3 and Cdynamic estimates together to modify the Kmlr model.
- Incorporate the modified Kmlr model estimates into the SWAT model to estimate the SY.
2.4. Sediment Yield Predictions
2.5. Erosive Hotspots
3. Results
3.1. Kmlr Model Modification Results
3.1.1. Kmlr-Sat Modeling Using High-Resolution Satellite Data
3.1.2. Kmlr-c Modeling Using Dynamic C-Factors
3.1.3. Kmlr-dsat Modeling Using Downscaled Satellite Data
3.2. Results of Descriptive Statistics of Kmlr Model
3.3. Results of Descriptive Statistics of Modified Kmlr Models
4. Discussions
4.1. Predictions of Kmlr Versus KUSLE
4.2. KUSLE and Kmlr Effects on Sediment Yield Predictions
4.3. Spatial Effects of K-Factors on Sediment Yields
4.4. Validation of Sediment Yield Predictions: KUSLE vs. Kmlr-c
4.5. Sediment Yield Predictions and Soil Loss Representation
4.6. Categorization of Erosive Hotspots
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef] [PubMed]
- Pierce, F.J.; Lal, R. Monitoring the impact of soil erosion on crop productivity. In Soil Erosion Research Methods; Routledge: London, UK, 2017; pp. 235–263. [Google Scholar]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Preetha, P.P.; Johns, M. A review of recent water quality assessments in watersheds of southeastern United States using continuous time models. Glob. J. Eng. Sci. 2022, 9, 1–4. [Google Scholar] [CrossRef]
- Steinhoff-Knopp, B.; Kuhn, T.K.; Burkhard, B. The impact of soil erosion on soil-related ecosystem services: Development and testing a scenario-based assessment approach. Environ. Monit. Assess. 2021, 193 (Suppl. S1), 274. [Google Scholar] [CrossRef] [PubMed]
- Wischmeier, W.H. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains, Guide for Selection of Practices for Soil and Water Conservation; United States Government Printing Office: Washington, DC, USA, 1965.
- Römkens, M.J.M.; Young, R.A.; Poesen, J.W.A.; McCool, D.K.; El-Swaify, S.A.; Bradford, J.M. Soil erodibility factor (K). In Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., Eds.; Agric. HB: Washington, DC, USA, 1997; pp. 65–99. [Google Scholar]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Auerswald, K.; Fiener, P.; Martin, W.; Elhaus, D. Use and misuse of the K factor equation in soil erosion modeling: An alternative equation for determining USLE nomograph soil erodibility values. Catena 2014, 118, 220–225. [Google Scholar] [CrossRef]
- Merritt, W.S.; Letcher, R.A.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Lin, B.S.; Chen, C.K.; Thomas, K.; Hsu, C.K.; Ho, H.C. Improvement of the K-factor of USLE and soil erosion estimation in Shihmen reservoir watershed. Sustainability 2019, 11, 355. [Google Scholar] [CrossRef]
- Lal, R.A.T.T.A.N. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Rajbanshi, J.; Bhattacharya, S. Assessment of soil erosion, sediment yield and basin specific controlling factors using RUSLE-SDR and PLSR approach in Konar river basin, India. J. Hydrol. 2020, 587, 124935. [Google Scholar] [CrossRef]
- Andualem, T.G.; Hewa, G.A.; Myers, B.R.; Peters, S.; Boland, J. Erosion and sediment transport modeling: A systematic review. Land 2023, 12, 1396. [Google Scholar] [CrossRef]
- Renard, K.G.; Ferreira, V.A. RUSLE model description and database sensitivity. J. Environ. Qual. 1993, 22, 458–466. [Google Scholar] [CrossRef]
- Preetha, P.P.; Joseph, N.; Narasimhan, B. Quantifying surface water and ground water interactions using a coupled SWAT_FEM model: Implications of management practices on hydrological processes in irrigated river basins. Water Resour. Manag. 2021, 35, 2781–2797. [Google Scholar] [CrossRef]
- Gonzalez, M.O.; Preetha, P.; Kumar, M.; Clement, T.P. Comparison of data-driven groundwater recharge estimates with a process-based model for a river basin in the southeastern USA. J. Hydrol. Eng. 2023, 28, 04023019. [Google Scholar] [CrossRef]
- Preetha, P.P.; Maclin, K. Evaluation of Hydrogeological Models and Big Data for Quantifying Groundwater Use in Regional River Systems. In Environmental Processes and Management: Tools and Practices for Groundwater; Springer International Publishing: Cham, Switzerland, 2023; pp. 189–206. [Google Scholar]
- Admas, M.; Melesse, A.M.; Abate, B.; Tegegne, G. Soil erosion, sediment yield, and runoff modeling of the megech watershed using the GeoWEPP model. Hydrology 2022, 9, 208. [Google Scholar] [CrossRef]
- Worku, Y.A.; Moges, A.; Kendie, H. Comparison of SWAT and WEPP for Modeling Annual Runoff and Sediment Yield in Agewu-Mariyam Watershed, Northern Ethiopia. Int. J. Food Agric. Nat. Resour. 2024, 5, 104–113. [Google Scholar] [CrossRef]
- Meshram, S.G.; Singh, V.P.; Kisi, O.; Karimi, V.; Meshram, C. Application of artificial neural networks, support vector machine and multiple model-ANN to sediment yield prediction. Water Resour. Manag. 2020, 34, 4561–4575. [Google Scholar] [CrossRef]
- Essam, Y.; Huang, Y.F.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting suspended sediment load in Peninsular Malaysia using support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 302. [Google Scholar] [CrossRef]
- Hu, J.; Miao, C.; Zhang, X.; Kong, D. Retrieval of suspended sediment concentrations using remote sensing and machine learning methods: A case study of the lower Yellow River. J. Hydrol. 2023, 627, 130369. [Google Scholar] [CrossRef]
- Paulista, R.S.D.; de Almeida, F.T.; de Souza, A.P.; Hoshide, A.K.; de Abreu, D.C.; da Silva Araujo, J.W.; Martim, C.C. Estimating Suspended Sediment Concentration using Remote Sensing for the Teles Pires River, Brazil. Sustainability 2023, 15, 7049. [Google Scholar] [CrossRef]
- Qi, L.; Zhou, Y.; Van Oost, K.; Ma, J.; van Wesemael, B.; Shi, P. High-resolution soil erosion mapping in croplands via Sentinel-2 bare soil imaging and a two-step classification approach. Geoderma 2024, 446, 116905. [Google Scholar] [CrossRef]
- Sotiri, K.; Hilgert, S.; Duraes, M.; Armindo, R.A.; Wolf, N.; Scheer, M.B.; Kishi, R.; Pakzad, K.; Fuchs, S. To what extent can a sediment yield model be trusted? A case study from the Passauna Catchment, Brazil. Water 2021, 13, 1045. [Google Scholar] [CrossRef]
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R) USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Swarnkar, S.; Tripathi, S.; Sinha, R. Understanding hydrogeomorphic and climatic controls on soil erosion and sediment dynamics in large Himalayan basins. Sci. Total Environ. 2021, 795, 148972. [Google Scholar] [CrossRef] [PubMed]
- Preetha, P.; Al-Hamdan, A. A union of dynamic hydrological modeling and satellite remotely-sensed data for spatiotemporal assessment of sediment yields. Remote Sens. 2022, 14, 400. [Google Scholar] [CrossRef]
- Qi, J.; Li, S.; Yang, Q.; Xing, Z.; Meng, F.R. SWAT setup with long-term detailed landuse and management records and modification for a micro-watershed influenced by freeze-thaw cycles. Water Resour. Manag. 2017, 31, 3953–3974. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Li, Z.; Ke, L.; Li, Q.; Fan, J.; Wang, X. Research on Soil Erosion Based on Remote Sensing Technology: A Review. Agriculture 2024, 15, 18. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of remote sensing for soil measurements and applications: A comprehensive review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Shiny, R.; Geetha, N.; Vijith, H.J.E.E.S. Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: A case study of Siruvani river watershed in Attapady valley, Kerala, India. Environ. Earth Sci. 2011, 64, 965–972. [Google Scholar] [CrossRef]
- Ayalew, D.A.; Deumlich, D.; Šarapatka, B.; Doktor, D. Quantifying the sensitivity of NDVI-based C factor estimation and potential soil erosion prediction using Spaceborne earth observation data. Remote Sens. 2020, 12, 1136. [Google Scholar] [CrossRef]
- Zhao, C.; Shao, M.A.; Jia, X.; Nasir, M.; Zhang, C. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China. Catena 2016, 143, 1–6. [Google Scholar] [CrossRef]
- Ramos, T.B.; Darouich, H.; Gonçalves, M.C. Development and functional evaluation of pedotransfer functions for estimating soil hydraulic properties in Portuguese soils: Implications for soil water dynamics. Geoderma Reg. 2023, 35, e00717. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Qin, S.; Lin, L.; Wang, X.; Cornelis, W. Evaluating ensemble learning in developing pedotransfer functions to predict soil hydraulic properties. J. Hydrol. 2024, 640, 131658. [Google Scholar] [CrossRef]
- Wang, W.; Huang, D.; Wang, X.G.; Liu, Y.R.; Zhou, F. Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrol. Earth Syst. Sci. 2011, 15, 1699–1712. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; dos Santos, N.V.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; de Sousa Mendes, W.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Jackson, T.J.; Bindlish, R.; Cosh, M.H.; Zhao, T.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Moran, M.S.; Goodrich, D.C.; Kerr, Y.H.; et al. Validation of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1530–1543. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Groll, M. Estimation of soil erosion and sediment yield concentration across the Kolleru Lake catchment using GIS. Environ. Earth Sci. 2021, 80, 161. [Google Scholar] [CrossRef]
- Yadav, A.; Alam, M.A.; Suryavanshi, S. Daily sediment yield prediction using hybrid machine learning approach. Int. J. Environ. Clim. Change 2023, 13, 143–157. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Foster, G.R.; Lane, L.J.; Nowlin, J.D.; Laflen, J.M.; Young, R.A. Estimating erosion and sediment yield on field-sized areas. Trans. ASAE 1981, 24, 1253–1262. [Google Scholar] [CrossRef]
- Flacke, W.; Auerswald, K.; Neufang, L. Combining a modified Universal Soil Loss Equation with a digital terrain model for computing high resolution maps of soil loss resulting from rain wash. Catena 1990, 17, 383–397. [Google Scholar] [CrossRef]
- Williams, J.R. Sediment-yield prediction with universal equation using runoff energy factor. In Present and Prospective Technology for Predicting Sediment Yield and Sources, Proceedings of the Sediment-Yield Workshop, USDA Sedimentation Laboratory, Oxford, MS, USA, 28–30 November 1972; Agricultural Research Service, US Department of Agriculture: Stoneville, MS, USA, 1975; Volume 40, p. 244. [Google Scholar]
- Kinnell, P.I.A.; Risse, L.M. USLE-M: Empirical modeling rainfall erosion through runoff and sediment concentration. Soil Sci. Soc. Am. J. 1998, 62, 1667–1672. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Preetha, P.P.; Al-Hamdan, A.Z. Multi-level pedotransfer modification functions of the USLE-K factor for annual soil erodibility estimation of mixed landscapes. Model. Earth Syst. Environ. 2019, 5, 767–779. [Google Scholar] [CrossRef]
- Preetha, P.; Hasan, M. Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios. Land 2023, 12, 938. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z.; Anderson, M.D. Assessment of climate variability and short-term land use land cover change effects on water quality of Cahaba River Basin. Int. J. Hydrol. Sci. Technol. 2021, 11, 54–75. [Google Scholar] [CrossRef]
- Mednick, A.C. Does soil data resolution matter? State Soil Geographic database versus Soil Survey Geographic database in rainfall-runoff modeling across Wisconsin. J. Soil Water Conserv. 2010, 65, 190–199. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Synergy of remotely sensed data in spatiotemporal dynamic modeling of the crop and cover management factor. Pedosphere 2022, 32, 381–392. [Google Scholar] [CrossRef]
- Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Developing nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositions. J. Environ. Sci. Health A 2020, 55, 615–628. [Google Scholar] [CrossRef]
- Preetha, P.P.; Al-Hamdan, A.Z. Integrating finite-element-model and remote-sensing data into SWAT to estimate transit times of nitrate in groundwater. Hydrogeol. J. 2020, 28, 2187–2205. [Google Scholar] [CrossRef]
- Preetha, P.P.; Shirani-Bidabadi, N.; Al-Hamdan, A.Z.; Anderson, M. A methodical assessment of floodplains in mixed land covers encompassing bridges in Alabama state: Implications of spatial land cover characteristics on flood vulnerability. Water Resour. Manag. 2021, 35, 1603–1618. [Google Scholar] [CrossRef]
Dataset | Sources | Data Type | Spatial Resolution | Temporal Resolution | Details |
---|---|---|---|---|---|
Digital Elevation Models | Web GIS | Raster | 30 m | Yearly, 2001–2011 | Supplies elevation data for analyzing terrain and delineating watersheds |
Land Cover | United States Geological Survey (USGS) | Raster | 30 m | Yearly, 2001–2011 | Comprises 8 land use types, which are utilized to model the impacts of land cover on hydrology |
Soil | United States Department of Agriculture (USDA) | Raster | 60 m | Yearly, 2001–2011 | Contains data on 5 soil types with hydrological properties, crucial for understanding soil–water interactions |
Meteorology | U.S. National Weather Service | Gridded Data | 1 km | Yearly, 2001–2011 | Provides data on temperature, precipitation, wind speed, solar radiation, and relative humidity, which were used in Arc SWAT’s weather generator |
Hydrology | United States Geological Survey (USGS) | Gridded Data | 1 km | Monthly, 2001–2011 | Offers surface runoff and sediment concentration data from hydrological stations (Silver Hill and Loxley River) |
Crop Management Factor | Remote Sensed MODIS Data | Raster | 250 m | Yearly, 2001–2011 | Supplies crop management data that reflect land use and agricultural practices influencing hydrological processes |
Descriptive Statistics | AWC (%) | Psoil (mm/h) | BD (g/cm3) | LSUSLE | C-Factor |
---|---|---|---|---|---|
Mean | 0.33 | 58.18 | 1.04 | 3.12 | 0.386 |
Minimum | 0.11 | 27.67 | 0.98 | 0.65 | 0 |
Maximum | 0.69 | 650 | 1.53 | 15.11 | 1 |
Descriptive Statistics | AWC (%) | Psoil (mm/h) | BD (g/cm3) | EVI | SR (%) | LAI (%) | A (%) | S (%) |
---|---|---|---|---|---|---|---|---|
Mean | 0.39 | 58.18 | 1.04 | 0.33 | 0.85 | 1.55 | 0.286 | 3.54 |
Minimum | 0.13 | 27.67 | 0.98 | 0.11 | 0.26 | 0.3 | 0.0013 | 0.74 |
Maximum | 0.73 | 650 | 1.53 | 0.6 | 1 | 10 | 0.699 | 13.78 |
Subbasin Number | HRU Number | HRU Area (ha) | Landuse | Kmlr-c | SY (Kmlr-c) (ton/ha) | SY (KUSLE) (ton/ha) | Difference in Soil Loss |
---|---|---|---|---|---|---|---|
7 | 36 | 1366.19 | Wetland | 0.0572 | 1.337 | 2.229 | 0.892 |
6 | 32 | 1536.97 | Wetland | 0.113 | 3.936 | 3.578 | −0.357 |
6 | 28 | 1271.14 | Forest | 0.1159 | 0.005 | 0.004 | −0.001 |
2 | 11 | 1676.87 | Wetland | 0.1165 | 15.595 | 12.994 | −2.6 |
2 | 8 | 3686.9 | Hay | 0.1177 | 0.016 | 0.014 | −0.003 |
4 | 22 | 712.35 | Wetland | 0.1193 | 7.176 | 5.979 | −1.196 |
2 | 6 | 2695.56 | Forest | 0.1194 | 0.006 | 0.005 | −0.001 |
4 | 18 | 819.7 | Forest | 0.1222 | 0.006 | 0.005 | −0.001 |
7 | 35 | 1366.19 | Wetland | 0.1247 | 22.861 | 45.75 | 22.889 |
7 | 33 | 829.77 | Hay | 0.1259 | 0.136 | 0.251 | 0.115 |
6 | 31 | 1536.97 | Wetland | 0.1264 | 29.397 | 54.344 | 24.947 |
6 | 29 | 2724.73 | Hay | 0.1276 | 0.104 | 0.194 | 0.09 |
7 | 34 | 2609.36 | Agriculture | 0.1286 | 8.099 | 14.652 | 6.552 |
6 | 27 | 1271.14 | Forest | 0.1293 | 0.099 | 0.183 | 0.084 |
2 | 10 | 1676.87 | Wetland | 0.1299 | 69.776 | 129.004 | 59.228 |
5 | 23 | 2477.26 | Hay | 0.1302 | 0.231 | 0.428 | 0.196 |
6 | 30 | 2283.32 | Agriculture | 0.1303 | 15.366 | 27.576 | 12.21 |
2 | 7 | 3686.9 | Hay | 0.1311 | 0.17 | 0.313 | 0.144 |
3 | 15 | 914.17 | Wetland | 0.1314 | 55.264 | 102.171 | 46.907 |
3 | 13 | 2464.32 | Hay | 0.1326 | 0.163 | 0.302 | 0.139 |
4 | 21 | 712.35 | Wetland | 0.1327 | 37.321 | 68.995 | 31.674 |
2 | 5 | 2695.56 | Forest | 0.1328 | 0.188 | 0.348 | 0.16 |
5 | 25 | 3525.72 | Agriculture | 0.1329 | 15.645 | 27.566 | 11.921 |
4 | 16 | 613.8 | Urban | 0.1334 | 1.962 | 3.604 | 1.642 |
2 | 9 | 4170.06 | Agriculture | 0.1338 | 12.548 | 22.531 | 9.983 |
4 | 19 | 1295.96 | Hay | 0.1339 | 0.119 | 0.22 | 0.101 |
1 | 4 | 2040.65 | Wetland | 0.1343 | 69.024 | 127.612 | 58.588 |
3 | 12 | 1261.68 | Forest | 0.1343 | 0.174 | 0.32 | 0.146 |
3 | 14 | 2933.56 | Agriculture | 0.1353 | 13.477 | 22.456 | 8.978 |
4 | 17 | 819.7 | Forest | 0.1356 | 0.105 | 0.181 | 0.076 |
4 | 20 | 711.38 | Agriculture | 0.1366 | 19.935 | 33.742 | 13.807 |
1 | 2 | 5924.73 | Forest | 0.1372 | 0.181 | 0.31 | 0.129 |
1 | 3 | 2040.65 | Wetland | 0.2362 | 103.865 | 103.865 | 0 |
1 | 1 | 5924.73 | Forest | 0.2391 | 0.201 | 0.201 | 0 |
5 | 24 | 2477.26 | Hay | 0.2523 | 0.309 | 0.247 | −0.062 |
5 | 26 | 3525.72 | Agriculture | 0.255 | 20.315 | 16.45 | −3.865 |
Total | 525.112 | 828.624 | 303.512 |
Erosion Categories | Kmlr-c range (ton . acre hour per acre feet ton inch) | Area Land Use (ha) | Area Soil (ha) | Area Slope (ha) | Soil Loss (ton/ha) |
---|---|---|---|---|---|
Very Low | 0.00–0.05 | 1366.19 | 279.1 | 279.1 | 0.2 |
Low | 0.05–0.15 | 62,945.64 | 42,523.68 | 42,523.68 | 492.48 |
Medium | 0.15–0.25 | 7965.38 | 5655.56 | 5655.56 | 8.24 |
High | 0.25–0.30 | 6002.99 | 2087.8 | 2087.8 | 24.2 |
Total | 78,280.2 | 50,546.15 | 50,546.15 | 525.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preetha, P.; Joseph, N. Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management. Land 2025, 14, 657. https://doi.org/10.3390/land14030657
Preetha P, Joseph N. Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management. Land. 2025; 14(3):657. https://doi.org/10.3390/land14030657
Chicago/Turabian StylePreetha, Pooja, and Naveen Joseph. 2025. "Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management" Land 14, no. 3: 657. https://doi.org/10.3390/land14030657
APA StylePreetha, P., & Joseph, N. (2025). Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management. Land, 14(3), 657. https://doi.org/10.3390/land14030657