Effectiveness of Torrential Erosion Control Structures (Check Dams) Under Post-Fire Conditions—The Importance of Immediate Construction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area—Seich Sou Forest
2.2. Check Dams’ Field Recording and Dimensioning
2.3. Estimation of Check Dams’ Effective Capacity and Total Retained Sediments
2.4. Sediment Sample Collection and Bulk Density Calculation
3. Results
3.1. Effective Capacity of Check Dams
3.2. Total Volume of Sediment Retained Behind Each Check Dam Until 2022
4. Discussion
4.1. Check Dam Effectiveness to Retain Sediment Transport
4.2. The Significance of Timely Construction of Check Dams
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A Review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a View to Increasing Its Global Applicability and Improving Soil Loss Estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [Google Scholar] [CrossRef]
- Morgan, R.P.C. Soil Erosion and Conservation, 2nd ed.; Wiley: Harlow, UK; New York, NY, USA, 1995. [Google Scholar]
- Foster, G.R. Modeling the Erosion Process. In Hydrologic Modeling of Small Watersheds; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1982; pp. 297–380. [Google Scholar]
- Boix-Fayos, C.; de Vente, J.; Martínez-Mena, M.; Barberá, G.G.; Castillo, V. The Impact of Land Use Change and Check-Dams on Catchment Sediment Yield. Hydrol. Process 2008, 22, 4922–4935. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Piégay, H.; Landon, N. Channel Response to Increased and Decreased Bedload Supply from Land Use Change: Contrasts between Two Catchments. Geomorphology 2002, 45, 35–51. [Google Scholar] [CrossRef]
- Kastridis, A.; Margiorou, S.; Sapountzis, M. Check-Dams and Silt Fences: Cost-Effective Methods to Monitor Soil Erosion under Various Disturbances in Forest Ecosystems. Land 2022, 11, 2129. [Google Scholar] [CrossRef]
- Kastridis, A.; Margiorou, S.; Sapountzis, M. Post-Fire Soil Erosion: Two Years of Monitoring—First Time Detected Implications between Extremely Intense Consecutive Rainfall Events and Erosion Rates. Catena 2024, 243, 108194. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef]
- Panagos, P.; Borrelli, P.; Poesen, J. Soil Loss Due to Crop Harvesting in the European Union: A First Estimation of an Underrated Geomorphic Process. Sci. Total Environ. 2019, 664, 487–498. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Bento, C.P.M.; Ferreira, C.S.S.; Ferreira, A.J.D.; Stoof, C.R.; Urbanek, E.; Walsh, R.P.D. Impacts of Prescribed Fire on Soil Loss and Soil Quality: An Assessment Based on an Experimentally-Burned Catchment in Central Portugal. Catena 2015, 128, 278–293. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef]
- Moazeni, S.; Cerdà, A. The Impacts of Forest Fires on Watershed Hydrological Response. A Review. Trees For. People 2024, 18, 100707. [Google Scholar] [CrossRef]
- García-Redondo, C.; Díaz-Raviña, M.; Regos, A. Long-Term Cumulative Effects of Wildfires on Soil-Vegetation Dynamics in the “Baixa Limia–Serra Do Xurés” Natural Park. Span. J. Soil. Sci. 2024, 14, 13103. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A Review of the Effects of Forest Fire on Soil Properties. J. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Characteristics and Water Demand in Semi-Arid Mediterranean Catchments under Water Deficit Conditions. Climate 2023, 11, 137. [Google Scholar] [CrossRef]
- Depountis, N.; Michalopoulou, M.; Kavoura, K.; Nikolakopoulos, K.; Sabatakakis, N. Estimating Soil Erosion Rate Changes in Areas Affected by Wildfires. ISPRS Int. J. Geoinf. 2020, 9, 562. [Google Scholar] [CrossRef]
- Kalinderis, I.A.; Sapountzis, M.; Stathis, D.; Tziaftani, F.; Kourakli, P.; Stefanidis, P. The Risk of Sedimentation of Artificial Lakes, Following the Soil Loss and Degradation Process in the Wider Drainage Basin. Artificial Lake of Smokovo case study (Central Greece). In Proceedings of the International Conference “Land Conservation”-LANDCON 0905, Tara Mountain, Serbia, 26–30 May 2009; Faculty of Forestry: Belgrade, Serbia, 2009; Volume 41, pp. 129–140. [Google Scholar]
- Iradukunda, P.; Bwambale, E. Reservoir Sedimentation and Its Effect on Storage Capacity—A Case Study of Murera Reservoir, Kenya. Cogent Eng. 2021, 8, 1917329. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. The Effect of Small Earth Dams and Reservoirs on Water Management in North Greece (Kerkini Municipality). Silva Balc. 2015, 16, 71–84. [Google Scholar]
- Kastridis, A.; Stathis, D. Evaluation of Hydrological and Hydraulic Models Applied in Typical Mediterranean Ungauged Watersheds Using Post-Flash-Flood Measurements. Hydrology 2020, 7, 12. [Google Scholar] [CrossRef]
- Segura-Beltrán, F.; Sanchis-Ibor, C.; Morales-Hernández, M.; González-Sanchis, M.; Bussi, G.; Ortiz, E. Using Post-Flood Surveys and Geomorphologic Mapping to Evaluate Hydrological and Hydraulic Models: The Flash Flood of the Girona River (Spain) in 2007. J. Hydrol. 2016, 541, 310–329. [Google Scholar] [CrossRef]
- Jaeggi, M.N.R.; Pellandini, S. Torrent Check Dams as a Control Measure for Debris Flows. In Recent Developments on Debris Flows; Armanini, A., Michiue, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 186–207. ISBN 978-3-540-49729-5. [Google Scholar]
- López Cadenas de Llano, F.; Nations, F. ; A.O. of the U. Torrent Control and Streambed Stabilization; FAO Land and Water Development Series, No. 9; Food and Agriculture Organization of the United Nations: Rome, Italy, 1993; ISBN 9251024243. [Google Scholar]
- Remaitre, A.; van Asch, T.W.J.; Malet, J.-P.; Maquaire, O. Influence of Check Dams on Debris-Flow Run-out Intensity. Nat. Hazards Earth Syst. Sci. 2008, 8, 1403–1416. [Google Scholar] [CrossRef]
- Mizuyama, T. Sediment Hazards and SABO Works in Japan. Int. J. Eros. Control Eng. 2008, 1, 1–4. [Google Scholar] [CrossRef]
- Frankl, A.; Nyssen, J.; Vanmaercke, M.; Poesen, J. Gully Prevention and Control: Techniques, Failures and Effectiveness. Earth Surf. Process Landf. 2021, 46, 220–238. [Google Scholar] [CrossRef]
- Eisbacher, G.H. Slope Stability and Land Use in Mountain Valleys(of Canada). Geosci. Can. 1982, 9, 14–27. [Google Scholar]
- Porto, P.; Gessler, J. Ultimate Bed Slope in Calabrian Streams Upstream of Check Dams: Field Study. J. Hydraul. Eng. 1999, 125, 1231–1242. [Google Scholar] [CrossRef]
- Conesa-García, C.; López-Bermúdez, F.; García-Lorenzo, R. Bed Stability Variations after Check Dam Construction in Torrential Channels (South-East Spain). Earth Surf. Process Landf. 2007, 32, 2165–2184. [Google Scholar] [CrossRef]
- VanDine, D.F. Debris Flow Control Structures for Forest Engineering; Working Paper No. 22/1996; British Columbia Ministry of Forests: Victoria, BC, Canada, 1996. Available online: https://www.osti.gov/etdeweb/biblio/371009 (accessed on 15 February 2025).
- Shrestha, A.B.; Ezee, G.C.; Adhikary, R.P.; Rai, S.K. Resource Manual on Flash Flood Risk Management. Module 3: Structural Measures; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2012. [Google Scholar]
- Marchi, L.; Comiti, F.; Crema, S.; Cavalli, M. Channel Control Works and Sediment Connectivity in the European Alps. Sci. Total Environ. 2019, 668, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, N.A.; Xu, X.; Lucas-Borja, M.E.; Dang, W.; Liu, B. The Use of Check Dams in Watershed Management Projects: Examples from around the World. Sci. Total Environ. 2019, 676, 683–691. [Google Scholar] [CrossRef]
- Aristeidis, K.; Vasiliki, K. Evaluation of the Post-Fire Erosion and Flood Control Works in the Area of Cassandra (Chalkidiki, North Greece). J. Res. 2015, 26, 209–217. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Cazorzi, F.; Marchi, L.; Crema, S.; Beinat, A.; Cavalli, M. Multi-Temporal Analysis of the Role of Check Dams in a Debris-Flow Channel: Linking Structural and Functional Connectivity. Geomorphology 2019, 345, 106844. [Google Scholar] [CrossRef]
- Piton, G.; Recking, A. Effects of Check Dams on Bed-Load Transport and Steep-Slope Stream Morphodynamics. Geomorphology 2017, 291, 94–105. [Google Scholar] [CrossRef]
- Beşer, M.R. A Study on the Reliability-Based Safety Analysis of Concrete Gravity Dams. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2005. [Google Scholar]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the Effects of Check Dams on Channel Geometry, Bed Sediment Size and Riparian Vegetation in Mediterranean Mountain Torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef]
- Castillo, V.M.; Mosch, W.M.; García, C.C.; Barberá, G.G.; Cano, J.A.N.; López-Bermúdez, F. Effectiveness and Geomorphological Impacts of Check Dams for Soil Erosion Control in a Semiarid Mediterranean Catchment: El Cárcavo (Murcia, Spain). Catena 2007, 70, 416–427. [Google Scholar] [CrossRef]
- Zema, D.A.; Carrà, B.G.; Lucas-Borja, M.E.; Filianoti, P.G.F.; Pérez-Cutillas, P.; Conesa-García, C. Modelling Water Flow and Soil Erosion in Mediterranean Headwaters (with or without Check Dams) under Land-Use and Climate Change Scenarios Using SWAT. Water 2022, 14, 2338. [Google Scholar] [CrossRef]
- Dalaris, M.; Psilovikos, A.; Sapountzis, M.; Mourtzis, P.; Mourtzios, P. Water Erosion Assessment in Skiathos Island Using the Gavrilovic Method. Fresenius Environ. Bull. 2013, 22, 2943–2952. [Google Scholar]
- Sun, P.; Wu, Y. Dynamic Modeling Framework of Sediment Trapped by Check-Dam Networks: A Case Study of a Typical Watershed on the Chinese Loess Plateau. Engineering 2022, 27, 209–221. [Google Scholar] [CrossRef]
- Hassanli, A.M.; Nameghi, A.E.; Beecham, S. Evaluation of the Effect of Porous Check Dam Location on Fine Sediment Retention (a Case Study). Environ. Monit. Assess. 2009, 152, 319–326. [Google Scholar] [CrossRef]
- Díaz, V.; Mongil, J.; Navarro, J. Topographical Surveying for Improved Assessment of Sediment Retention in Check Dams Applied to a Mediterranean Badlands Restoration Site (Central Spain). J. Soils Sediments 2014, 14, 2045–2056. [Google Scholar] [CrossRef]
- Kang, J.H.; Kazama, S. Development and Application of Hydrological and Geomorphic Diversity Measures for Mountain Streams with Check and Slit-Check Dams. J. Hydro-Environ. Res. 2014, 8, 32–42. [Google Scholar] [CrossRef]
- Bombino, G.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. Sediment Size Variation in Torrents with Check Dams: Effects on Riparian Vegetation. Ecol. Eng. 2008, 32, 166–177. [Google Scholar] [CrossRef]
- Ayele, G.K.; Gessess, A.A.; Addisie, M.B.; Tilahun, S.A.; Tebebu, T.Y.; Tenessa, D.B.; Langendoen, E.J.; Nicholson, C.F.; Steenhuis, T.S. A Biophysical and Economic Assessment of a Community-Based Rehabilitated Gully in the Ethiopian Highlands. Land Degrad. Dev. 2016, 27, 270–280. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Hinojosa Guzman, M.D.; Yang, Y.; Hernández, A.C.; Xiangzhou, X.; Carrà, B.G.; Nichols, M.; Cerdá, A. Exploring the Influence of Vegetation Cover, Sediment Storage Capacity and Channel Dimensions on Stone Check Dam Conditions and Effectiveness in a Large Regulated River in México. Ecol. Eng. 2018, 122, 39–47. [Google Scholar] [CrossRef]
- Wei, Y.; He, Z.; Li, Y.; Jiao, J.; Zhao, G.; Mu, X. Sediment Yield Deduction from Check–Dams Deposition in the Weathered Sandstone Watershed on the North Loess Plateau, China. Land Degrad. Dev. 2017, 28, 217–231. [Google Scholar] [CrossRef]
- Zeng, Q.L.; Yue, Z.Q.; Yang, Z.F.; Zhang, X.J. A Case Study of Long-Term Field Performance of Check-Dams in Mitigation of Soil Erosion in Jiangjia Stream, China. Environ. Geol. 2009, 58, 897–911. [Google Scholar] [CrossRef]
- Institute of Geology and Mineral Exploitation (IGME). Engineering Geological Map of Greece, Scale 1:500,000; IGME: Athens, Greece, 1993. [Google Scholar]
- Forest Research Institute of Thessaloniki. Installation of a System for Monitoring the Developments in the Suburban Forest of Thessaloniki (Seich Sou) and Preparation of a Study for the Selection of Forest Species in Fire-Affected Areas; Forest Research Institute of Thessaloniki: Thessaloniki, Greece, 1993. (In Greek) [Google Scholar]
- Kotoulas, D. Mountainous Hydronomy; Flowing Waters; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2001; Volume 1. [Google Scholar]
- Margiorou, S.; Kastridis, A.; Sapountzis, M. Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling. Land 2022, 11, 1705. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-Wildfire Soil Erosion in the Mediterranean: Review and Future Research Directions. Earth Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Miranda, E.D.; Attorre, F.; Azevedo, J.; Belen, I.; Alcalde, E.E.; Freitas, H.; Garavaglia, V.; Hódar, J.A.; Iritas, O.; Karaaslan, Y.; et al. Drivers of Degradation and Other Threats. In State of Mediterranean Forests 2018; FAO and Plan Bleu: Rome, Italy, 2018; pp. 2–15. [Google Scholar]
- Verheijen, F.G.A.; Jones, R.J.A.; Rickson, R.J.; Smith, C.J. Tolerable versus Actual Soil Erosion Rates in Europe. Earth Sci. Rev. 2009, 94, 23–38. [Google Scholar] [CrossRef]
- Cerdan, O.; Poesen, J.; Govers, G.; Saby, N.; Le Bissonnais, Y.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; Klik, A.; et al. Sheet and Rill Erosion; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2006. [Google Scholar]
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The New Assessment of Soil Loss by Water Erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Jones, R.J.A.; Le Bissonnais, Y.; Bazzoffi, P.; Sanchez Diaz, J.; Düwel, O.; Loj, G.; Øygarden, L.; Prasuhn, V.; Rydell, B.; Strauss, P.; et al. Nature and Extent of Soil Erosion in Europe. In Nature and Extent of Soil Erosion in Europe; Joint Research Centre, European Commission: Ispra, Italy, 2004; pp. 145–185. [Google Scholar]
- Alexander, E.B. Rates of Soil Formation: Implications for Soil-Loss Tolerance. Soil. Sci. 1988, 145, 37–45. [Google Scholar] [CrossRef]
- Inbar, M.; Wittenberg, L.; Tamir, M. Soil Erosion and Forestry Management after Wildfire in a Mediterranean Woodland, Mt. Carmel, Israel. Int. J. Wildland Fire 1997, 7, 285–294. [Google Scholar] [CrossRef]
- Inbar, M.; Tamir, M.; Wittenberg, L. Runoff and Erosion Processes after a Forest Fire in Mount Carmel, a Mediterranean Area. Geomorphology 1998, 24, 17–33. [Google Scholar] [CrossRef]
- Robichaud, P.R.; Beyers, J.L.; Neary, D.G. Evaluating the Effectiveness of Postfire Rehabilitation Treatments; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Washington, DC, USA, 2000.
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-Fire Hydrological and Erosional Responses of a Mediterranean Landscpe: Seven Years of Catchment-Scale Dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Castelli, G.; Certini, G.; Maxwald, M.; Trucchi, P.; Foderi, C.; Errico, A.; Marra, E.; Preti, F. Post-Fire Erosion and Sediment Yield in a Mediterranean Forest Catchment in Italy. Int. J. Sediment. Res. 2024, 39, 464–477. [Google Scholar] [CrossRef]
- Hubbert, K.R.; Wohlgemuth, P.M.; Beyers, J.L. Effects of Hydromulch on Post-Fire Erosion and Plant Recovery in Chaparral Shrublands of Southern California. Int. J. Wildland Fire 2012, 21, 155. [Google Scholar] [CrossRef]
- Moody, J.A.; Martin, D.A. Synthesis of Sediment Yields after Wildland Fire in Different Rainfall Regimes in the Western United States. Int. J. Wildland Fire 2009, 18, 96. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Cerdà, A.; Tarolli, P. Soil Water Erosion on Mediterranean Vineyards: A Review. Catena 2016, 141, 1–21. [Google Scholar] [CrossRef]
- Morán-Ordóñez, A.; Duane, A.; Gil-Tena, A.; De Cáceres, M.; Aquilué, N.; Guerra, C.A.; Geijzendorffer, I.R.; Fortin, M.; Brotons, L. Future Impact of Climate Extremes in the Mediterranean: Soil Erosion Projections When Fire and Extreme Rainfall Meet. Land Degrad. Dev. 2020, 31, 3040–3054. [Google Scholar] [CrossRef]
- Francos, M.; Pereira, P.; Alcañiz, M.; Úbeda, X. Post-Wildfire Management Effects on Short-Term Evolution of Soil Properties (Catalonia, Spain, SW-Europe). Sci. Total Environ. 2018, 633, 285–292. [Google Scholar] [CrossRef]
- Girona-García, A.; Vieira, D.C.S.; Silva, J.; Fernández, C.; Robichaud, P.R.; Keizer, J.J. Effectiveness of Post-Fire Soil Erosion Mitigation Treatments: A Systematic Review and Meta-Analysis. Earth Sci. Rev. 2021, 217, 103611. [Google Scholar] [CrossRef]
Morphometric and Hydrographic Characteristics | Panteleimon | Eleonas |
---|---|---|
Area (km2) | 7.07 | 10.42 |
Catchment perimeter (km) | 11.54 | 15.59 |
Min altitude (m) | 69 | 72.2 |
Mean altitude (m) | 300 | 310 |
Max altitude (m) | 533 | 526 |
Catchment mean slope (%) | 21.60 | 18.17 |
Hydrographic network density (km/km2) | 1.05 | 0.88 |
Mainstream length (km) | 7.46 | 9.24 |
Mainstream mean slope (%) | 6.17 | 5.44 |
Code | Max Dam Length (Λmax) | Max Spillway Length (Lmax) | Min Spillway Lenght (Lmin) | Spillway Height (Hd) | Check Dam Height (Hυ) | Spillway Width (Tδ) | Crest Width (Tσ) |
---|---|---|---|---|---|---|---|
1 | 11.40 | 4.45 | 2.50 | 0.90 | 3.80 | 0.80 | 0.95 |
2 | 9 | 4 | 2.10 | 0.90 | 1.20 | 0.95 | 1.15 |
6 | 10.50 | 4 | 2 | 0.90 | 2.60 | 0.70 | 0.90 |
8 | 11.50 | 4 | 1.80 | 0.90 | 2.20 | 0.60 | 0.75 |
9 | 27 | 5.70 | 3.80 | 1.60 | 4.50 | 1.10 | 2 |
11 | 24 | 7.10 | 5 | 1.65 | 6 | 1 | 1.50 |
12 | 40 | 8 | 8 | 1.50 | 4.50 | 1.35 | 1.65 |
15 | 9.3 | 3.90 | 2.10 | 0.95 | 1.30 | 0.75 | 0.90 |
18 | 20 | 7 | 6 | 1 | 4 | 1 | 2 |
19 | 27 | 9.90 | 5 | 1 | 3.35 | 1 | 1.50 |
20 | 10 | 3.70 | 2 | 0.90 | 1.70 | 0.80 | 1.10 |
22 | 15 | 8 | 8 | 1 | 3.30 | 0.93 | 1.15 |
24 | 8 | 5 | 3.15 | 0.90 | 1.30 | 0.70 | 1.15 |
26 | 17 | 6 | 2.30 | 1.80 | 2.10 | 0.80 | 1.25 |
27 | 16.20 | 4 | 2.30 | 1 | 1.60 | 0.80 | 1.20 |
28 | 31 | 6 | 6 | 1.25 | 4 | 1 | 1.30 |
29 | 21 | 5.40 | 2.15 | 1.55 | 2.10 | 0.70 | 1.10 |
30 | 12 | 3.40 | 1.50 | 0.70 | 0.75 | 0.80 | 0.95 |
31 | 14 | 4.60 | 2.70 | 0.80 | 1.70 | 0.60 | 0.8 |
Code | Max Dam Length (Λmax) | Max Spillway Length (Lmax) | Min Spillway Lenght (Lmin) | Spillway Height (Hd) | Check Dam Height (Hυ) | Spillway Width (Tδ) | Crest Width (Tσ) |
---|---|---|---|---|---|---|---|
3 | 17 | 4 | 2 | 0.90 | 4.20 | 0.70 | 0.90 |
3′ | 8.60 | 5 | 3 | 1.30 | 0.70 | 0.90 | 0.65 |
4 | 13.70 | 2.20 | 2.20 | 0.90 | 1.90 | 0.60 | 0.80 |
5 | 25 | 5 | 5 | 1.60 | 4 | 0.90 | 1.40 |
16 | 7.50 | 2.80 | 2.35 | 0.50 | 1.40 | 0.70 | 0.80 |
32 | 24 | 7 | 5.50 | 1.50 | 4 | 1.10 | 1.60 |
33 | 24.50 | 6.70 | 6.70 | 1.50 | 3.90 | 1.20 | 1.50 |
34 | 18.50 | 5.75 | 4 | 1.15 | 3 | 0.65 | 0.80 |
35 | 10.20 | 4 | 4 | 1.00 | 3.45 | 0.70 | 0.90 |
36 | 27 | 5 | 5 | 1.00 | 4.50 | 1.25 | 1.45 |
37 | 19 | 4.80 | 1.70 | 1.30 | 2.10 | 0.75 | 1.05 |
38 | 11 | 4.80 | 3.60 | 0.65 | 1.60 | 0.68 | 0.75 |
39 | 8 | 3.90 | 2.70 | 0.65 | 1.40 | 0.60 | 0.78 |
40 | 11.70 | 3.50 | 2.50 | 0.95 | 1.45 | 0.60 | 0.76 |
41 | 11.70 | 3.50 | 2.50 | 0.80 | 2.10 | 0.60 | 0.75 |
42 | 10.50 | 4.10 | 2.70 | 0.65 | 1.50 | 0.60 | 0.80 |
43 | 16.30 | 5.90 | 3.70 | 1.10 | 3.50 | 0.80 | 1 |
44 | 8.50 | 3.20 | 2 | 0.50 | 1.60 | 0.80 | 1 |
45 | 17 | 7.50 | 3.50 | 1.30 | 2.80 | 0.70 | 1 |
46 | 23 | 8 | 8 | 1.50 | 4.50 | 1.07 | 0.35 |
47 | 22 | 8 | 8 | 1.50 | 3.70 | 0.90 | 1.35 |
Eleonas | Panteleimon | ||||
---|---|---|---|---|---|
Code | Length of Compensation Slope (L) | Effective Capacity of Check Dams (m3) | Code | Length of Compensation Slope (L) | Effective Capacity of Check Dams (m3) |
1 | 18 | 262.9 | 3 | 70 | 1528.06 |
2 | 9.5 | 26.6 | 3′ | 1.8 | 3.09 |
6 | 50 | 431.9 | 4 | 11 | 48.48 |
8 | 13 | 62.0 | 5 | 38 | 755.69 |
9 | 118 | 3776.6 | 16 | 19 | 30.67 |
11 | 68 | 1676.7 | 32 | 40 | 801.53 |
12 | 76 | 2045.3 | 33 | 45 | 1191.69 |
15 | 6 | 19.9 | 34 | 30 | 354.17 |
18 | 18 | 219.1 | 35 | 13 | 100.25 |
19 | 37 | 416.5 | 36 | 36 | 1084.86 |
20 | 30 | 108.4 | 37 | 40 | 249.54 |
22 | 43 | 422.0 | 38 | 28 | 68.61 |
24 | 12 | 41.10 | 39 | 36 | 152.12 |
26 | 63 | 348.0 | 40 | 17 | 66.95 |
27 | 6 | 36.6 | 41 | 50 | 483.31 |
28 | 53 | 1055.9 | 42 | 4 | 16.53 |
29 | 20 | 93.8 | 43 | 40 | 351.05 |
30 | 10 | 31.5 | 44 | 22 | 100.29 |
31 | 58 | 152.1 | 45 | 35 | 175.48 |
46 | 60 | 959.86 | |||
47 | 20 | 216.09 | |||
Total effective capacity | 11,226.9 | Total effective capacity | 8738.32 |
Eleonas | Panteleimon | ||||||
---|---|---|---|---|---|---|---|
Code | Sediment Height (m) | Volume of Retained Sediment (m3) | Percent of Dam Siltation (%) | Code | Sediment Height (m) | Volume of Retained Sediment (m3) | Percent of Dam Siltation (%) |
1 | 2.5 | 234.12 | 41.53 | 3 | 1.4 | 271.81 | 17.79 |
2 | 0.2 | 0.97 | 1.70 | 3′ | 0.05 | 0.20 | 6.42 |
6 | 0.5 | 49.27 | 5.96 | 4 | 0.2 | 0.96 | 1.98 |
8 | 0.2 | 0.96 | 0.51 | 5 | 1.2 | 181.36 | 24.00 |
9 | 0.9 | 187.89 | 2.59 | 16 | 0.1 | 0.33 | 1.08 |
11 | 2.2 | 576.61 | 14.00 | 32 | 0.8 | 103.03 | 12.85 |
12 | 1.8 | 1150.98 | 24.74 | 33 | 1 | 141.25 | 11.85 |
15 | 0.2 | 0.35 | 1.03 | 34 | 0.4 | 2.11 | 0.60 |
18 | 2.2 | 140.42 | 28.25 | 35 | 1.1 | 19.06 | 19.01 |
19 | 1.1 | 96.43 | 10.75 | 36 | 1.3 | 96.36 | 8.88 |
20 | 1.7 | 335.65 | 100.00 | 37 | 0.1 | 0.06 | 0.03 |
22 | 1.7 | 465.85 | 33.41 | 38 | 0.1 | 0.22 | 0.32 |
24 | 0.8 | 24.06 | 32.88 | 39 | 0 | 0.00 | 0.00 |
26 | 0.1 | 2.60 | 0.19 | 40 | 0 | 0.00 | 0.00 |
27 | 0.4 | 1.68 | 2.80 | 41 | 0.3 | 13.93 | 2.88 |
28 | 2.2 | 847.49 | 37.24 | 42 | 0.3 | 1.80 | 10.86 |
29 | 1.1 | 153.76 | 35.85 | 43 | 0.3 | 3.00 | 0.85 |
30 | 0.15 | 1.40 | 2.61 | 44 | 0.2 | 0.23 | 0.23 |
31 | 0.3 | 21.82 | 2.47 | 45 | 0.8 | 124.89 | 71.17 |
46 | 1.7 | 517.51 | 53.92 | ||||
47 | 1.6 | 165.15 | 76.43 | ||||
Total retained sediment | 4292.41 | Total retained sediment | 1643.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theofanidis, A.; Kastridis, A.; Sapountzis, M. Effectiveness of Torrential Erosion Control Structures (Check Dams) Under Post-Fire Conditions—The Importance of Immediate Construction. Land 2025, 14, 629. https://doi.org/10.3390/land14030629
Theofanidis A, Kastridis A, Sapountzis M. Effectiveness of Torrential Erosion Control Structures (Check Dams) Under Post-Fire Conditions—The Importance of Immediate Construction. Land. 2025; 14(3):629. https://doi.org/10.3390/land14030629
Chicago/Turabian StyleTheofanidis, Alexandros, Aristeidis Kastridis, and Marios Sapountzis. 2025. "Effectiveness of Torrential Erosion Control Structures (Check Dams) Under Post-Fire Conditions—The Importance of Immediate Construction" Land 14, no. 3: 629. https://doi.org/10.3390/land14030629
APA StyleTheofanidis, A., Kastridis, A., & Sapountzis, M. (2025). Effectiveness of Torrential Erosion Control Structures (Check Dams) Under Post-Fire Conditions—The Importance of Immediate Construction. Land, 14(3), 629. https://doi.org/10.3390/land14030629