Promoting or Inhibiting? The Impact of Urban Land Marketization on Carbon Emissions in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impacts of Urban Land Marketization on Carbon Emissions
2.2. The Mechanisms of Urban Land Marketization on Carbon Emissions
2.2.1. Land Financing
2.2.2. Trade Openness
2.2.3. Entrepreneurial Vitality
2.3. The Threshold Effects of Urban Land Marketization on Carbon Emissions
2.3.1. Per Capita Income Level
2.3.2. Environmental Regulation
2.4. The Spillover Effects of Urban Land Marketization on Carbon Emissions
3. Materials and Methods
3.1. Model Specification
3.1.1. The Benchmark Regression Model
3.1.2. Mediating Effect Model
3.1.3. Threshold Regression Model
3.1.4. Spatial Econometrics Model
3.2. Variable Selection
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Control Variables
3.2.4. Mediating Variables
3.2.5. Threshold Variables
3.3. Data Source
4. Results
4.1. The Impact of Urban Land Marketization on Carbon Emissions
4.2. Robustness Tests
4.2.1. Change the Data Source
4.2.2. Replace the Variables
4.2.3. Adjust Selected Samples
4.2.4. Remove the Outliers
4.2.5. Control for Province Fixed Effects
4.2.6. Eliminate the Interference of Other Policies
4.2.7. Consider the Endogeneity Problems
4.3. Mediating Effect Analysis
4.4. Threshold Effect Analysis
4.4.1. Selection of Threshold Models
4.4.2. Analysis of the Threshold Effects
4.5. Spillover Effect Analysis
4.5.1. Selection of Spatial Econometric Models
4.5.2. Analysis of the Spatial Spillover Effects
4.6. Heterogeneity Analysis
4.6.1. Regional Heterogeneity Analysis
4.6.2. City-Tier Heterogeneity Analysis
4.6.3. City-Type Heterogeneity Analysis
5. Discussion
5.1. Interpretation of Findings
5.2. Policy Recommendations
5.3. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The slope data are derived from NASA ASTER Global Digital Elevation Model V003. |
2 | The eastern region in mainland China includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan and Liaoning; The central region includes Shanxi, Henan, Hubei, Hunan, Anhui, Jiangxi, Heilongjiang and Jilin; The western region includes Inner Mongolia, Shaanxi, Gansu, Qinghai, Ningxia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Xinjiang and Tibet. |
3 | The provincial capital cities in mainland China includes Beijing, Tianjin, Shanghai, Chongqing, Shijiazhuang, Shenyang, Harbin, Hangzhou, Fuzhou, Jinan, Guangzhou, Wuhan, Chengdu, Kunming, Lanzhou, Nanning, Yinchuan, Taiyuan, Changchun, Nanjing, Hefei, Nanchang, Zhengzhou, Changsha, Haikou, Guiyang, Xi’an, Xining, Hohhot, Lhasa, Urumqi. |
4 | In 2013, the State Council of the Chinese government issued the Notice of the National Sustainable Development Plan for Resource-independent Cities (2013–2020). Based on this, we divided the sample cities into 114 resource-independent cities and 170 non-resources-independent cities. |
References
- Sun, L.; Li, W. Has the Opening of High-Speed Rail Reduced Urban Carbon Emissions? Empirical Analysis Based on Panel Data of Cities in China. J. Clean. Prod. 2021, 321, 128958. [Google Scholar] [CrossRef]
- Jiang, M.; An, H.; Gao, X. Adjusting the Global Industrial Structure for Minimizing Global Carbon Emissions: A Network-Based Multi-Objective Optimization Approach. Sci. Total Environ. 2022, 829, 154653. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Cui, H.; Xu, Y.; Ge, Q. Long-Term Temperature and Sea-Level Rise Stabilization before and beyond 2100: Estimating the Additional Climate Mitigation Contribution from China’s Recent 2060 Carbon Neutrality Pledge. Environ. Res. Lett. 2021, 16, 074032. [Google Scholar] [CrossRef]
- Zameer, H.; Wang, Y.; Vasbieva, D.G.; Abbas, Q. Exploring a Pathway to Carbon Neutrality via Reinforcing Environmental Performance through Green Process Innovation, Environmental Orientation and Green Competitive Advantage. J. Environ. Manag. 2021, 296, 113383. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2023 Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Liu, Y.; Li, J.; Yang, Y. Strategic Adjustment of Land Use Policy under the Economic Transformation. Land Use Policy 2018, 74, 5–14. [Google Scholar] [CrossRef]
- Hu, Y.; He, F.; Liao, K.; Liu, X. How Do Land Supply Admittance Regulations Affect Urban Carbon Emissions? J. Environ. Manag. 2023, 347, 119061. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Zhang, X.; Zheng, X. Land Use Regulation and Urban Land Value: Evidence from China. Land Use Policy 2020, 92, 104432. [Google Scholar] [CrossRef]
- Glaeser, E.L.; Kahn, M.E. The Greenness of Cities: Carbon Dioxide Emissions and Urban Development. J. Urban Econ. 2010, 67, 404–418. [Google Scholar] [CrossRef]
- Iwata, K.; Managi, S. Can Land Use Regulations and Taxes Help Mitigate Vehicular CO 2 Emissions? An Empirical Study of Japanese Cities. Urban Policy Res. 2016, 34, 356–372. [Google Scholar] [CrossRef]
- Leibowicz, B.D. Effects of Urban Land-Use Regulations on Greenhouse Gas Emissions. Cities 2017, 70, 135–152. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. Government Intervention and Land Misallocation: Evidence from China. Cities 2017, 60, 323–332. [Google Scholar] [CrossRef]
- Ma, A.; He, Y.; Tang, P. Understanding the Impact of Land Resource Misallocation on Carbon Emissions in China. Land 2021, 10, 1188. [Google Scholar] [CrossRef]
- Bai, X.; Shi, P.; Liu, Y. Realizing China’s Urban Dream. Nature 2014, 509, 158–160. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y. Revitalize the World’s Countryside. Nature 2017, 548, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Wang, W. Determinants of Land Finance in China: A Study Based on Provincial-level Panel Data. Aust. J. Public Adm. 2013, 72, 293–303. [Google Scholar] [CrossRef]
- Zeng, L.; Wang, Y.; Deng, Y. How Land Transactions Affect Carbon Emissions: Evidence from China. Land 2022, 11, 751. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, Q.; Chong, Z. Analysis on the Effect and Mechanism of Land Misallocation on Carbon Emissions Efficiency: Evidence from China. Land Use Policy 2022, 121, 106336. [Google Scholar] [CrossRef]
- Yang, Y.; Xue, R.; Zhang, X.; Cheng, Y.; Shan, Y. Can the Marketization of Urban Land Transfer Improve Energy Efficiency? J. Environ. Manag. 2023, 329, 117126. [Google Scholar] [CrossRef]
- Du, W.; Li, M. The Impact of Land Resource Mismatch and Land Marketization on Pollution Emissions of Industrial Enterprises in China. J. Environ. Manag. 2021, 299, 113565. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M. Impact and Transmission Mechanism of Land Leasing Marketization on Carbon Emissions: Based on the Mediating Effect of Industrial Structure. China Popul. Environ. 2022, 32, 12–21. [Google Scholar]
- Li, J.; Jiao, L.; Li, R.; Zhu, J.; Zhang, P.; Guo, Y.; Lu, X. How Does Market-Oriented Allocation of Industrial Land Affect Carbon Emissions? Evidence from China. J. Environ. Manag. 2023, 342, 118288. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Wang, L.; Xu, L. Impact of the Marketization of Industrial Land Transfer on Regional Carbon Emission Intensity: Evidence from China. Land 2023, 12, 984. [Google Scholar] [CrossRef]
- Xi, Q.; Mei, L. How Did Development Zones Affect China’s Land Transfers? The Scale, Marketization, and Resource Allocation Effect. Land Use Policy 2022, 119, 106181. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, R.; Huang, Y. Does the Marketization of Land Transfer Have an Impact on Carbon Emissions? Evidence from China. Front. Environ. Sci. 2022, 10, 1034273. [Google Scholar] [CrossRef]
- Cai, H.; Henderson, J.V.; Zhang, Q. China’s Land Market Auctions: Evidence of Corruption? RAND J. Econ. 2013, 44, 488–521. [Google Scholar] [CrossRef]
- Xu, S.; Chen, J.; Zhao, G. How Does the Land Leasing Marketization Affect the Economic Growth. China Ind. Econ. 2018, 44–61. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.; Liu, Q.; Chang, C.; Qu, L. The Effects of Land Transfer Marketization on the Urban Land Use Efficiency: An Empirical Study Based on 285 Cities in China. Ecol. Indic. 2021, 132, 108296. [Google Scholar] [CrossRef]
- Lu, S.; Wang, H. Market-Oriented Reform and Land Use Efficiency: Evidence from a Regression Discontinuity Design. Land Use Policy 2022, 115, 106006. [Google Scholar] [CrossRef]
- Han, F.; Huang, M. Land Misallocation and Carbon Emissions: Evidence from China. Land 2022, 11, 1189. [Google Scholar] [CrossRef]
- Gong, G.; Wu, Q.; Gao, S. The Effect and Mechanism of Land Marketization on Regional Technological Innovation. Urban Probl. 2020, 68–78. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.; Zhu, D.; Jiang, X.; Zhang, H.; Zhang, Y. Land Marketization and Urban Innovation Capability: Evidence from China. Habitat Int. 2022, 122, 102540. [Google Scholar] [CrossRef]
- Cheng, Y.; Jia, S.; Meng, H. Fiscal Policy Choices of Local Governments in China: Land Finance or Local Government Debt? Int. Rev. Econ. Finance 2022, 80, 294–308. [Google Scholar] [CrossRef]
- Jin, W.; Zhou, C. Effect of Land Marketization Level and Land Prices on Foreign Direct Investment in China. Land 2022, 11, 1433. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Gokmenoglu, K.K.; Taspinar, N.; Cantos-Cantos, J.M. An Approach to the Pollution Haven and Pollution Halo Hypotheses in MINT Countries. Environ. Sci. Pollut. Res. 2019, 26, 23010–23026. [Google Scholar] [CrossRef]
- Birdsall, N.; Wheeler, D. Trade Policy and Industrial Pollution in Latin America: Where Are the Pollution Havens? J. Environ. Dev. 1993, 2, 137–149. [Google Scholar] [CrossRef]
- Reppelin-Hill, V. Trade and Environment: An Empirical Analysis of the Technology Effect in the Steel Industry. J. Environ. Econ. Manag. 1999, 38, 283–301. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Shahbaz, M.; Adnan Hye, Q.M. The Environmental Kuznets Curve and the Role of Coal Consumption in India: Cointegration and Causality Analysis in an Open Economy. Renew. Sustain. Energy Rev. 2013, 18, 519–527. [Google Scholar] [CrossRef]
- Yuan, H.; Feng, Y.; Lee, C.-C.; Cen, Y. How Does Manufacturing Agglomeration Affect Green Economic Efficiency? Energy Econ. 2020, 92, 104944. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research: Cambridge, MA, USA, 1991. [Google Scholar]
- Panayotou, T. Environmental Degradation at Different Stages of Economic Development. In Beyond Rio; Ahmed, I., Doeleman, J.A., Eds.; Palgrave Macmillan: London, UK, 1995; pp. 13–36. ISBN 978-1-349-24247-4. [Google Scholar]
- Chavas, J.-P. On Impatience, Economic Growth and the Environmental Kuznets Curve: A Dynamic Analysis of Resource Management. Environ. Resour. Econ. 2004, 28, 123–152. [Google Scholar] [CrossRef]
- Zhang, L.; Mu, R.; Zhan, Y.; Yu, J.; Liu, L.; Yu, Y.; Zhang, J. Digital Economy, Energy Efficiency, and Carbon Emissions: Evidence from Provincial Panel Data in China. Sci. Total Environ. 2022, 852, 158403. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.V.D. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Barbera, A.J.; McConnell, V.D. The Impact of Environmental Regulations on Industry Productivity: Direct and Indirect Effects. J. Environ. Econ. Manag. 1990, 18, 50–65. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, B. The Influence of Chinese Environmental Regulation on Corporation Innovation and Competitiveness. J. Clean. Prod. 2016, 112, 1528–1536. [Google Scholar] [CrossRef]
- Pei, Y.; Zhu, Y.; Liu, S.; Wang, X.; Cao, J. Environmental Regulation and Carbon Emission: The Mediation Effect of Technical Efficiency. J. Clean. Prod. 2019, 236, 117599. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Uddin, M.K.; Guo, S. Environmental Regulation, Foreign Investment Behavior, and Carbon Emissions for 30 Provinces in China. J. Clean. Prod. 2020, 248, 119208. [Google Scholar] [CrossRef]
- Huang, X.; Tian, P. How Does Heterogeneous Environmental Regulation Affect Net Carbon Emissions: Spatial and Threshold Analysis for China. J. Environ. Manag. 2023, 330, 117161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yin, H.; Zhao, Y. Impact of Environmental Regulations on the Efficiency and CO2 Emissions of Power Plants in China. Appl. Energy 2015, 149, 238–247. [Google Scholar] [CrossRef]
- Fan, X.; Qiu, S.; Sun, Y. Land Finance Dependence and Urban Land Marketization in China: The Perspective of Strategic Choice of Local Governments on Land Transfer. Land Use Policy 2020, 99, 105023. [Google Scholar] [CrossRef]
- Li, H.; Lu, J. Can Inter-Governmental Coordination Inhibit Cross-Border Illegal Water Pollution? A Test Based on Cross-Border Ecological Compensation Policy. J. Environ. Manag. 2022, 318, 115536. [Google Scholar] [CrossRef]
- Xie, R.; Yao, S.; Han, F.; Zhang, Q. Does Misallocation of Land Resources Reduce Urban Green Total Factor Productivity? An Analysis of City-Level Panel Data in China. Land Use Policy 2022, 122, 106353. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, H. Effects of Land Urbanization and Land Finance on Carbon Emissions: A Panel Data Analysis for Chinese Provinces. Land Use Policy 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Li, T.; Ma, J.; Mo, B. Does the Land Market Have an Impact on Green Total Factor Productivity? A Case Study on China. Land 2021, 10, 595. [Google Scholar] [CrossRef]
- Liu, T.; Lin, G.C.S. New Geography of Land Commodification in Chinese Cities: Uneven Landscape of Urban Land Development under Market Reforms and Globalization. Appl. Geogr. 2014, 51, 118–130. [Google Scholar] [CrossRef]
- Liu, T.; Cao, G.; Yan, Y.; Wang, R.Y. Urban Land Marketization in China: Central Policy, Local Initiative, and Market Mechanism. Land Use Policy 2016, 57, 265–276. [Google Scholar] [CrossRef]
- Zhao, K.; Shi, X.; Qu, F. Measurement and Empirical Study on Land Market Development of China: A Case Study from Eastern, Central and Western China. Econ. Geogr. 2008, 821–825. [Google Scholar]
- Zhao, Y.; Huang, X.; Zhong, T.; Peng, J.; Wang, X. Measurement Methods of Land Marketization in China. Resour. Sci. 2012, 34, 1333–1339. [Google Scholar]
- Lu, X.; Jiang, X.; Gong, M. How Land Transfer Marketization Influence on Green Total Factor Productivity from the Approach of Industrial Structure? Evidence from China. Land Use Policy 2020, 95, 104610. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How Does Digital Economy Affect Carbon Emissions? Evidence from Global 60 Countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasreen, S.; Ahmed, K.; Hammoudeh, S. Trade Openness–Carbon Emissions Nexus: The Importance of Turning Points of Trade Openness for Country Panels. Energy Econ. 2017, 61, 221–232. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, D.; Zhou, J. Digital Economy and Carbon Emission Performance: Evidence at China’s City Level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, S.; Pan, Z.; Hao, D.; Zhang, X.; Chen, Z. The Spatial Spillover Effect and Nonlinear Relationship Analysis between Land Resource Misallocation and Environmental Pollution: Evidence from China. J. Environ. Manag. 2022, 321, 115873. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.E. Threshold effects in Non-Dynamic Panels: Estimation, Testing, and Inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Elhorst, J.P. Matlab Software for Spatial Panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Z.; Zhang, T.; Sun, X.; Song, M. Exploring the Impact of Industrial Land Price Distortion on Carbon Emission Intensity: Evidence from China. Land 2022, 12, 92. [Google Scholar] [CrossRef]
- Pu, W.; Zhang, A.; Zhang, Z.; Qin, S.; Xia, Q. Can Urban Land Market Reform Mitigate Industrial Emissions? Environmental Evidence from 257 Prefecture-Level Cities in China. Environ. Res. 2023, 236, 116707. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-O.; Wu, H.; Hao, Y. How Does China’s Land Finance Affect Its Carbon Emissions? Struct. Chang. Econ. Dyn. 2020, 54, 267–281. [Google Scholar] [CrossRef]
- Shao, Y. Does FDI Affect Carbon Intensity? New Evidence from Dynamic Panel Analysis. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 27–42. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Liu, T. Empirical Analysis on the Factors Influencing National and Regional Carbon Intensity in China. Renew. Sustain. Energy Rev. 2016, 55, 34–42. [Google Scholar] [CrossRef]
- Ozcan, B. The Nexus between Carbon Emissions, Energy Consumption and Economic Growth in Middle East Countries_ A Panel Data Analysis. Energy Policy 2013, 62, 1138–1147. [Google Scholar] [CrossRef]
- Cole, M.A. Limits to Growth, Sustainable Development and Environmental Kuznets Curves: An Examination of the Environmental Impact of Economic Development. Sustain. Dev. 1999, 7, 87–97. [Google Scholar] [CrossRef]
Types | Variables | Symbols | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Dependent variables | Total carbon emission | TCE | 16.878 | 0.912 | 13.440 | 20.236 |
Carbon emission intensity | CEI | 9.831 | 0.785 | 6.329 | 13.300 | |
Independent variable | Urban land marketization | ULM | 0.725 | 0.147 | 0.579 | 1.502 |
Control variables | Urban population | UP | 5.871 | 0.703 | 2.898 | 8.136 |
Industrial structure | IS | 46.524 | 11.235 | 10.680 | 90.970 | |
Financial development | FD | 9.025 | 0.521 | 6.624 | 11.474 | |
Fiscal expenditure | FE | 19.584 | 4.371 | 0.553 | 38.685 | |
Digital development | DD | 6.204 | 1.324 | −2.121 | 13.544 | |
Urban green space | UG | 35.692 | 6.033 | 0.970 | 63.520 | |
Mediating variables | Land financing | LF | 12.900 | 1.573 | 6.425 | 21.797 |
Trade openness | TO | 7.897 | 1.963 | −1.819 | 13.885 | |
Entrepreneurial vitality | EV | 1.077 | 1.305 | −3.332 | 6.241 | |
Threshold variables | Per capita income | IL | 40,755 | 28,524 | 1720 | 259,724 |
Environmental regulation | ER | 0.991 | 2.104 | 0.0196 | 58.93 |
VARIABLES | TCE | TCE | CEI | CEI |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
ULM | −0.0568 ** | −0.0482 ** | −0.1823 *** | −0.1239 *** |
(0.0240) | (0.0235) | (0.0493) | (0.0462) | |
UP | 0.0724 * | −0.0465 | ||
(0.0407) | (0.0761) | |||
IS | −0.0016 ** | −0.0139 *** | ||
(0.0008) | (0.0012) | |||
FD | 0.0193 | 0.1443 *** | ||
(0.0127) | (0.0285) | |||
FE | −0.0006 | −0.0032 * | ||
(0.0013) | (0.0018) | |||
DD | −0.0029 | −0.0290 *** | ||
(0.0023) | (0.0085) | |||
UG | −0.0002 | −0.0014 | ||
(0.0007) | (0.0012) | |||
Constant | 16.9189 *** | 16.4264 *** | 9.9636 *** | 9.8312 *** |
(0.0174) | (0.2357) | (0.0357) | (0.4906) | |
City fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Observations | 4260 | 4260 | 4260 | 4260 |
R-squared | 0.990 | 0.990 | 0.935 | 0.944 |
VARIABLES | TCE | CEI | PCE | PCE | TCE | CEI |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM1 | −0.0452 *** | −0.1210 *** | −0.0592 ** | |||
(0.0161) | (0.0387) | (0.0276) | ||||
ULM2 | −0.0889 ** | −0.0724 ** | −0.1862 *** | |||
(0.0415) | (0.0353) | (0.0694) | ||||
Constant | 15.6693 *** | 9.0745 *** | 14.3614 *** | 14.3614 *** | 16.4264 *** | 9.8312 *** |
(0.1668) | (0.4468) | (0.5141) | (0.5141) | (0.2357) | (0.4906) | |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES | YES | YES |
Observations | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 |
R-squared | 0.996 | 0.939 | 0.990 | 0.944 | 0.990 | 0.944 |
VARIABLES | TCE | CEI | TCE | CEI | TCE | CEI |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM1 | −0.0471 ** | −0.1246 *** | −0.0433 * | −0.0949 ** | −0.0482 ** | −0.1239 *** |
(0.0235) | (0.0463) | (0.0235) | (0.0448) | (0.0235) | (0.0463) | |
Constance | 16.3873 *** | 9.8224 *** | 16.3851 *** | 9.8667 *** | 16.4264 *** | 9.8312 *** |
(0.2360) | (0.4920) | (0.2410) | (0.4918) | (0.2365) | (0.4923) | |
Province fixed effect | NO | NO | NO | NO | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Control variables | YES | YES | YES | YES | YES | YES |
Observations | 4200 | 4200 | 4176 | 4175 | 4260 | 4260 |
R-squared | 0.990 | 0.944 | 0.989 | 0.952 | 0.990 | 0.944 |
VARIABLES | TCE | CEI | TCE | CEI | TCE | CEI |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM1 | −0.0487 ** | −0.1228 *** | −0.0491 ** | −0.1195 ** | −0.0484 ** | −0.1265 *** |
(0.0234) | (0.0461) | (0.0234) | (0.0466) | (0.0237) | (0.0466) | |
LCP | 0.0094 | −0.0212 | ||||
(0.0129) | (0.0220) | |||||
ICP | 0.0105 | −0.0505 *** | ||||
(0.0124) | (0.0192) | |||||
SCP | −0.0021 | −0.0226 | ||||
(0.0161) | (0.0213) | |||||
Constant | 16.4381 *** | 9.8049 *** | 16.4467 *** | 9.7333 *** | 16.4264 *** | 9.8305 *** |
(0.2350) | (0.4899) | (0.2369) | (0.4969) | (0.2358) | (0.4893) | |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Control variables | 284 | 284 | 284 | 284 | 284 | 284 |
Observations | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 |
R-squared | 0.990 | 0.944 | 0.990 | 0.945 | 0.990 | 0.944 |
VARIABLES | First Stage | Second Stage | Second Stage | First Stage | Second Stage | Second Stage |
---|---|---|---|---|---|---|
ULM | TCE | CEI | ULM | TCE | CEI | |
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM | −0.0701 *** | −0.1975 *** | −0.0581 ** | −0.2081 *** | ||
(0.0251) | (0.0643) | (0.0251) | (0.0656) | |||
IV_ULM1 | 0.5840 *** | 0.5880 *** | ||||
(0.0290) | (0.0290) | |||||
IV_ULM2 | −0.0060 *** | |||||
(0.0010) | ||||||
Control variables | YES | YES | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Observations | 3976 | 3976 | 3976 | 3976 | 3976 | 3976 |
DWH test | 0.072 (p = 0.7878) | 1.497 (p = 0.2211) | 0.026 (p = 0.8715) | 1.930 (p = 0.1647) | ||
LM statistics | 237.368 *** | 219.700 *** | ||||
Wald F statistics | 243.231 | 419.402 |
VARIABLES | LF | TCE | CEI | TO | TCE | CEI | EV | TCE | CEI |
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | |
ULM | 0.5621 *** | −0.0444 * | −0.0861 * | 0.2644 * | −0.0460 ** | −0.1174 *** | 0.6579 *** | −0.0416 * | −0.0821 * |
(0.1350) | (0.0233) | (0.0451) | (0.1580) | (0.0233) | (0.0450) | (0.1644) | (0.0232) | (0.0436) | |
LF | −0.0067 * | −0.0674 *** | |||||||
(0.0036) | (0.0138) | ||||||||
TO | −0.0083 * | −0.0248 ** | |||||||
(0.0049) | (0.0100) | ||||||||
EV | −0.0099 ** | −0.0636 *** | |||||||
(0.0044) | (0.0086) | ||||||||
Constant | 6.5981 | 16.4706 *** | 10.2758 *** | 14.3440 *** | 16.5451 *** | 10.1870 *** | 3.2747 * | 16.4590 *** | 10.0396 *** |
(4.3928) | (0.2314) | (0.5786) | (2.2739) | (0.2443) | (0.5178) | (1.8136) | (0.2346) | (0.4835) | |
Control variables | YES | YES | YES | YES | YES | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Observations | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 | 4260 |
R-squared | 0.841 | 0.990 | 0.947 | 0.922 | 0.990 | 0.945 | 0.856 | 0.990 | 0.946 |
test | −0.0037 ** | −0.0379 *** | −0.0022 ** | −0.0066 ** | −0.0065 *** | −0.0419 *** | |||
(0.0015) | (0.0080) | (0.0011) | (0.0028) | (0.0021) | (0.0068) |
VARIABLES | Threshold Types | Threshold Values | F Statistics | p Value | Critical Value | ||
---|---|---|---|---|---|---|---|
10% | 5% | 1% | |||||
Total carbon emissions as the dependent variable | |||||||
Per capita income level | Single | 1.4287 | 75.83 | 0.0000 | 30.9648 | 40.5339 | 53.4439 |
Double | 2.6414 | 40.22 | 0.0667 | 34.7224 | 42.4821 | 81.8068 | |
Triple | - | 27.60 | 0.2733 | 42.5684 | 50.2202 | 76.4422 | |
Environmental regulation | Single | 0.0834 | 35.15 | 0.0533 | 28.9754 | 36.3075 | 47.6258 |
Double | - | 27.82 | 0.1033 | 27.9650 | 37.5509 | 56.3027 | |
Carbon emission intensity as the dependent variable | |||||||
Per capita income level | Single | 0.6091 | 1143.30 | 0.0000 | 22.4201 | 28.7618 | 37.7486 |
Double | 2.3330 | 285.22 | 0.0000 | 21.7791 | 24.6114 | 43.7049 | |
Triple | - | 207.16 | 0.5233 | 355.3299 | 395.3516 | 439.8310 | |
Environmental regulation | Single | 0.5339 | 159.09 | 0.0000 | 21.8740 | 27.7121 | 44.8095 |
Double | 2.1514 | 105.63 | 0.0000 | 22.0297 | 25.2945 | 36.5049 | |
Triple | - | 133.55 | 0.4233 | 180.1924 | 197.3411 | 230.8048 |
VARIABLES | Per Capita Income Level | Environmental Regulation | ||
---|---|---|---|---|
TCE | CEI | TCE | CEI | |
(1) | (2) | (3) | (4) | |
ULM (Th ≤ q1) | 0.0546 | 1.3211 *** | −0.0997 *** | −0.2147 *** |
(0.0357) | (0.2879) | (0.0279) | (0.0509) | |
ULM (q1 < Th < q2) | −0.0231 | −0.0125 | −0.0382 | −0.0448 |
(0.0239) | (0.0405) | (0.0238) | (0.0457) | |
ULM (Th ≥ q2) | −0.0636 *** | −0.2096 *** | 0.1458 ** | |
(0.0234) | (0.0434) | (0.0686) | ||
Constant | 16.3577 *** | 10.8236 *** | 16.1360 *** | 10.5429 *** |
(0.2227) | (0.4546) | (0.2274) | (0.4795) | |
Control variables | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Observations | 4260 | 4260 | 4260 | 4260 |
F statistics | 741.53 *** | 161.71 *** | 1124.14 *** | 154.74 *** |
R-squared | 0.683 | 0.724 | 0.677 | 0.646 |
Year | Total Carbon Emission | Carbon Emission Intensity | Urban Land Marketization | |||
---|---|---|---|---|---|---|
Moran’s I | Z Value | Moran’s I | Z Value | Moran’s I | Z Value | |
2007 | 0.174 *** | 4.380 | 0.216 *** | 5.880 | 0.341 *** | 9.408 |
2008 | 0.170 *** | 4.285 | 0.209 *** | 0.209 | 0.223 *** | 6.102 |
2009 | 0.169 *** | 4.262 | 0.197 *** | 5.377 | 0.221 *** | 6.155 |
2010 | 0.166 *** | 4.176 | 0.195 *** | 5.309 | 0.374 *** | 10.156 |
2011 | 0.165 *** | 4.144 | 0.183 *** | 4.995 | 0.230 *** | 6.276 |
2012 | 0.168 *** | 4.222 | 0.187 *** | 5.119 | 0.233 *** | 6.357 |
2013 | 0.167 *** | 4.201 | 0.190 *** | 5.196 | 0.306 *** | 8.315 |
2014 | 0.178 *** | 4.484 | 0.206 *** | 5.613 | 5.613 *** | 7.621 |
2015 | 0.177 *** | 4.454 | 0.219 *** | 5.969 | 0.325 *** | 8.885 |
2016 | 0.165 *** | 4.148 | 0.204 *** | 5.555 | 0.338 *** | 9.227 |
2017 | 0.164 *** | 4.130 | 0.214 *** | 5.836 | 0.354 *** | 9.617 |
2018 | 0.165 *** | 4.163 | 0.200 *** | 5.450 | 0.373 *** | 10.093 |
2019 | 0.165 *** | 4.149 | 0.200 *** | 5.467 | 0.351 *** | 9.514 |
2020 | 0.164 *** | 4.131 | 0.206 *** | 5.609 | 0.321 *** | 8.696 |
2021 | 0.163 *** | 4.116 | 0.402 *** | 10.876 | 0.296 *** | 8.025 |
VARIABLES | TCE | CEI | TCE | CEI |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
ULM1 | −0.0340 ** | −0.0579 ** | −0.0414 *** | −0.0738 *** |
(0.0161) | (0.0256) | (0.0161) | (0.0262) | |
W × ULM1 | −0.0149 | −0.0338 | 0.0193 | 0.0277 |
(0.0261) | (0.0415) | (0.0481) | (0.0786) | |
direct effect | −0.0336 ** | −0.0736 *** | −0.0407 ** | −0.0797 *** |
(0.0164) | (0.0282) | (0.0163) | (0.0290) | |
indirect effect | −0.0191 | −0.1902 * | 0.0133 | −0.3118 |
(0.0265) | (0.0993) | (0.0530) | (0.5637) | |
Total effect | −0.0527 ** | −0.2638 ** | −0.0274 | −0.3915 |
(0.0265) | (0.1128) | (0.0508) | (0.5752) | |
0.0612 *** | 0.6485 *** | 0.1380 *** | 0.8750 *** | |
(0.0222) | (0.0123) | (0.0330) | (0.0149) | |
Sigma | 0.0078 *** | 0.0197 *** | 0.0078 *** | 0.0207 *** |
(0.0002) | (0.0004) | (0.0002) | (0.0005) | |
Control variables | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES |
Observations | 4260 | 4260 | 4260 | 4260 |
Log-likelihood | 4295.0155 | 2069.0650 | 4301.7405 | 2000.7665 |
test | 38.80 *** | 89.59 *** | 23.13 * | 55.13 *** |
LR-lag test | 54.89 *** | 133.95 *** | 48.38 *** | 166.38 *** |
LR-error test | 57.97 *** | 56.75 *** | 54.36 *** | 56.50 *** |
-lag test | 83.22 *** | 122.90 *** | 33.34 *** | 124.46 *** |
-error test | 111.50 *** | 102.07 *** | 55.55 *** | 24.99 *** |
Panel A: Total Carbon Emissions as the Dependent Variable | ||||||
---|---|---|---|---|---|---|
VARIABLES | Eastern | Non-Eastern | Capital | Non-Capital | Resource | Non-Resource |
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM | −0.0124 | −0.0753 ** | 0.0396 | −0.0600 ** | −0.0979 ** | −0.0240 |
(0.0335) | (0.0305) | (0.0543) | (0.0244) | (0.0378) | (0.0287) | |
Constant | 16.9305 *** | 16.3607 *** | 18.0886 *** | 16.2749 *** | 16.9407 *** | 15.9927 *** |
(0.4985) | (0.2545) | (0.5183) | (0.2663) | (0.3109) | (0.3411) | |
Control variables | YES | YES | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Observations | 1500 | 2760 | 450 | 3810 | 1710 | 2550 |
R-squared | 0.992 | 0.989 | 0.997 | 0.989 | 0.991 | 0.990 |
Panel B: Carbon Emission Intensity as the Dependent Variable | ||||||
VARIABLES | Eastern | Non-Eastern | Capital | Non-Capital | Resource | Non-Resource |
(1) | (2) | (3) | (4) | (5) | (6) | |
ULM | −0.0663 | −0.1575 ** | −0.0050 | −0.1375 *** | −0.1764 ** | −0.0958 * |
(0.0606) | (0.0618) | (0.0857) | (0.0512) | (0.0770) | (0.0560) | |
Constant | 11.3567 *** | 9.5645 *** | 10.7215 *** | 9.3684 *** | 10.2296 *** | 9.4381 *** |
(1.0187) | (0.5838) | (1.0138) | (0.6084) | (0.7187) | (0.6843) | |
Control variables | YES | YES | YES | YES | YES | YES |
City fixed effect | YES | YES | YES | YES | YES | YES |
Year fixed effect | YES | YES | YES | YES | YES | YES |
Observations | 1500 | 2760 | 450 | 3810 | 1710 | 2550 |
R-squared | 0.977 | 0.919 | 0.948 | 0.943 | 0.951 | 0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, S. Promoting or Inhibiting? The Impact of Urban Land Marketization on Carbon Emissions in China. Land 2025, 14, 618. https://doi.org/10.3390/land14030618
Li J, Li S. Promoting or Inhibiting? The Impact of Urban Land Marketization on Carbon Emissions in China. Land. 2025; 14(3):618. https://doi.org/10.3390/land14030618
Chicago/Turabian StyleLi, Junwen, and Shangpu Li. 2025. "Promoting or Inhibiting? The Impact of Urban Land Marketization on Carbon Emissions in China" Land 14, no. 3: 618. https://doi.org/10.3390/land14030618
APA StyleLi, J., & Li, S. (2025). Promoting or Inhibiting? The Impact of Urban Land Marketization on Carbon Emissions in China. Land, 14(3), 618. https://doi.org/10.3390/land14030618