Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
2.3. Methods
2.3.1. Driving Factors Selection and Driving Force Calculation
2.3.2. Land Use Change Simulation
2.3.3. Spatial Evolution Scenario Setting
2.3.4. Construction of the Evaluation Indicator System
2.3.5. Validation of Model Accuracy
3. Results
3.1. Driving Factors Analysis
3.2. Model Parameters Analysis
3.2.1. Model Accuracy Validation
3.2.2. Quantification of Driving Factors
3.2.3. Conversion Probability Distributions for Each Land Use Type
3.3. PLUS-Based Land Use Change Simulation
3.4. Contribution Analysis of Driving Factors
4. Planning Rationality Analysis
5. Discussion
5.1. Viability of Employing Land Use Change Simulation Models for Planning Evaluations
5.2. Impact of Planning Elements on the Evolution of Territorial Space
5.3. Inspiration for the Future Development of Datong County
5.4. Optimized Adjustment Paths for Spatial Planning
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, X.; Zhang, R.; Yuan, X.; Cao, Y.; Zhou, C. The role of planning policy in the evolution of the spatial structure of the Guangzhou metropolitan area in China. Cities 2023, 137, 104284. [Google Scholar] [CrossRef]
- Luukkonen, J. Planning in Europe for ‘EU’rope: Spatial planning as a political technology of territory. Plan. Theory 2014, 14, 174–194. [Google Scholar] [CrossRef]
- Chen, W.; Pan, S.; Ye, X. Land-use planning in China: Past, present, and future. J. Geogr. Sci. 2023, 33, 1527–1552. [Google Scholar] [CrossRef]
- Shan, L.; Zhang, C.; Zhou, T.; Wu, Y.; Zhang, L.; Shan, J. Fixability–Flexibility Relations in Sustainable Territorial Spatial Planning in China: A Review from the Food–Energy–Water Nexus Perspective. Land 2024, 13, 247. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Territory spatial planning and national governance system in China. Land Use Policy 2021, 102, 105288. [Google Scholar] [CrossRef]
- Zhang, Y.; Man, X.; Zhang, Y. From “Division” to “Integration”: Evolution and Reform of China’s Spatial Planning System. Buildings 2023, 13, 1555. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Yang, H. Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target. Land Use Policy 2023, 135, 106959. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, S.; Feng, Y. How Is Spatial Planning Adapting to Climate Change? A Textual Analysis Based on the Territorial and Spatial Plans of 368 Chinese Cities. Land 2023, 12, 1993. [Google Scholar] [CrossRef]
- Tang, X.; Sheng, L.; Zhou, Y. Exploring complex urban growth and land use efficiency in China’s developed regions: Implications for territorial spatial planning. Front. Earth Sci. 2022, 16, 1040–1051. [Google Scholar] [CrossRef]
- Gonçalves, J.; Ferreira, J.A. The planning of strategy: A contribution to the improvement of spatial planning. Land Use Policy 2015, 45, 86–94. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, X.; Liang, X.; Shi, X.; Sun, R.; Zhu, W.; Lin, J.; Han, B.; Zhou, Y. Assessment and management for future habitat risks under the implementation of China’s territorial spatial planning: A case study from Hainan Island. Environ. Impact Assess. Rev. 2024, 106, 107474. [Google Scholar] [CrossRef]
- Ding, T.; Steubing, B.; Achten, W.M.J. Coupling optimization with territorial LCA to support agricultural land-use planning. J. Environ. Manag. 2023, 328, 116946. [Google Scholar] [CrossRef]
- Grădinaru, S.; Iojă, C.; Pătru-Stupariu, I.; Hersperger, A. Are Spatial Planning Objectives Reflected in the Evolution of Urban Landscape Patterns? A Framework for the Evaluation of Spatial Planning Outcomes. Sustainability 2017, 9, 1279. [Google Scholar] [CrossRef]
- Shu, H.; Guancheng, G.; Junjie, L.; Chuan, Z. Optimization of the layout of cultivated land combining territorial spatial planning with quality index spatial autocorrelation characteristics: Taking Liuhe District of Nanjing as an example. Front. Environ. Sci. 2025, 12, 1496340. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, Z.; Yan, Y.; Tang, L. Ecological risk assessment models for simulating impacts of land use and landscape pattern on ecosystem services. Sci. Total Environ. 2022, 833, 155218. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Lin, N.; Lin, Y.; Yuan, S.; Zhang, L.; Zhu, J.; Wang, K.; Gan, M.; Zhu, C. Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China. Land Use Policy 2022, 116, 106058. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, M.; Chen, L.; Luo, L.; Wang, W.; Zhu, X.; Sun, Y. Multi-Objective Optimization of Urban Gas Station Site Selection Under Territorial Spatial Planning Constraints. ISPRS Int. J. Geo-Inf. 2024, 13, 375. [Google Scholar] [CrossRef]
- Qiao, W.; Hu, Y.; Jia, K.; He, T.; Wang, Y. Dynamic modes and ecological effects of salt field utilization in the Weifang coastal area, China: Implications for territorial spatial planning. Land Use Policy 2020, 99, 104952. [Google Scholar] [CrossRef]
- Ding, T.; Achten, W.M.J. Coupling agent-based modeling with territorial LCA to support agricultural land-use planning. J. Clean. Prod. 2022, 380, 134914. [Google Scholar] [CrossRef]
- Zhu, W.; Lan, T.; Tang, L. Impacts of Future Climate Change and Xiamen’s Territorial Spatial Planning on Carbon Storage and Sequestration. Remote Sens. 2025, 17, 273. [Google Scholar] [CrossRef]
- Han, X.; Fu, M.; Wang, J.; Li, S. Optimizing Territorial Spatial Structures within the Framework of Carbon Neutrality: A Case Study of Wuan. Land 2024, 13, 1147. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Wu, C.; Xu, Z.; Zhuo, Y.; Shen, X. Spatial Planning Implementation Effectiveness: Review and Research Prospects. Land 2022, 11, 1279. [Google Scholar] [CrossRef]
- Todella, E.; Abastante, F.; Cotella, G. Practicing Multilevel Governance: The Revision of the Piedmont Regional Territorial Plan. Land 2024, 13, 755. [Google Scholar] [CrossRef]
- Medeiros, E. Spatial Planning, Territorial Development, and Territorial Impact Assessment. J. Plan. Lit. 2019, 34, 171–182. [Google Scholar] [CrossRef]
- Yue, W.; Hou, B.; Ye, G.; Wang, Z. China’s land-sea coordination practice in territorial spatial planning. Ocean Coast. Manag. 2023, 237, 106545. [Google Scholar] [CrossRef]
- Santos, M.M.; Ferreira, A.V.; Lanzinha, J.C.G. Colonial moorings on spatial planning of Mozambique. Cities 2022, 124, 103619. [Google Scholar] [CrossRef]
- Portman, M.E. Marine spatial planning in the Middle East: Crossing the policy-planning divide. Mar. Policy 2015, 61, 8–15. [Google Scholar] [CrossRef]
- Song, R.; Hu, Y.; Li, M. Chinese Pattern of Urban Development Quality Assessment: A Perspective Based on National Territory Spatial Planning Initiatives. Land 2021, 10, 773. [Google Scholar] [CrossRef]
- Juknelienė, D.; Valčiukienė, J.; Atkocevičienė, V. Assessment of regulation of legal relations of territorial planning: A case study in Lithuania. Land Use Policy 2017, 67, 65–72. [Google Scholar] [CrossRef]
- Karadimitriou, N.; Pagonis, A. Integrated territorial investments and the ’Europeanization’ of spatial planning and territorial development in Greece: Weakening institutional dualism? Plan. Pract. Res. 2024. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Chen, L.; Zhang, Y.; Chen, L.; Li, C. Use of a non-planning driving background change methodology to assess the land-use planning impact on the environment. Environ. Impact Assess. Rev. 2020, 84, 106440. [Google Scholar] [CrossRef]
- Qu, Y.; Wang, S.; Tian, Y.; Jiang, G.; Zhou, T.; Meng, L. Territorial spatial planning for regional high-quality development—An analytical framework for the identification, mediation and transmission of potential land utilization conflicts in the Yellow River Delta. Land Use Policy 2023, 125, 106462. [Google Scholar] [CrossRef]
- Segura, S.; Pedregal, B. Monitoring and Evaluation Framework for Spatial Plans: A Spanish Case Study. Sustainability 2017, 9, 1706. [Google Scholar] [CrossRef]
- Koomen, E.; Koekoek, A.; Dijk, E. Simulating Land-use Change in a Regional Planning Context. Appl. Spat. Anal. Policy 2010, 4, 223–247. [Google Scholar] [CrossRef]
- Salamin, G. The mapping of forms of spatial planning: An instrument-oriented tool for the international comparison of spatial planning activities. Eur. Spat. Res. Policy 2023, 30, 55–78. [Google Scholar] [CrossRef]
- Nowak, M.; Cotella, G.; Śleszyński, P. The Legal, Administrative, and Governance Frameworks of Spatial Policy, Planning, and Land Use: Interdependencies, Barriers, and Directions of Change. Land 2021, 10, 1119. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H.; Qin, S.; Yu, M. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Liu, Y. Land use change and driving factors in rural China during the period 1995-2015. Land Use Policy 2020, 99, 105048. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.; Xing, X.; Song, D.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Oliveira, E.; Pagliarin, S.; Palka, G.; Verburg, P.; Bolliger, J.; Grădinaru, S. Urban land-use change: The role of strategic spatial planning. Glob. Environ. Change 2018, 51, 32–42. [Google Scholar] [CrossRef]
- Schindler, S.; Kanai, J.M. Getting the territory right: Infrastructure-led development and the re-emergence of spatial planning strategies. Reg. Stud. 2021, 55, 40–51. [Google Scholar] [CrossRef]
- Gao, J.; O’Neill, B.C. Mapping global urban land for the 21st century with data-driven simulations and Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 2302. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Bacău, S.; Domingo, D.; Palka, G.; Pellissier, L.; Kienast, F. Integrating strategic planning intentions into land-change simulations: Designing and assessing scenarios for Bucharest. Sustain. Cities Soc. 2022, 76, 103446. [Google Scholar] [CrossRef]
- Schmid, F.B.; Kienast, F.; Hersperger, A.M. The compliance of land-use planning with strategic spatial planning-insights from Zurich, Switzerland. Eur. Plan. Stud. 2021, 29, 1231–1250. [Google Scholar] [CrossRef]
- Tobias, S.; Price, B. How Effective Is Spatial Planning for Cropland Protection? An Assessment Based on Land-Use Scenarios. Land 2020, 9, 43. [Google Scholar] [CrossRef]
- Padeiro, M. Conformance in land-use planning: The determinants of decision, conversion and transgression. Land Use Policy 2016, 55, 285–299. [Google Scholar] [CrossRef]
- Abrantes, P.; Fontes, I.; Gomes, E.; Rocha, J. Compliance of land cover changes with municipal land use planning: Evidence from the Lisbon metropolitan region (1990–2007). Land Use Policy 2016, 51, 120–134. [Google Scholar] [CrossRef]
- Sarıkaya Levent, Y.; Şahin, E.; Levent, T. The Role of Tourism Planning in Land-Use/Land-Cover Changes in the Kızkalesi Tourism Destination. Land 2024, 13, 151. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Pham, H.M.; Yamaguchi, Y.; Bui, T.Q. A case study on the relation between city planning and urban growth using remote sensing and spatial metrics. Landsc. Urban Plan. 2011, 100, 223–230. [Google Scholar] [CrossRef]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, Y.; Zheng, X. Evaluating the effectiveness of land use master plans in built-up land management: A case study of the Jinan Municipality, eastern China. Land Use Policy 2020, 91, 104369. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Ouyang, X.; Xu, J.; Li, J.; Wei, X.; Li, Y. Land space optimization of urban-agriculture-ecological functions in the Changsha-Zhuzhou-Xiangtan Urban Agglomeration, China. Land Use Policy 2022, 117, 106112. [Google Scholar] [CrossRef]
- He, Z.C.; Zhao, C.H.; Fuerst, C.; Hersperger, A.M. How does the effect of urban growth management change over time and across urban land uses? Evidence from China’s construction land quotas. J. Land Use Sci. 2024, 19, 239–257. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, X.; Zhang, X.; Li, H. The incremental construction land differentiated management framework: The perspective of land quota trading in China. Land Use Policy 2020, 96, 104675. [Google Scholar] [CrossRef]
- Zhou, T.; Tan, R.; Shu, X. Rigidity with partial elasticity: Local government adaptation under the centralized land quota system in China. Land Use Policy 2022, 118, 106138. [Google Scholar] [CrossRef]
Data Types | Data Contents | Data Access |
---|---|---|
Land use Data | Land use change data (2009–2020) | Datong Natural Resources Department |
Natural Data | DEM data | Datong Natural Resources Department |
Meteorological monitoring data | Meteorological and Water Resources Department of Datong | |
Socioeconomic data | Population statistical data | Statistical Department of Datong |
Layout of urban functional facilities | Datong Natural Resources Department | |
Planning Data | Territorial spatial planning | Datong Natural Resources Department |
Land use planning | ||
Urban general planning | ||
Spatial master planning of land | ||
Layout of future urban functional facilities |
Type | Driving Factors | Functional Equation | |
---|---|---|---|
Natural factors | Annual precipitation | Normalize data values as driving force values | |
Annual average temperature | |||
Terrain slope | |||
Population | |||
Socioeconomic factors | Infrastructure | 0.8602 | |
Transportation facilities | 0.7295 | ||
Education | 0.7681 | ||
Enterprise and factories | 0.613 | ||
Business center | 0.7231 | ||
Medical and public health | 0.8014 | ||
Government departments | 0.8076 | ||
Residential community | 0.9046 | ||
Planning elements | Centralized urban area | 0.7263 | |
Village construction area | 0.8776 | ||
General farmland area | 0.9636 | ||
Ecological control area | 0.6461 |
Evaluation Dimensions | Evaluation Indicators | Calculation Formula | Formula Explanation |
---|---|---|---|
Degree of completion of planning targets | Total scale of construction land | : Degree of completion of the planning target : Actual indicator value : Planning target value | |
Scale of new construction land | |||
Forest cover rate | |||
Farmland area | |||
Water surface rate | |||
Per capita urban construction land area | |||
Degree of spatial conformity with the planning | Total construction area in the planning area | : Degree of spatial conformity with planning : Number of raster patches in the planning area : Total number of raster patches for a given land use type | |
Percentage of construction land in suitable urban construction area | |||
Percentage of construction land in ecological protection areas | |||
Percentage of ecological land in ecological protection areas | |||
Efficiency of space development | Intensity of expansion of construction land | : Intensity of expansion of construction land : Construction land area at the end year of the study : Construction land area at the first year of the study : Total land area : Time interval (years) | |
Utilization rate of stock land | : Stock land in construction land at the end year of the study : Total stock land area | ||
Average land GDP | : GDP of the study area : Total area of construction land of the study area | ||
Average annual carbon dioxide emissions change * | : Change in carbon emissions : Carbon emissions from land category in year b : Carbon emissions from land use change from year to year : Carbon sequestration for land category in year . : Carbon sequestration from land use change from year to year | ||
Urban spatial pattern | PLAND index | : Area of landscape type raster j : Total area of landscape | |
AWMPFD index | : Area of raster patch i : Perimeter of raster patch | ||
MNN index | : Distance from raster patch to the nearest construction land patch |
2035 | Urban | Village | Farmland | Forest | Grassland | Water Bodies | Other Land | Total land Area | ||
---|---|---|---|---|---|---|---|---|---|---|
2018 | ||||||||||
Planning Guidance Scenario | Urban | 2999.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2999.16 | |
Village | 6.03 | 7254.63 | 0.00 | 5.94 | 0.00 | 0.00 | 0.00 | 7266.60 | ||
Farmland | 30.60 | 0.00 | 68,096.61 | 317.79 | 0.00 | 0.00 | 0.00 | 68,445.00 | ||
Forest | 776.97 | 0.00 | 0.00 | 136,617.30 | 0.00 | 0.00 | 4.50 | 137,398.77 | ||
Grassland | 0.00 | 0.00 | 0.00 | 0.00 | 86,069.61 | 0.00 | 0.00 | 86,069.61 | ||
Water bodies | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 668.07 | 0.00 | 668.07 | ||
Other land | 86.40 | 0.00 | 0.00 | 60.75 | 0.00 | 0.27 | 7052.67 | 7200.09 | ||
Total land area | 3899.16 | 7254.63 | 68,096.61 | 137,001.78 | 86,069.61 | 668.34 | 7057.17 | 310,047.30 | ||
Natural Development Scenario | Urban | 2999.16 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 2999.16 | |
Village | 5.13 | 7188.48 | 60.39 | 12.33 | 0.27 | 0.00 | 0.00 | 7266.60 | ||
Farmland | 218.61 | 485.28 | 66,586.77 | 1151.82 | 2.52 | 0.00 | 0.00 | 68,445.00 | ||
Forest | 697.68 | 103.14 | 764.91 | 135,821.07 | 11.97 | 0.00 | 0.00 | 137,398.77 | ||
Grassland | 15.84 | 33.21 | 10.35 | 54.45 | 85,955.76 | 0.00 | 0.00 | 86,069.61 | ||
Water bodies | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 668.07 | 0.00 | 668.07 | ||
Other land | 8.37 | 0.81 | 0.00 | 0.00 | 0.00 | 0.00 | 7190.91 | 7200.09 | ||
Total land area | 3944.79 | 7810.92 | 67,422.42 | 137,039.67 | 85,970.52 | 668.07 | 7190.91 | 310,047.30 |
Evaluation Dimensions | Evaluation Indicators | 2010 | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Planning Guided Scenario (2035) | Natural Development Scenario (2035) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Degree of completion of planning targets | Total scale of construction land | 0.0443 | 0.0291 | 0.0237 | 0.0208 | 0.0202 | 0.0174 | 0.0104 | 0.0073 | 0.0044 | 0.0027 | 0.0000 |
Scale of new construction land | 0.0128 | 0.0000 | 0.0132 | 0.0164 | 0.0194 | 0.0166 | 0.0110 | 0.0161 | 0.0164 | 0.0073 | 0.0067 | |
Forest cover rate | 0.0239 | 0.0239 | 0.0238 | 0.0238 | 0.0238 | 0.0236 | 0.0236 | 0.0236 | 0.0235 | 0.0014 | 0.0000 | |
Farmland area | 0.0111 | 0.0075 | 0.0055 | 0.0044 | 0.0026 | 0.0034 | 0.0015 | 0.0004 | 0.0000 | 0.1743 | 0.1758 | |
Water surface rate | 0.0270 | 0.0269 | 0.0269 | 0.0269 | 0.0268 | 0.0268 | 0.0267 | 0.0267 | 0.0264 | 0.0001 | 0.0000 | |
Per capita urban construction land area | 0.0057 | 0.0015 | 0.0000 | 0.0230 | 0.0310 | 0.0318 | 0.0310 | 0.0306 | 0.0326 | 0.0325 | 0.0321 | |
Total score for the Dimension | 0.1247 | 0.0888 | 0.0932 | 0.1154 | 0.1238 | 0.1196 | 0.1042 | 0.1045 | 0.1033 | 0.2183 | 0.2146 | |
Degree of spatial conformity with the planning | Total construction area in the planning area | 0.0000 | 0.0073 | 0.0084 | 0.0092 | 0.0096 | 0.0184 | 0.0302 | 0.0307 | 0.0176 | 0.0187 | 0.0095 |
Percentage of construction land in suitable urban construction area | 0.0000 | 0.0027 | 0.0043 | 0.0067 | 0.0072 | 0.0108 | 0.0728 | 0.0742 | 0.0158 | 0.0497 | 0.0406 | |
Percentage of construction land in ecological protection areas | 0.0172 | 0.0030 | 0.0000 | 0.0030 | 0.0035 | 0.0000 | 0.1178 | 0.1192 | 0.0031 | 0.0970 | 0.0200 | |
Percentage of ecological land in ecological protection areas | 0.0000 | 0.0009 | 0.0013 | 0.0017 | 0.0017 | 0.0051 | 0.1484 | 0.1486 | 0.0070 | 0.0199 | 0.0278 | |
Total score for the Dimension | 0.0172 | 0.0139 | 0.0140 | 0.0205 | 0.0221 | 0.0343 | 0.3693 | 0.3727 | 0.0435 | 0.1854 | 0.0980 | |
Efficiency of space development | Intensity of expansion of construction land | 0.0096 | 0.0000 | 0.0099 | 0.0123 | 0.0146 | 0.0125 | 0.0083 | 0.0121 | 0.0123 | 0.0113 | 0.0111 |
Utilization rate of stock land | 0.0408 | 0.0427 | 0.0000 | 0.0031 | 0.0067 | 0.0085 | 0.0131 | 0.0180 | 0.0201 | 0.0355 | 0.0335 | |
Average land GDP | 0.0017 | 0.0067 | 0.0119 | 0.0185 | 0.0185 | 0.0085 | 0.0059 | 0.0000 | 0.0053 | 0.1135 | 0.1112 | |
Average annual carbon dioxide emissions change | 0.0184 | 0.0078 | 0.0172 | 0.0217 | 0.0193 | 0.0190 | 0.0225 | 0.0211 | 0.0230 | 0.0044 | 0.0000 | |
Total score for the Dimension | 0.0797 | 0.0572 | 0.0490 | 0.0679 | 0.0734 | 0.0610 | 0.0587 | 0.0634 | 0.0732 | 0.1763 | 0.1673 | |
Urban spatial pattern | PLAND index | 0.0257 | 0.0224 | 0.0212 | 0.0206 | 0.0204 | 0.0198 | 0.0183 | 0.0176 | 0.0170 | 0.0009 | 0.0000 |
AWMPFD index | 0.0073 | 0.0083 | 0.0092 | 0.0092 | 0.0085 | 0.0000 | 0.0078 | 0.0124 | 0.0124 | 0.0211 | 0.0146 | |
MNN index | 0.0000 | 0.0034 | 0.0036 | 0.0136 | 0.0150 | 0.0170 | 0.0317 | 0.0469 | 0.0493 | 0.0363 | 0.0105 | |
Total score for the Dimension | 0.0330 | 0.0340 | 0.0341 | 0.0434 | 0.0439 | 0.0368 | 0.0578 | 0.0769 | 0.0787 | 0.0584 | 0.0250 | |
Total Score | 0.2546 | 0.1939 | 0.1903 | 0.2473 | 0.2632 | 0.2517 | 0.5899 | 0.6175 | 0.2987 | 0.6384 | 0.5049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Gong, J. Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution. Land 2025, 14, 574. https://doi.org/10.3390/land14030574
Chen G, Gong J. Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution. Land. 2025; 14(3):574. https://doi.org/10.3390/land14030574
Chicago/Turabian StyleChen, Guang, and Jian Gong. 2025. "Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution" Land 14, no. 3: 574. https://doi.org/10.3390/land14030574
APA StyleChen, G., & Gong, J. (2025). Pre-Assessment Research of Regional Spatial Planning from the Perspective of Spatial Evolution. Land, 14(3), 574. https://doi.org/10.3390/land14030574