Exploring Crop Production Strategies to Mitigate Greenhouse Gas Emissions Based on Scenario Analysis
Abstract
:1. Introduction
2. Study Area and Data Source
2.1. Study Area
2.2. Data Sources
3. Methods
3.1. GHG Emissions from Crop Production
3.1.1. Direct GHG Emissions
3.1.2. Indirect GHG Emissions
3.2. Projections and Planning Optimisation for 2030
4. Results
4.1. Variations in Crop Production
4.2. Changes in GHG Emissions from Crop Production
4.3. Results of Scenario Analysis
5. Discussion
5.1. Agricultural Productivity and GHG Emission Challenges
5.2. Scenario Analysis of Emissions and Productivity
5.3. Policy Implications for Sustainable Development
5.4. Directions for Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Emission Factors for GHG Emissions
Agricultural Activity | Value | Unit | ||
Direct emissions | Crop Stover Burning | Yield Stover Ratio Rice | 0.98 | / |
Yield Stover Ratio Wheat | 1.43 | / | ||
Yield Stover Ratio Corn | 1.66 | / | ||
Yield Stover Ratio Soybean | 1.40 | / | ||
Yield Stover Ratio Tuber | 0.70 | / | ||
Heilongjiang burning ratio | 0.21 | / | ||
Jilin burning ratio | 0.21 | / | ||
Liaoning burning ratio | 0.16 | / | ||
Emission factor of Crop residue open burning | 3.23 0.008 | g CH4/kg g N2O/kg | ||
Rice cultivation | growth period | 130 | day | |
Emission factor | 2 | mg CH4/(m2 × h) | ||
Cropland emission | Emission factor | 0.01 | kg N2O-N/kg N | |
Indirect emissions | Nitrogen fertiliser | Emission factor | 1.53 | kg CO2/kg |
Phosphate fertiliser | Emission factor | 1.63 | kg CO2/kg | |
Potassic fertiliser | Emission factor | 0.66 | kg CO2/kg | |
Pesticide | Emission factor | 16.35 | kg CO2/kg | |
Electricity | Emission factor | 0.85 | kg CO2/KWh | |
Machinery use | Emission factor | 0.18 | kg/kW | |
Agricultural film | Emission factor | 5.18 | kg/kg |
References
- Pachauri, R.K.; Reisinger, A. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Ray, D.K.; Sloat, L.L.; Garcia, A.S.; Davis, K.F.; Ali, T.; Xie, W. Crop harvests for direct food use insufficient to meet the UN’s food security goal. Nat. Food 2022, 3, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef]
- Liang, D.; Lu, X.; Zhuang, M.; Shi, G.; Hu, C.; Wang, S.; Hao, J. China’s greenhouse gas emissions for cropping systems from 1978–2016. Sci. Data 2021, 8, 171. [Google Scholar] [CrossRef]
- Bennetzen, E.H.; Smith, P.; Porter, J.R. Decoupling of greenhouse gas emissions from global agricultural production: 1970–2050. Glob. Change Biol. 2016, 22, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Batoukhteh, F.; Darzi-Naftchali, A. A global study on decoupling greenhouse gas emissions from agricultural development. Environ. Dev. Sustain. 2024, 26, 13159–13183. [Google Scholar] [CrossRef]
- Shahmohamadloo, R.S.; Febria, C.M.; Fraser, E.D.; Sibley, P.K. The sustainable agriculture imperative: A perspective on the need for an agrosystem approach to meet the United Nations Sustainable Development Goals by 2030. Integr. Environ. Assess. Manag. 2022, 18, 1199–1205. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; Volume 1454, p. 147. [Google Scholar]
- Beach, R.H.; Creason, J.; Ohrel, S.B.; Ragnauth, S.; Ogle, S.; Li, C.; Ingraham, P.; Salas, W. Global mitigation potential and costs of reducing agricultural non-CO2 greenhouse gas emissions through 2030. J. Integr. Environ. Sci. 2015, 12, 87–105. [Google Scholar] [CrossRef]
- Guo, H.; Xie, S.; Pan, C. The impact of planting industry structural changes on carbon emissions in the three northeast provinces of China. Int. J. Environ. Res. Public Health 2021, 18, 705. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar]
- Verge, X.; De Kimpe, C.; Desjardins, R. Agricultural production, greenhouse gas emissions and mitigation potential. Agric. For. Meteorol. 2007, 142, 255–269. [Google Scholar] [CrossRef]
- Han, G.; Xu, J.; Zhang, X.; Pan, X. Efficiency and driving factors of Agricultural Carbon emissions: A study in Chinese state farms. Agriculture 2024, 14, 1454. [Google Scholar] [CrossRef]
- Xiong, C.; Yang, D.; Huo, J. Spatial-temporal characteristics and LMDI-based impact factor decomposition of agricultural carbon emissions in Hotan Prefecture, China. Sustainability 2016, 8, 262. [Google Scholar] [CrossRef]
- Xiong, C.; Yang, D.; Xia, F.; Huo, J. Changes in agricultural carbon emissions and factors that influence agricultural carbon emissions based on different stages in Xinjiang, China. Sci. Rep. 2016, 6, 36912. [Google Scholar] [CrossRef]
- Gong, H.; Meng, D.; Li, X.; Zhu, F. Soil degradation and food security coupled with global climate change in northeastern China. Chin. Geogr. Sci. 2013, 23, 562–573. [Google Scholar] [CrossRef]
- Fan, J.; Guo, D.; Han, L.; Liu, C.; Zhang, C.; Xie, J.; Niu, J.; Yin, L. Spatiotemporal dynamics of carbon footprint of main crop production in China. Int. J. Environ. Res. Public Health 2022, 19, 13896. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, S.; Wang, L.; Zheng, M.; Wang, Z.; Song, K. Effects of cropland reclamation on soil organic carbon in China’s black soil region over the past 35 years. Glob. Change Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef] [PubMed]
- IFPRI/IIASA. Global Spatially-Disaggregated Crop Production Statistics Data for 2005 Version 3.1; International Food Policy Research Institute and International Institute for Applied Systems Analysis: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Liu, M.; Guo, Y.; Zhang, X.; Shen, Y.-J.; Zhang, Y.; Pei, H.; Min, L.; Wang, S.; Shen, Y. China’s Black Soil Granary is increasingly facing extreme hydrological drought threats. Sci. Bull. 2023, 68, 481–484. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Anderson, W.; Yang, P.; Wu, W.; Tang, H.; You, L. Chinese rice production area adaptations to climate changes, 1949–2010. Environ. Sci. Technol. 2015, 49, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yao, Y.; Zhang, X.; Zhu, H.; Wei, X. Changes in soil physical and hydraulic properties following the conversion of forest to cropland in the black soil region of Northeast China. Catena 2021, 198, 104986. [Google Scholar] [CrossRef]
- Zhao, Z.; Deng, X.; Zhang, F.; Li, Z.; Shi, W.; Sun, Z.; Zhang, X. Scenario analysis of livestock carrying capacity risk in farmland from the perspective of planting and breeding balance in northeast China. Land 2022, 11, 362. [Google Scholar] [CrossRef]
- Wang, W.; Deng, X.; Yue, H. Black soil conservation will boost China’s grain supply and reduce agricultural greenhouse gas emissions in the future. Environ. Impact Assess. Rev. 2024, 106, 107482. [Google Scholar] [CrossRef]
- Chen, J.-S.; Li, H.-R.; Tian, Y.-G.; Deng, P.-P.; Oladele, O.P.; Bai, W.; Dang, Y.P.; Zhao, X.; Zhang, H.-L. Greenhouse gas emissions and mitigation potential of crop production in Northeast China. Eur. J. Agron. 2024, 161, 127371. [Google Scholar] [CrossRef]
- Ahmad, S.F.; Dar, A.H. Precision farming for resource use efficiency. In Resources Use Efficiency in Agriculture; Springer: Singapore, 2020; pp. 109–135. [Google Scholar] [CrossRef]
- Khan, S.N.; Li, D.; Maimaitijiang, M. A geographically weighted random forest approach to predict corn yield in the US corn belt. Remote Sens. 2022, 14, 2843. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. Bull. Chin. Acad. Sci. (Chin. Version) 2021, 36, 1184–1193. [Google Scholar]
- Yang, X.; Lin, E.; Ma, S.; Ju, H.; Guo, L.; Xiong, W.; Li, Y.; Xu, Y. Adaptation of agriculture to warming in Northeast China. Clim. Chang. 2007, 84, 45–58. [Google Scholar] [CrossRef]
- Gu, Z.; Xie, Y.; Gao, Y.; Ren, X.; Cheng, C.; Wang, S. Quantitative assessment of soil productivity and predicted impacts of water erosion in the black soil region of northeastern China. Sci. Total Environ. 2018, 637, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Xuan, F.; Dong, Y.; Li, J.; Li, X.; Su, W.; Huang, X.; Huang, J.; Xie, Z.; Li, Z.; Liu, H. Mapping crop type in Northeast China during 2013–2021 using automatic sampling and tile-based image classification. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103178. [Google Scholar] [CrossRef]
- Yan, X.; Cai, Z.; Ohara, T.; Akimoto, H. Methane emission from rice fields in mainland China: Amount and seasonal and spatial distribution. J. Geophys. Res. Atmos. 2003, 108, 4505. [Google Scholar] [CrossRef]
- Lal, R. Carbon emission from farm operations. Environ. Int. 2004, 30, 981–990. [Google Scholar] [CrossRef]
- Lu, B.; Kong, S.-F.; Han, B.; Wang, X.-Y.; Bai, Z.-P. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007. China Environ. Sci. 2011, 31, 186–194. [Google Scholar]
- Eggleston, H.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.osti.gov/etdeweb/biblio/20880391 (accessed on 1 December 2024).
- Song, Z.; Zhu, P.; Gao, H.; Peng, C.; Deng, A.; Zheng, C.; Mannaf, M.; Islam, M.; Zhang, W. Effects of long-term fertilization on soil organic carbon content and aggregate composition under continuous maize cropping in Northeast China. J. Agric. Sci. 2015, 153, 236–244. [Google Scholar] [CrossRef]
- Velicer, W.F.; Fava, J.L. Time series analysis. Res. Methods Psychol. 2003, 2, 628–660. [Google Scholar]
- Momin, B.; Chavan, G. Univariate time series models for forecasting stationary and non-stationary data: A brief review. In Proceedings of the Information and Communication Technology for Intelligent Systems (ICTIS 2017), Ahmedabad, India, 25–26 March 2017; Volume 2, pp. 219–226. [Google Scholar]
- Sirisha, U.M.; Belavagi, M.C.; Attigeri, G. Profit prediction using ARIMA, SARIMA and LSTM models in time series forecasting: A comparison. IEEE Access 2022, 10, 124715–124727. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Jiang, S.; Forsell, N. Toward carbon neutrality before 2060: Trajectory and technical mitigation potential of non-CO2 greenhouse gas emissions from Chinese agriculture. J. Clean. Prod. 2022, 368, 133186. [Google Scholar] [CrossRef]
- Du, Y.; Liu, H.; Huang, H.; Li, X. The carbon emission reduction effect of agricultural policy—Evidence from China. J. Clean. Prod. 2023, 406, 137005. [Google Scholar] [CrossRef]
Data Type | Description | Data Source |
---|---|---|
Crop Production and Agricultural Input Data | Sown area and total production (rice, soybeans, wheat, corn, and tubers) Nitrogen fertilizer, phosphorus fertilizer, potassium fertilizer, pesticides, agricultural film, and use of agricultural machinery | China Agricultural Yearbook (https://data.cnki.net/yearBook, accessed on 1 December 2024); Heilongjiang Provincial Statistical Yearbook (https://tjj.hlj.gov.cn/tjj/, accessed on 1 December 2024); Jilin Provincial Statistical Yearbook (http://tjj.jl.gov.cn/tjsj/tjnj/, accessed on 1 December 2024); Liaoning Provincial Statistical Yearbook (https://tjj.ln.gov.cn/tjj/tjxx/xxcx/tjnj/, accessed on 1 December 2024) |
National Statistical Data | National agricultural-related statistics | China Statistical Yearbook (https://www.stats.gov.cn/sj/ndsj/, accessed on 1 December 2024) |
Administrative Boundary Data | The administrative boundary data for China | Resource and Environmental Sciences Data Platform (https://www.resdc.cn/, accessed on 1 December 2024) |
Scenario | Description | Restrictions |
---|---|---|
Business as Usual (BU) | Maintain the planting structure and ensure that the area and distribution of crops are consistent with those in 2022 to guarantee that total production is not lower than the level in 2022. |
|
Sustainable Optimisation (SO) | By optimising the layout of crop planting and restricting the excessive expansion of dominant crops, it can be ensured that total production will be at least at the level of 2022. |
|
Ecological Priority (EP) | Optimise the layout and adjust the crop production structure to ensure that the production of all types of crops is at least 85% of the level in 2022 and that total production is at least at the level of 2022. |
|
Grain Types | 2022 | 2030 | ||
---|---|---|---|---|
Based Scenario | BU | SO | EP | |
Rice | 3712.56 | 4174.19 | 3712.56 | 3155.67 |
Wheat | 9.39 | 9.29 | 9.39 | 7.98 |
Corn | 9379.46 | 9792.55 | 9379.46 | 10,097.65 |
Soybean | 1038.31 | 1248.72 | 1038.31 | 882.56 |
Tuber | 69.51 | 87.47 | 69.51 | 65.35 |
Total GHG emissions | 2770.77 | 2525.77 | 2161.57 | 2073.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Xue, J.; Han, H.; Wang, C. Exploring Crop Production Strategies to Mitigate Greenhouse Gas Emissions Based on Scenario Analysis. Land 2025, 14, 256. https://doi.org/10.3390/land14020256
Gu Z, Xue J, Han H, Wang C. Exploring Crop Production Strategies to Mitigate Greenhouse Gas Emissions Based on Scenario Analysis. Land. 2025; 14(2):256. https://doi.org/10.3390/land14020256
Chicago/Turabian StyleGu, Zhuoyuan, Jing Xue, Hongfang Han, and Chao Wang. 2025. "Exploring Crop Production Strategies to Mitigate Greenhouse Gas Emissions Based on Scenario Analysis" Land 14, no. 2: 256. https://doi.org/10.3390/land14020256
APA StyleGu, Z., Xue, J., Han, H., & Wang, C. (2025). Exploring Crop Production Strategies to Mitigate Greenhouse Gas Emissions Based on Scenario Analysis. Land, 14(2), 256. https://doi.org/10.3390/land14020256