The Impact of Whole Region Comprehensive Land Consolidation on Ecological Vulnerability: Evidence from Township Panel Data in Zhejiang Province
Abstract
1. Introduction
2. Literature Review and Theoretical Analysis
2.1. Literature Review
2.2. Theoretical Review
3. Materials and Methods
3.1. Study Area
3.2. Variable Selection
- (1)
- Dependent Variables
- (2)
- Independent Variables
- (3)
- Control Variables
- (4)
- Mediating Variables
3.3. Data Source
3.4. Research Methods
3.4.1. The Entropy Method
3.4.2. The Multi-Period Difference-in-Differences Model
3.4.3. The Mediating Model
4. Results
4.1. Spatio-Temporal Characteristics of EV in Zhejiang Province
4.2. Baseline Regression
4.3. Parallel Trend Test
4.4. Robustness Test
4.4.1. The Mixed Placebo Test
4.4.2. Winsorization
4.4.3. Addressing Sample Self-Selection
4.4.4. Policy Lag Effect
4.5. Machanism Inspection
5. Further Analysis
6. Discussion and Policy Implications
6.1. Discussion
6.2. Policy Implications
- (1)
- The WRCLC program should be continuously advanced, with pilot projects prioritized in areas experiencing severe ecological imbalance and environmental degradation. Concurrently, a more scientific and holistic benefit assessment framework must be established to conduct long-term tracking studies, enabling a comprehensive evaluation of the projects’ sustained impacts on regional ecological conditions and socio-economic development. During policy implementation, it is crucial to delineate ecological protection redlines, optimize ecological corridor networks, and focus on enhancing ecosystem connectivity and biodiversity. Furthermore, greater emphasis should be placed on integrating ecological elements into land consolidation initiatives—for instance, incorporating ecological buffer zones in agricultural land remediation and increasing green space ratios during urban-rural construction land rehabilitation—thereby expanding the capacity for ecological functionality.
- (2)
- The importance of “process management” and “chain optimization” during land consolidation must be emphasized to ensure that every phase—from planning and implementation to management—is dedicated to maintaining and constructing a functional, complementary, and structurally balanced land use spatial pattern. The underlying rationale for how WRCLC balances land use lies in its shift from “reactive remediation” of potential LUC to “proactive prevention and real-time regulation,” thereby averting irreversible damage to ecosystems caused by high-intensity conflicts. Consequently, local governments must adopt a holistic perspective throughout the consolidation process, ensuring that newly added and restored ecological spaces are effectively integrated into the original ecological network. This enhances the integrity and connectivity of ecological land, generating a synergistic “1 + 1>2” effect that amplifies overall ecological benefits.
- (3)
- Deepening the integration of landscape ecology theory and land consolidation practices is essential. Territorial spatial planning develops conservation patterns by optimizing PLE spaces, thereby safeguarding ecological security and achieving sustainable development. Its core intent aligns with the fundamental principles of landscape ecology, whose theories and methods were already extensively applied during the first round of territorial spatial planning. Under the current new round of territorial spatial planning, efforts should be intensified to foster interdisciplinary convergence between landscape ecology and other fields. This can be achieved by leveraging big data analytics and remote sensing cloud computing to enhance observational accuracy, and by breaking through traditional research paradigms—extending beyond the traditional ecology-centered approach to include environmental, social, and humanistic dimensions. Such integration will propel land consolidation’s transition from an engineering-focused model toward the optimization of human-land systems. Ultimately, this synergy will create a mutual reinforcement between theoretical and methodological innovation in ecological governance and practical efficacy enhancement in spatial planning, providing robust scientific support for WRCLC in China.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beroya-Eitner, M.A. Ecological vulnerability indicators. Ecol. Indic. 2016, 60, 329–334. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Lei, J.; Ma, J.; Zhang, L.; Liu, X. How the land use change impact on ecological vulnerability in the Lanzhou-Baiyin Section of the Yellow River Basin, China. Environ. Sustain. Indic. 2025, 27, 100779. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Q.; Ding, D.; Mei, M.; Qin, H. Modelling urban expansion guided by land ecological suitability: A case study of Changzhou City, China. Habitat Int. 2018, 75, 12–24. [Google Scholar] [CrossRef]
- Estoque, R.C.; Dasgupta, R.; Winkler, K.; Avitabile, V.; Johnson, B.A.; Myint, S.W.; Gao, Y.; Ooba, M.; Murayama, Y.; Lasco, R.D. Spatiotemporal pattern of global forest change over the past 60 years and the forest transition theory. Environ. Res. Lett. 2022, 17, 084022. [Google Scholar] [CrossRef]
- Gichuki, L.; Brouwer, R.; Davies, J.; Vidal, A.; Kuzee, M.; Magero, C.; Walter, S.; Lara, P.; Christiana, O.; Ben, G. Reviving Land and Restoring Landscapes; IUCN: Gland, Switzerland, 2019. [Google Scholar]
- Yan, Y.; Liu, T.; Wang, N.; Yao, S. Urban sprawl and fiscal stress: Evidence from urbanizing China. Cities 2022, 126, 103699. [Google Scholar] [CrossRef]
- Wen, Z.; Zhao, H.; Liu, L.; Ou-Yang, Z.Y.; Zheng, H. Impacts of land use change on soil water conservation function in Hainan Province, China. Chin. J. Appl. Ecol. 2017, 28, 4025–4033. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Zhang, Q.; Cheng, G. Socio-economic impacts, challenges, and strategies for whole-region comprehensive land consolidation in China. Land Use Policy 2025, 150, 107461. [Google Scholar] [CrossRef]
- Demetriou, D.; Stillwell, J.; See, L. Land consolidation in Cyprus: Why is an integrated planning and decision support system required? Land Use Policy 2012, 29, 131–142. [Google Scholar] [CrossRef]
- Yaslioglu, E.; Akkaya Aslan, S.T.; Kirmikil, M.; Gundogdu, K.S.; Arici, I. Changes in farm management and agricultural activities and their effect on farmers’ satisfaction from land consolidation: The case of Bursa–Karacabey, Turkey. Eur. Plan. Stud. 2009, 17, 327–340. [Google Scholar] [CrossRef]
- Muchová, Z.; Jusková, K. Stakeholders’ perception of defragmentation of new plots in a land consolidation project: Given the surprisingly different Slovak and Czech approaches. Land Use Policy 2017, 66, 356–363. [Google Scholar] [CrossRef]
- Asiama, K.O.; Bennett, R.M.; Zevenbergen, J.A. Land consolidation on Ghana’s rural customary lands: Drawing from The Dutch, Lithuanian and Rwandan experiences. J. Rural. Stud. 2017, 56, 87–99. [Google Scholar] [CrossRef]
- Kupidura, A.; Łuczewski, M.; Home, R.; Kupidura, P. Public perceptions of rural landscapes in land consolidation procedures in Poland. Land Use Policy 2014, 39, 313–319. [Google Scholar] [CrossRef]
- Werdiningtyas, R.; Wei, Y.; Western, A.W. The evolution of policy instruments used in water, land and environmental governances in Victoria, Australia from 1860–2016. Environ. Sci. Policy 2020, 112, 348–360. [Google Scholar] [CrossRef]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, A.; Kundu, P.; Bhattacharjee, S.; Dey, S.; Dey, A.; Biswas, J.K.; Chaudhuri, P.; Bhattacharya, S. Microplastics in mangroves with special reference to Asia: Occurrence, distribution, bioaccumulation and remediation options. Sci. Total Environ. 2023, 904, 166165. [Google Scholar] [CrossRef]
- Gong, J.; Jin, T.; Cao, E.; Wang, S.; Yan, L. Is ecological vulnerability assessment based on the VSD model and AHP-Entropy method useful for loessial forest landscape protection and adaptative management? A case study of Ziwuling Mountain Region, China. Ecol. Indic. 2022, 143, 109379. [Google Scholar] [CrossRef]
- Cao, J.; Yang, Y.; Deng, Z.; Hu, Y. Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China. Sci. Rep. 2022, 12, 5168. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Tian, J.; Feng, X.; Ren, Y.; Bao, W.; He, C.; Yu, T.; Wu, J. Spatiotemporal variation and driving factors of ecological vulnerability in arid and semi-arid regions: A case study of Ningxia, China. Catena 2025, 259, 109378. [Google Scholar] [CrossRef]
- Han, X.; Wang, P.; Wang, J.; Qiao, M.; Zhao, X. Evaluation of human-environment system vulnerability for sustainable development in the Liupan mountainous region of Ningxia, China. Environ. Dev. 2020, 34, 100525. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; McGrath, B.; Cadenasso, M.L.; Felson, A.J. Ecological resilience and resilient cities. Build. Res. Inf. 2014, 42, 143–157. [Google Scholar] [CrossRef]
- Fei, L.; Bin, M.; Yibin, W. Agricultural land system transition based on resilience and vitality: A case study on the Loess Plateau (Yulin, China). J. Rural. Stud. 2025, 117, 103643. [Google Scholar] [CrossRef]
- Wu, J.Y.; Liu, H.; Li, T.; Ou-Yang, Y.; Zhang, J.H.; Zhang, T.J.; Huang, Y.; Gao, W.L.; Shao, L. Evaluating the ecological vulnerability of Chongqing using deep learning. Environ. Sci. Pollut. Res. 2023, 30, 86365–86379. [Google Scholar] [CrossRef] [PubMed]
- Duarte, G.T.; Santos, P.M.; Cornelissen, T.G.; Ribeiro, M.C.; Paglia, A.P. The effects of landscape patterns on ecosystem services: Meta-analyses of landscape services. Landsc. Ecol. 2018, 33, 1247–1257. [Google Scholar] [CrossRef]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-temporal changes of ecological vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Ao, Y.; Ding, Z.H.; Zhao, Y.H.; Ni, B.; Huang, F.X. Spatiotemporal evolution of ecological vulnerability and ecological resilience and construction of ecological zones in Hanjiang River Basin, China. Environ. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- Chu, V.H.Y.; Lam, W.F.; Williams, J.M. Building robustness for rural revitalization: A social-ecological system perspective. J. Rural. Stud. 2023, 101, 103042. [Google Scholar] [CrossRef]
- Laguna, E.; Carpio, A.J.; Vicente, J.; Barasona, J.A.; Triguero-Ocaña, R.; Jiménez-Ruiz, S.; Gómez-Manzaneque, A.; Acevedo, P. The spatial ecology of red deer under different land use and management scenarios: Protected areas, mixed farms and fenced hunting estates. Sci. Total Environ. 2021, 786, 147124. [Google Scholar] [CrossRef]
- Adams, E.A.; Kuusaana, E.D.; Ahmed, A.; Campion, B.B. Land dispossessions and water appropriations: Political ecology of land and water grabs in Ghana. Land Use Policy 2019, 87, 104068. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Jing, M.; Dong, X.; Zheng, J.; Gu, J. Quantitative Change or Qualitative Change: The Impact of Whole-Region Comprehensive Land Consolidation on Cultivated Land Security—Based on Panel Data from Townships in Zhejiang Province. Land 2024, 13, 2158. [Google Scholar] [CrossRef]
- Talukdar, S.; Eibek, K.U.; Akhter, S.; Ziaul, S.K.; Islam, A.R.M.T.; Mallick, J. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecol. Indic. 2021, 126, 107612. [Google Scholar] [CrossRef]
- Lu, H.; Ding, Y.; Zhang, J.; Wu, W.; Xu, D. Carbon reduction effect of comprehensive land consolidation and its configuration paths at the township level: A case study of Zhejiang Province, China. J. Environ. Manag. 2025, 373, 123855. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zang, L.; Araral, E. The impacts of land fragmentation on irrigation collective action: Empirical test of the social-ecological system framework in China. J. Rural. Stud. 2020, 78, 234–244. [Google Scholar] [CrossRef]
- Dai, X.L.; Zhao, J.M. Comprehensive land consolidation path from the perspective of watershed ecological units: A case study of the provincial pilot in Tangtang Town, Fengan County, Guangdong Province. Planners 2024, 40, 83–90. [Google Scholar]
- Yang, G.Q.; Sun, X.Y. Changes, evolution logic and policy orientation of land consolidation policy in China from the perspectives of supply-demand and resilience. Rural. Econ. 2024, 3, 44–53. [Google Scholar]
- Wiens, J.A.; Chr, N.; Van Horne, B.; Anker Ims, R. Ecological mechanisms and landscape ecology. Oikos 1993, 66, 369–380. [Google Scholar] [CrossRef]
- Chen, M.; Xu, X.; Tan, Y.; Lin, Y. Assessing ecological vulnerability and resilience-sensitivity under rapid urbanization in China’s Jiangsu province. Ecol. Indic. 2024, 167, 112607. [Google Scholar] [CrossRef]
- Facchini, F.; Villamayor-Tomas, S.; Corbera, E.; Ravera, F.; Pocull-Bellés, G.; Codina, G.L. Socio-ecological vulnerability in rural Spain: Research gaps and policy implications. Reg. Environ. Change 2023, 23, 26. [Google Scholar] [CrossRef]
- Zou, T.; Chang, Y.; Chen, P.; Liu, J. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecol. Indic. 2021, 133, 108429. [Google Scholar] [CrossRef]
- Xue, F.; Zhang, N.C.; Xia, C.Y.; Zhang, J.; Wang, C.Y. Spatial assessment and driving forces of urban ecological resilience: A case study of Tongzhou District, Beijing, China. Acta Ecol. Sin. 2023, 43, 6810–6823. [Google Scholar]
- Wang, D.; Chen, S. The effect of pilot climate-resilient city policies on urban climate resilience: Evidence from quasi-natural experiments. Cities 2024, 153, 105316. [Google Scholar] [CrossRef]
- Sun, M.; Wang, M.X. Mechanisms and effects of digital economy development on ecological resilience. Environ. Sci. 2025, 46, 4602–4614. [Google Scholar] [CrossRef]
- Cui, Z.; Li, E.; Li, Y.; Deng, Q.; Shahtahmassebi, A.R. The impact of poverty alleviation policies on rural economic resilience in impoverished areas: A case study of Lankao County, China. J. Rural. Stud. 2023, 99, 92–106. [Google Scholar] [CrossRef]
- Chen, M.J.; Wang, Q.R.; Bai, Z.K.; Shi, Z.Y. Transformation of “production-living-ecological spaces” and its carbon storage effects under the carbon neutrality vision: A case study of Guizhou Province, China. China Land Sci. 2021, 35, 101–111. [Google Scholar]
- Guo, C.Y.; Gao, J.H.; Fan, P.F.; Yao, F. Land use transition and hotspot detection based on grid scale: A case study of Yongcheng City, China. China Land Sci. 2016, 30, 43–51. [Google Scholar]
- Campbell, D.J.; Gichohi, H.; Mwangi, A.; Chege, L. Land use conflict in Kajiado district, Kenya. Land Use Policy 2000, 17, 337–348. [Google Scholar] [CrossRef]
- Meng, J.J.; Jiang, S.; Laba, Z.M.; Zhang, W.J. Spatiotemporal analysis of land use conflicts in the middle reaches of Heihe River based on landscape pattern. Sci. Geogr. Sin. 2020, 40, 1553–1562. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.Y.; Zhao, Y.B.; Che, T. ChinaMet: A High-Resolution and Multi-Element Meteorological Forcing Dataset for China Based on Multi-Source Data Fusion; National Cryosphere Desert Data Center: Lanzhou, China, 2025. [CrossRef]
- Jiang, T. Mediating effects and moderating effects in empirical research of causal inference. China Ind. Econ. 2022, 5, 100–120. [Google Scholar] [CrossRef]
- Ju, C.H.; Pei, W.M.; Zhang, H. Ecological security: A multi-scale perspective. J. Ecol. Rural. Environ. 2020, 36, 626–634. [Google Scholar] [CrossRef]





| Policy | Measure | Purpose |
|---|---|---|
| The policy of WRCLC throughout Zhejiang Province | Compile the village land use plan | To provide a planning basis for conducting WRCLC and Ecological Restoration projects |
| Conducting comprehensive agricultural land consolidation | Improving the quality and contiguity of farmland to facilitate the development of modern agriculture | |
| Promote the consolidation of inefficiently and wastefully used construction land | To provide land element support for the integrated development of primary, secondary, and tertiary industries and for coordinated urban-rural development in rural areas | |
| Comprehensively advancing the remediation and restoration of the eco-environment | To promote the optimization of rural “Production-Living-Ecological” spaces and advance the development of an ecological civilization | |
| Establish a democratic management mechanism for rural land | Ensuring the protection of villagers’ legitimate interests during land consolidation |
| Purpose | Sub-Objective Tier | Element | Indicator | Influence Direction | Weight |
|---|---|---|---|---|---|
| EV | Ecological sensitivity | Terrain factor | DEM | + | 0.144 |
| Slope | + | 0.070 | |||
| Climate factor | tem | + | 0.014 | ||
| rain | + | 0.064 | |||
| Ecological recovery | Landscape distribution | CONTAG | - | 0.068 | |
| SHDI | - | 0.050 | |||
| PD | - | 0.122 | |||
| Vegetation factor | NDVI | - | 0.032 | ||
| NPP | + | 0.043 | |||
| Ecological pressure | Human activities | Population density | + | 0.247 | |
| Economic development | + | 0.146 |
| Mediating Variable | Variable Name | Formula | Description |
|---|---|---|---|
| Ecological element | “PLE space” dynamics | represents the dynamic degree of “PLE Space,” which is the cumulative sum of the annual changes in the area of six land types, represents the six land type areas (=1~6), denotes the area of a specific land type in a given year, and represents the area of that land type in the following year. | |
| “ecological space” dynamics | Based on the dynamic degree of “PLE Space,” the areas of two land types have been reduced. | ||
| Ecological pattern | Land use conflicts | denotes the Complexity Index of land use; represents the Fragility Index of land use; stands for the Stability Index of land use. |
| VarName | Obs | Mean | Min | Max |
|---|---|---|---|---|
| EV | 5320 | 0.241 | 0.144 | 0.456 |
| did | 5320 | 0.187 | 0 | 1 |
| enterprise density | 5320 | 0.04009 | 0.0007 | 0.83019 |
| PRES | 5320 | 990.366 | 902.893 | 1018.108 |
| rhu | 5320 | 76.926 | 70.992 | 81.698 |
| wind | 5320 | 1.655 | 0.713 | 4.825 |
| agriculture | 5320 | 0.099 | 0.003 | 0.295 |
| population | 5320 | 0.052 | 0.006 | 0.407 |
| education | 5320 | 0.105 | 0.060 | 0.189 |
| industry | 5320 | 0.441 | 0.128 | 0.695 |
| GDP | 5320 | 7.802 | 1.805 | 26.737 |
| innovation | 5320 | 42.568 | 5.640 | 262.046 |
| government | 5320 | 0.207 | 0.046 | 0.713 |
| Space | 5320 | 0.008 | −0.989 | 18.050 |
| Ecospace | 5320 | −0.014 | −1.007 | 17.999 |
| LUC | 5320 | 0.335 | 0.005 | 0.999 |
| (1) | (2) | (3) | |
|---|---|---|---|
| EV | EV | EV | |
| did | −0.002 ** | −0.002 ** | −0.003 *** |
| (0.001) | (0.001) | (0.001) | |
| Enterprise density | 0.035 | 0.009 | |
| (0.028) | (0.028) | ||
| wind | 0.005 ** | 0.000 | |
| (0.002) | (0.002) | ||
| PRES | 0.001 *** | 0.000 ** | |
| (0.000) | (0.000) | ||
| rhu | 0.002 *** | 0.002 *** | |
| (0.000) | (0.000) | ||
| agriculture | 0.187 *** | ||
| (0.023) | |||
| population | 0.190 *** | ||
| (0.036) | |||
| education | −0.151 *** | ||
| (0.036) | |||
| industry | 0.073 *** | ||
| (0.008) | |||
| GDP | 0.001 ** | ||
| (0.001) | |||
| innovation | −0.000 | ||
| (0.000) | |||
| government | −0.037 *** | ||
| (0.008) | |||
| _cons | 0.254 *** | −0.620 *** | −0.380 ** |
| (0.001) | (0.200) | (0.164) | |
| ID_FE | YES | YES | YES |
| YEAR_FE | YES | YES | YES |
| N | 5320 | 5320 | 5320 |
| R2 | 0.379 | 0.404 | 0.489 |
| Coefficient | p-Value | |||
|---|---|---|---|---|
| Two-Sided | Left-Sided | Right-Sided | ||
| did | −0.002755 | 0.0100 | 0.0060 | 0.9940 |
| (1) | (2) | (3) | |
|---|---|---|---|
| Winsorization | PSM | Policy Lag Effect | |
| did | −0.003 *** | −0.003 *** | |
| (0.001) | (0.000) | ||
| did−1 | −0.004 *** | ||
| (0.001) | |||
| Controls | YES | YES | YES |
| ID_FE | YES | YES | YES |
| YEAR_FE | YES | YES | YES |
| N | 5320 | 5289 | 4655 |
| R2 | 0.489 | 0.945 | 0.410 |
| (1) | (2) | (3) | |
|---|---|---|---|
| Space | Ecospace | LUC | |
| did | 0.050 ** | 0.052 ** | −0.000 |
| (0.025) | (0.025) | (0.001) | |
| Controls | YES | YES | YES |
| ID_FE | YES | YES | YES |
| YEAR_FE | YES | YES | YES |
| N | 5320 | 5320 | 5320 |
| R2 | 0.017 | 0.015 | 0.323 |
| Year | Moran’s I | Z | p |
|---|---|---|---|
| 2015 | 0.116 | 47.642 | 0.000 |
| 2016 | 0.096 | 39.683 | 0.000 |
| 2017 | 0.077 | 31.687 | 0.000 |
| 2018 | 0.088 | 36.480 | 0.000 |
| 2019 | 0.099 | 40.626 | 0.000 |
| 2020 | 0.099 | 40.566 | 0.000 |
| 2021 | 0.010 | 41.012 | 0.000 |
| 2022 | 0.010 | 39.468 | 0.000 |
| Statistic | p | |
|---|---|---|
| LM-Test | EV | Direct effect |
| Spatial error: | −0.006 *** | −0.007 *** |
| Moran’s I | (0.000) | (0.000) |
| Lagrange multiplier | −0.000 *** | |
| Robust Lagrange multiplier | (0.000) | |
| Spatial lag: | 3.430 *** | 3.430 *** |
| Lagrange multiplier | (0.038) | (0.038) |
| Robust Lagrange multiplier | 0.000 *** | 0.000 *** |
| LR-Test | (0.000) | (0.000) |
| SDM-SAR | 5320 | 5320 |
| SDM-SEM | YES | YES |
| Wald-Test | YES | YES |
| (1) | (2) | (3) | (4) | |
|---|---|---|---|---|
| EV | Direct effect | Indirect effect | Total effect | |
| did | −0.006 *** | −0.007 *** | −0.004 * | −0.011 *** |
| (0.000) | (0.000) | (0.002) | (0.002) | |
| W×did | −0.000 *** | |||
| (0.000) | ||||
| Rho | 3.430 *** | 3.430 *** | 3.430 *** | 3.430 *** |
| (0.038) | (0.038) | (0.038) | (0.038) | |
| sigma2_e | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
| (0.000) | (0.000) | (0.000) | (0.000) | |
| N | 5320 | 5320 | 5320 | 5320 |
| Control | YES | YES | YES | YES |
| ID_FE | YES | YES | YES | YES |
| Year_FE | YES | YES | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Shi, H.; Li, B.; Xu, D. The Impact of Whole Region Comprehensive Land Consolidation on Ecological Vulnerability: Evidence from Township Panel Data in Zhejiang Province. Land 2025, 14, 2291. https://doi.org/10.3390/land14112291
Lu H, Shi H, Li B, Xu D. The Impact of Whole Region Comprehensive Land Consolidation on Ecological Vulnerability: Evidence from Township Panel Data in Zhejiang Province. Land. 2025; 14(11):2291. https://doi.org/10.3390/land14112291
Chicago/Turabian StyleLu, Honggang, Haibin Shi, Bei Li, and Dingde Xu. 2025. "The Impact of Whole Region Comprehensive Land Consolidation on Ecological Vulnerability: Evidence from Township Panel Data in Zhejiang Province" Land 14, no. 11: 2291. https://doi.org/10.3390/land14112291
APA StyleLu, H., Shi, H., Li, B., & Xu, D. (2025). The Impact of Whole Region Comprehensive Land Consolidation on Ecological Vulnerability: Evidence from Township Panel Data in Zhejiang Province. Land, 14(11), 2291. https://doi.org/10.3390/land14112291

