Spatiotemporal Decoupling of Urban Expansion Intensity and Land Use Efficiency in Arid Oasis Agglomerations
Abstract
1. Introduction
2. Region and Methods
2.1. Study Area
2.2. Materials and Pre-Processing
3. Methods
3.1. Urban Expansion Indicators
3.2. Land Use Efficiency Index
3.3. Trade-Offs/Synergies Relationships and Strength Identification
4. Results
4.1. Space-Time Variation of Built-Up Areas
4.2. Urban Expansion Intensity Index
4.3. Space-Time Variation of Land Use Efficiency Index
4.4. Relationship Between UEI and LUE
4.4.1. Spatial Analysis of the Trade-Off/Synergy Relationships
4.4.2. Trade-Offs/Synergies Between UEI and LUE
5. Discussion
5.1. Data Reliability and Comparative Validation
5.2. Advantages, Limitations, and Future Directions
5.3. Policy Implications and Practical Significance
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; He, Q.; Liu, X.; Zhuang, Y.; Hong, S. Global Urbanization Research from 1991 to 2009: A Systematic Research Review. Landsc. Urban Plan. 2012, 104, 299–309. [Google Scholar] [CrossRef]
- Gerten, C.; Fina, S.; Rusche, K. The Sprawling Planet: Simplifying the Measurement of Global Urbanization Trends. Front. Environ. Sci. 2019, 7, 140. [Google Scholar] [CrossRef]
- Chen, J. Rapid Urbanization in China: A Real Challenge to Soil Protection and Food Security. CATENA 2007, 69, 1–15. [Google Scholar] [CrossRef]
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the Urbanization Strategy in China: Achievements, Challenges and Reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, W.; Guan, Y.; Li, X.; Huang, B.; Lei, F.; Yang, H.; Huo, W. Evolution of Policy Concerning the Readjustment of Inefficient Urban Land Use in China Based on a Content Analysis Method. Sustainability 2020, 12, 797. [Google Scholar] [CrossRef]
- Han, B.; Jin, X.; Wang, J.; Yin, Y.; Liu, C.; Sun, R.; Zhou, Y. Identifying Inefficient Urban Land Redevelopment Potential for Evidence-Based Decision Making in China. Habitat Int. 2022, 128, 102661. [Google Scholar] [CrossRef]
- Zhou, Y.; Tu, M.; Wang, S.; Liu, W. A Novel Approach for Identifying Urban Built-Up Area Boundaries Using High-Resolution Remote-Sensing Data Based on the Scale Effect. Int. J. Geo-Inf. 2018, 7, 135. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, J.; Xu, Y.; Wang, Z. Urban Built-Up Area Boundary Extraction and Spatial-Temporal Characteristics Based on Land Surface Temperature Retrieval. Remote Sens. 2018, 10, 473. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Weng, M. A Fractal Approach to Urban Boundary Delineation Based on Raster Land Use Maps: A Case of Shanghai, China. Land 2021, 10, 941. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Wang, J. Urban Built-Up Area Extraction from Landsat TM/ETM+ Images Using Spectral Information and Multivariate Texture. Remote Sens. 2014, 6, 7339–7359. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Wu, Z.; Dai, Z.; Yin, J.; Zhang, C. An Improved Method for Urban Built-Up Area Extraction Supported by Multi-Source Data. Sustainability 2021, 13, 5042. [Google Scholar] [CrossRef]
- Pare, S.; Kumar, A.; Singh, G.K.; Bajaj, V. Image Segmentation Using Multilevel Thresholding: A Research Review. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1–29. [Google Scholar] [CrossRef]
- Santafe, G.; Inza, I.; Lozano, J.A. Dealing with the Evaluation of Supervised Classification Algorithms. Artif. Intell. Rev. 2015, 44, 467–508. [Google Scholar] [CrossRef]
- Liu, H.-H.; Su, Y.-T. Color Image Steganography Method Based on RGB Model and Edge Detection. Multimed. Tools Appl. 2024, 84, 23833–23860. [Google Scholar] [CrossRef]
- Wu, B.; Song, Z.; Wu, Q.; Wu, J.; Yu, B. A Vegetation Nighttime Condition Index Derived From the Triangular Feature Space Between Nighttime Light Intensity and Vegetation Index. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5618115. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS Night-Time Light Images to Evaluate City Light Dynamics of Syria’s Major Human Settlement during Syrian Civil War. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Wang, R.; Wan, B.; Guo, Q.; Hu, M.; Zhou, S. Mapping Regional Urban Extent Using NPP-VIIRS DNB and MODIS NDVI Data. Remote Sens. 2017, 9, 862. [Google Scholar] [CrossRef]
- Fu, Y.; Zhou, T.; Yao, Y.; Qiu, A.; Wei, F.; Liu, J.; Liu, T. Evaluating Efficiency and Order of Urban Land Use Structure: An Empirical Study of Cities in Jiangsu, China. J. Clean. Prod. 2021, 283, 124638. [Google Scholar] [CrossRef]
- Liu, D.; Liu, W.; He, Y. How Does the Intensive Use of Urban Construction Land Improve Carbon Emission Efficiency?—Evidence from the Panel Data of 30 Provinces in China. Land 2024, 13, 2133. [Google Scholar] [CrossRef]
- Long, H.; Trung-Kien, P. Does Urbanization Drive up Housing Prices? Novel Evidence from Remote Sensing and Dynamic Panel Quantile Regression. Int. J. Hous. Mark. Anal. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Yu, D.; Fang, C. Urban Remote Sensing with Spatial Big Data: A Review and Renewed Perspective of Urban Studies in Recent Decades. Remote Sens. 2023, 15, 1307. [Google Scholar] [CrossRef]
- Maimaiti, B.; Chen, S.; Kasimu, A.; Mamat, A.; Aierken, N.; Chen, Q. Coupling and Coordination Relationships between Urban Expansion and Ecosystem Service Value in Kashgar City. Remote Sens. 2022, 14, 2557. [Google Scholar] [CrossRef]
- Tian, S.; Wu, W.; Shen, Z.; Wang, J.; Liu, X.; Li, L.; Li, X.; Liu, X.; Chen, H. A Cross-Scale Study on the Relationship between Urban Expansion and Ecosystem Services in China. J. Environ. Manag. 2022, 319, 115774. [Google Scholar] [CrossRef]
- Sarkar, A.; Chouhan, P. Modeling Spatial Determinants of Urban Expansion of Siliguri a Metropolitan City of India Using Logistic Regression. Model. Earth Syst. Environ. 2020, 6, 2317–2331. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Zhao, B.; Pei, Q. Analysis of Spatiotemporal Interaction Characteristics and Decoupling Effects of Urban Expansion in the Central Plains Urban Agglomeration. Land 2023, 12, 772. [Google Scholar] [CrossRef]
- Xiao, S.; Xia, H.; Zhai, J.; Jin, D.; Gao, H. Trade-Off and Synergy Relationships and Driving Factor Analysis of Ecosystem Services in the Hexi Region. Remote Sens. 2024, 16, 3147. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, X.-j.; Lin, D.-y.; Liu, D.; Xu, M.-j.; Sun, J. Study on the Trade-off and Synergistic Relationship between Ecosystem Change and Urbanization Development in the Yangtze River Delta Region. J. Ecol. Rural. Environ. 2024, 40, 1134–1143. [Google Scholar] [CrossRef]
- Bai, Y.; Deng, X.; Jiang, S.; Zhang, Q.; Wang, Z. Exploring the Relationship between Urbanization and Urban Eco-Efficiency: Evidence from Prefecture-Level Cities in China. J. Clean. Prod. 2018, 195, 1487–1496. [Google Scholar] [CrossRef]
- Chen, X.; Huang, L.; Zhang, C. Spatiotemporal Evolution and Trade-Offs/Synergies of Ecosystem Services in Hubei Province. Sci. Rep. 2025, 15, 35697. [Google Scholar] [CrossRef]
- Wei, B.; Kasimu, A.; Fang, C.; Reheman, R.; Zhang, X.; Han, F.; Zhao, Y.; Aizizi, Y. Establishing and Optimizing the Ecological Security Pattern of the Urban Agglomeration in Arid Regions of China. J. Clean. Prod. 2023, 427, 139301. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. A Harmonized Global Nighttime Light Dataset 1992–2018. Sci. Data 2020, 7, 168. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative Estimation of Urbanization Dynamics Using Time Series of DMSP/OLS Nighttime Light Data: A Comparative Case Study from China’s Cities. Remote Sens. Environ. 2012, 124, 99–107. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing Improved Time-Series DMSP-OLS-Like Data (1992–2019) in China by Integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4407714. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, B.; Yang, C.; Zhou, Y.; Yao, S.; Qian, X.; Wang, C.; Wu, B.; Wu, J. An Extended Time Series (2000–2018) of Global NPP-VIIRS-like Nighttime Light Data from a Cross-Sensor Calibration. Earth Syst. Sci. Data 2021, 13, 889–906. [Google Scholar] [CrossRef]
- Wu, Z.; Wei, X.; He, X.; Gao, W. Identifying Urban Built-Up Areas Based on Spatial Coupling between Nighttime Light Data and POI: A Case Study of Changchun. Buildings 2023, 14, 19. [Google Scholar] [CrossRef]
- Li, X.; Gong, P.; Zhou, Y.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Xiao, Y.; Xu, B.; Yang, J.; et al. Mapping Global Urban Boundaries from the Global Artificial Impervious Area (GAIA) Data. Environ. Res. Lett. 2020, 15, 094044. [Google Scholar] [CrossRef]
- Wang, T.; Sun, F. Gross Domestic Product (GDP) Downscaling: A Global Gridded Dataset Consistent with the Shared Socioeconomic Pathways. Sci. Data 2022, 9, 221. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Y.; Zhou, Q.; Wang, H. Quantitative Evaluation of Urban Expansion Using NPP-VIIRS Nighttime Light and Landsat Spectral Data. Sustain. Cities Soc. 2022, 76, 103338. [Google Scholar] [CrossRef]
- Haldar, S.; Chatterjee, U.; Bhattacharya, S.; Paul, S.; Bindajam, A.A.; Mallick, J.; Abdo, H.G. Peri-Urban Dynamics: Assessing Expansion Patterns and Influencing Factors. Ecol. Process. 2024, 13, 58. [Google Scholar] [CrossRef]
- Wu, B.; Huang, H.; Wang, Y.; Shi, S.; Wu, J.; Yu, B. Global Spatial Patterns between Nighttime Light Intensity and Urban Building Morphology. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103495. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, Y. Urban Feature Shadow Extraction Based on High-Resolution Satellite Remote Sensing Images. Alex. Eng. J. 2023, 77, 443–460. [Google Scholar] [CrossRef]
- Auzins, A.; Geipele, I.; Stamure, I. Measuring Land-Use Efficiency in Land Management. Adv. Mater. Res. 2013, 804, 205–210. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Zhu, T.; Ting, F.; Feng, P. Evaluation and correlation analysis of land use performance based on entropy-weight TOPSIS method. Trans. Chin. Soc. Agric. Eng. 2013, 29, 217–227. [Google Scholar]
- Zhang, J.; Sun, T.; Fan, Y. The Impact of Innovative City Policies on Land Use Efficiency. Sci. Rep. 2025, 15, 18263. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Lin, C.; Wu, F. Analysis and Comprehensive Evaluation of Sustainable Land Use in China: Based on Sustainable Development Goals Framework. J. Clean. Prod. 2021, 310, 127205. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, C.; Gao, C.; Wang, C. Exploring the Impact of Urban Expansion on Urban Green Land Use Efficiency: A Case Study of Chengdu-Chongqing Urban Agglomeration. Front. Public Health 2025, 13, 1596250. [Google Scholar] [CrossRef]
- Bedada, B.A. Urban Land Use Land Cover Dynamics and Urban Expansion Intensity Assessment Using Multi-Temporal Landsat Imageries and Google Earth Engine over Adama City, Ethiopia. Preprints 2024, 2024122631. [Google Scholar]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Li, L.; Huang, C.; Liu, R.; Chen, Z.; Wu, J. Urban Expansion and Agricultural Land Loss in China: A Multiscale Perspective. Sustainability 2016, 8, 790. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.-T. Coupling Coordination Analysis of Urbanization and Eco-Environment in Yanqi Basin Based on Multi-Source Remote Sensing Data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Ouyang, X.; Wei, X.; Wei, G.; Wang, K. The Expansion Efficiency of Urban Land in China’s Urban Agglomerations and Its Impact on Ecosystem Services. Habitat Int. 2023, 141, 102944. [Google Scholar] [CrossRef]
- Jiaying, S.; Yafen, H. Evolution Characteristics of Urban Land Use Efficiency Under Environmental Constraints in China. J. Resour. Ecol. 2021, 12, 143–154. [Google Scholar] [CrossRef]
- Yang, G.; Wang, X.; Peng, L.; Zhang, X. Dynamic Interactions of Urban Land Use Efficiency, Industrial Structure, and Carbon Emissions Intensity in Chinese Cities: A Panel Vector Autoregression (PVAR) Approach. Land 2024, 14, 57. [Google Scholar] [CrossRef]
- Cui, X.; Fang, C.; Wang, Z.; Bao, C. Spatial Relationship of High-Speed Transportation Construction and Land-Use Efficiency and Its Mechanism: Case Study of Shandong Peninsula Urban Agglomeration. J. Geogr. Sci. 2019, 29, 549–562. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, L.; Wang, Y.; Wu, D.; Li, J. Spillover Effects of Urban Form on Urban Land Use Efficiency: Evidence from a Comparison between the Yangtze and Yellow Rivers of China. Environ. Sci. Pollut. Res. 2023, 30, 125816–125831. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, M.; Zheng, X.; Huang, Y.; Xu, F.; Wang, X.; Liu, J.; Lv, Y.; Liu, W. Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review. Land 2023, 12, 894. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X. Evaluating the Impact of Energy Efficiency on Green Growth in Chinese Cities: A Spatial Durbin Model Approach. Energy 2025, 322, 135298. [Google Scholar] [CrossRef]
- Liu, J.; Hou, X.; Wang, Z.; Shen, Y. Study the Effect of Industrial Structure Optimization on Urban Land-Use Efficiency in China. Land Use Policy 2021, 105, 105390. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, S.; Jin, Z.; Shi, J.J. Transport Infrastructure and Industrial Agglomeration: Evidence from Manufacturing Industries in China. Transp. Policy 2022, 121, 100–112. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and Optimizing Urban Ecological Network in the Context of Rapid Urbanization for Improving Landscape Connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Sietz, D.; Lûdeke, M.K.B.; Walther, C. Categorisation of Typical Vulnerability Patterns in Global Drylands. Glob. Environ. Chang. Hum. Policy Dimens. 2011, 21, 431–440. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Li, Z.; Song, J.; Fang, G.; Li, Y.; Zhang, Q. Study on the Utilization Efficiency of Land and Water Resources in the Aral Sea Basin, Central Asia. Sustain. Cities Soc. 2019, 51, 101693. [Google Scholar] [CrossRef]
- Portnov, B.A.; Safriel, U.N. Combating Desertification in the Negev: Dryland Agriculture vs. Dryland Urbanization. J. Arid Environ. 2004, 56, 659–680. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Middel, A.; Harlan, S.L.; Brazel, A.J.; Turner, B.L. Remote Sensing of the Surface Urban Heat Island and Land Architecture in Phoenix, Arizona: Combined Effects of Land Composition and Configuration and Cadastral–Demographic–Economic Factors. Remote Sens. Environ. 2016, 174, 233–243. [Google Scholar] [CrossRef]
- Shrestha, M.K.; York, A.M.; Boone, C.G.; Zhang, S. Land Fragmentation Due to Rapid Urbanization in the Phoenix Metropolitan Area: Analyzing the Spatiotemporal Patterns and Drivers. Appl. Geogr. 2012, 32, 522–531. [Google Scholar] [CrossRef]








| Data | Source | Link | Date of Access | Resolution |
|---|---|---|---|---|
| DMSP-OLS | NOAA’s National Centers for Environmental Information (NCEI) | https://www.ngdc.noaa.gov/eog/download.html | 21 May 2024 | 1 km |
| NPP-VIIRS | NOAA’s National Centers for Environmental Information (NCEI) | https://www.ngdc.noaa.gov/eog/download.html | 21 May 2024 | 500 m |
| GUB | World Bank Global Urban Expansion Program | https://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-Official-Boundaries | 27 March 2025 | 1 km |
| NDVI | Calculated from Landsat imagery via Google Earth Engine | https://code.earthengine.google.com | 27 March 2025 | 30 m |
| NDBI | Calculated from Landsat imagery via Google Earth Engine | https://code.earthengine.google.com | 27 March 2025 | 30 m |
| LST | NASA’s LP DAAC (MODIS product MYD11A2.006) | https://lpdaac.usgs.gov/products/myd11a2v006/ | 28 March 2025 | 1 km |
| GDP | Global gridded GDP dataset consistent with the SSPs (DOI: 10.5281/zenodo.5880037) | https://zenodo.org/records/5880037 | 23 June 2025 | 1 km |
| POP | LandScan Global Population Database (Oak Ridge National Laboratory) | https://landscan.ornl.gov | 23 June 2025 | 1 km |
| DEM | Shuttle Radar Topography Mission (SRTM) via Geospatial Data Cloud | https://www.gscloud.cn | 21 June 2025 | 90 m |
| Socio-economy statistics data | Xinjiang Statistical Yearbook | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kasimu, A.; Zhang, X.; Song, N.; Shayiti, B.; An, X. Spatiotemporal Decoupling of Urban Expansion Intensity and Land Use Efficiency in Arid Oasis Agglomerations. Land 2025, 14, 2143. https://doi.org/10.3390/land14112143
Zhang Y, Kasimu A, Zhang X, Song N, Shayiti B, An X. Spatiotemporal Decoupling of Urban Expansion Intensity and Land Use Efficiency in Arid Oasis Agglomerations. Land. 2025; 14(11):2143. https://doi.org/10.3390/land14112143
Chicago/Turabian StyleZhang, Yan, Alimujiang Kasimu, Xue Zhang, Ning Song, Buwajiaergu Shayiti, and Xueyun An. 2025. "Spatiotemporal Decoupling of Urban Expansion Intensity and Land Use Efficiency in Arid Oasis Agglomerations" Land 14, no. 11: 2143. https://doi.org/10.3390/land14112143
APA StyleZhang, Y., Kasimu, A., Zhang, X., Song, N., Shayiti, B., & An, X. (2025). Spatiotemporal Decoupling of Urban Expansion Intensity and Land Use Efficiency in Arid Oasis Agglomerations. Land, 14(11), 2143. https://doi.org/10.3390/land14112143

